thermo.activity module

thermo.activity.K_value(P=None, Psat=None, phi_l=None, phi_g=None, gamma=None, Poynting=1)[source]

Calculates the equilibrium K-value assuming Raoult’s law, or an equation of state model, or an activity coefficient model, or a combined equation of state-activity model.

The calculation procedure will use the most advanced approach with the provided inputs:

  • If P, Psat, phi_l, phi_g, and gamma are provided, use the combined approach.
  • If P, Psat, and gamma are provided, use the modified Raoult’s law.
  • If phi_l and phi_g are provided, use the EOS only method.
  • If P and Psat are provided, use Raoult’s law.

Definitions:

\[K_i=\frac{y_i}{x_i}\]

Raoult’s law:

\[K_i = \frac{P_{i}^{sat}}{P}\]

Activity coefficient, no EOS (modified Raoult’s law):

\[K_i = \frac{\gamma_i P_{i}^{sat}}{P}\]

Equation of state only:

\[K_i = \frac{\phi_i^l}{\phi_i^v} = \frac{f_i^l}{f_i^v}\]

Combined approach (liquid reference fugacity coefficient is normally calculated the saturation pressure for it as a pure species; vapor fugacity coefficient calculated normally):

\[K_i = \frac{\gamma_i P_i^{sat} \phi_i^{l,ref}}{\phi_i^v P}\]

Combined approach, with Poynting Correction Factor (liquid molar volume in the integral is for i as a pure species only):

\[K_i = \frac{\gamma_i P_i^{sat} \phi_i^{l, ref} \exp\left[\frac{ \int_{P_i^{sat}}^P V_i^l dP}{RT}\right]}{\phi_i^v P}\]
Parameters:

P : float

System pressure, optional

Psat : float

Vapor pressure of species i, [Pa]

phi_l : float

Fugacity coefficient of species i in the liquid phase, either at the system conditions (EOS-only case) or at the saturation pressure of species i as a pure species (reference condition for the combined approach), optional [-]

phi_g : float

Fugacity coefficient of species i in the vapor phase at the system conditions, optional [-]

gamma : float

Activity coefficient of species i in the liquid phase, optional [-]

Poynting : float

Poynting correction factor, optional [-]

Returns:

K : float

Equilibrium K value of component i, calculated with an approach depending on the provided inputs [-]

Notes

The Poynting correction factor is normally simplified as follows, due to a liquid’s low pressure dependency:

\[K_i = \frac{\gamma_i P_i^{sat} \phi_i^{l, ref} \exp\left[\frac{V_l (P-P_i^{sat})}{RT}\right]}{\phi_i^v P}\]

References

[R9]Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.
[R10]Skogestad, Sigurd. Chemical and Energy Process Engineering. 1st edition. Boca Raton, FL: CRC Press, 2008.

Examples

Raoult’s law:

>>> K_value(101325, 3000.)
0.029607698001480384

Modified Raoult’s law:

>>> K_value(P=101325, Psat=3000, gamma=0.9)
0.026646928201332347

EOS-only approach:

>>> K_value(phi_l=1.6356, phi_g=0.88427)
1.8496613025433408

Gamma-phi combined approach:

>>> K_value(P=1E6, Psat=1938800, phi_l=1.4356, phi_g=0.88427, gamma=0.92)
2.8958055544121137

Gamma-phi combined approach with a Poynting factor:

>>> K_value(P=1E6, Psat=1938800, phi_l=1.4356, phi_g=0.88427, gamma=0.92,
... Poynting=0.999)
2.8929097488577016
thermo.activity.Rachford_Rice_flash_error(V_over_F, zs, Ks)[source]

Calculates the objective function of the Rachford-Rice flash equation. This function should be called by a solver seeking a solution to a flash calculation. The unknown variable is V_over_F, for which a solution must be between 0 and 1.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0\]
Parameters:

V_over_F : float

Vapor fraction guess [-]

zs : list[float]

Overall mole fractions of all species, [-]

Ks : list[float]

Equilibrium K-values, [-]

Returns:

error : float

Deviation between the objective function at the correct V_over_F and the attempted V_over_F, [-]

Notes

The derivation is as follows:

\[ \begin{align}\begin{aligned}F z_i = L x_i + V y_i\\x_i = \frac{z_i}{1 + \frac{V}{F}(K_i-1)}\\\sum_i y_i = \sum_i K_i x_i = 1\\\sum_i(y_i - x_i)=0\\\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0\end{aligned}\end{align} \]

References

[R11]Rachford, H. H. Jr, and J. D. Rice. “Procedure for Use of Electronic Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium.” Journal of Petroleum Technology 4, no. 10 (October 1, 1952): 19-3. doi:10.2118/952327-G.

Examples

>>> Rachford_Rice_flash_error(0.5, zs=[0.5, 0.3, 0.2],
... Ks=[1.685, 0.742, 0.532])
0.04406445591174976
thermo.activity.Rachford_Rice_solution(zs, Ks)[source]

Solves the objective function of the Rachford-Rice flash equation. Uses the method proposed in [R13] to obtain an initial guess.

\[\sum_i \frac{z_i(K_i-1)}{1 + \frac{V}{F}(K_i-1)} = 0\]
Parameters:

zs : list[float]

Overall mole fractions of all species, [-]

Ks : list[float]

Equilibrium K-values, [-]

Returns:

V_over_F : float

Vapor fraction solution [-]

xs : list[float]

Mole fractions of each species in the liquid phase, [-]

ys : list[float]

Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [R13].

\[ \begin{align}\begin{aligned}\left(\frac{V}{F}\right)_{min} = \frac{(K_{max}-K_{min})z_{of\;K_{max}} - (1-K_{min})}{(1-K_{min})(K_{max}-1)}\\\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}\end{aligned}\end{align} \]

Another algorithm for determining the range of the correct solution is given in [R14]; [R13] provides a narrower range however. For both cases, each guess should be limited to be between 0 and 1 as they are often negative or larger than 1.

\[ \begin{align}\begin{aligned}\left(\frac{V}{F}\right)_{min} = \frac{1}{1-K_{max}}\\\left(\frac{V}{F}\right)_{max} = \frac{1}{1-K_{min}}\end{aligned}\end{align} \]

If the newton method does not converge, a bisection method (brenth) is used instead. However, it is somewhat slower, especially as newton will attempt 50 iterations before giving up.

References

[R12]Rachford, H. H. Jr, and J. D. Rice. “Procedure for Use of Electronic Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium.” Journal of Petroleum Technology 4, no. 10 (October 1, 1952): 19-3. doi:10.2118/952327-G.
[R13](1, 2, 3, 4) Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust Alternative to Rachford-Rice in Flash Calculations.” Fluid Phase Equilibria 316 (February 25, 2012): 85-97. doi:10.1016/j.fluid.2011.12.005.
[R14](1, 2) Whitson, Curtis H., and Michael L. Michelsen. “The Negative Flash.” Fluid Phase Equilibria, Proceedings of the Fifth International Conference, 53 (December 1, 1989): 51-71. doi:10.1016/0378-3812(89)80072-X.

Examples

>>> Rachford_Rice_solution(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738542, [0.3394086969663436, 0.3650560590371706, 0.2955352439964858], [0.571903654388289, 0.27087159580558057, 0.15722474980613044])
thermo.activity.Li_Johns_Ahmadi_solution(zs, Ks)[source]

Solves the objective function of the Li-Johns-Ahmadi flash equation. Uses the method proposed in [R15] to obtain an initial guess.

\[0 = 1 + \left(\frac{K_{max}-K_{min}}{K_{min}-1}\right)x_1 + \sum_{i=2}^{n-1}\frac{K_i-K_{min}}{K_{min}-1}\left[\frac{z_i(K_{max} -1)x_{max}}{(K_i-1)z_{max} + (K_{max}-K_i)x_{max}}\right]\]
Parameters:

zs : list[float]

Overall mole fractions of all species, [-]

Ks : list[float]

Equilibrium K-values, [-]

Returns:

V_over_F : float

Vapor fraction solution [-]

xs : list[float]

Mole fractions of each species in the liquid phase, [-]

ys : list[float]

Mole fractions of each species in the vapor phase, [-]

Notes

The initial guess is the average of the following, as described in [R15]. Each guess should be limited to be between 0 and 1 as they are often negative or larger than 1. max refers to the corresponding mole fractions for the species with the largest K value.

\[\left(\frac{1-K_{min}}{K_{max}-K_{min}}\right)z_{max}\le x_{max} \le \left(\frac{1-K_{min}}{K_{max}-K_{min}}\right)\]

If the newton method does not converge, a bisection method (brenth) is used instead. However, it is somewhat slower, especially as newton will attempt 50 iterations before giving up.

This method does not work for problems of only two components. K values are sorted internally. Has not been found to be quicker than the Rachford-Rice equation.

References

[R15](1, 2, 3) Li, Yinghui, Russell T. Johns, and Kaveh Ahmadi. “A Rapid and Robust Alternative to Rachford-Rice in Flash Calculations.” Fluid Phase Equilibria 316 (February 25, 2012): 85-97. doi:10.1016/j.fluid.2011.12.005.

Examples

>>> Li_Johns_Ahmadi_solution(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738544, [0.33940869696634357, 0.3650560590371706, 0.2955352439964858], [0.5719036543882889, 0.27087159580558057, 0.15722474980613044])
thermo.activity.flash_inner_loop(zs, Ks, AvailableMethods=False, Method=None)[source]

This function handles the solution of the inner loop of a flash calculation, solving for liquid and gas mole fractions and vapor fraction based on specified overall mole fractions and K values. As K values are weak functions of composition, this should be called repeatedly by an outer loop. Will automatically select an algorithm to use if no Method is provided. Should always provide a solution.

The automatic algorithm selection will try an analytical solution, and use the Rachford-Rice method if there are 4 or more components in the mixture.

Parameters:

zs : list[float]

Overall mole fractions of all species, [-]

Ks : list[float]

Equilibrium K-values, [-]

Returns:

V_over_F : float

Vapor fraction solution [-]

xs : list[float]

Mole fractions of each species in the liquid phase, [-]

ys : list[float]

Mole fractions of each species in the vapor phase, [-]

methods : list, only returned if AvailableMethods == True

List of methods which can be used to obtain a solution with the given inputs

Other Parameters:
 

Method : string, optional

The method name to use. Accepted methods are ‘Analytical’, ‘Rachford-Rice’, and ‘Li-Johns-Ahmadi’. All valid values are also held in the list flash_inner_loop_methods.

AvailableMethods : bool, optional

If True, function will determine which methods can be used to obtain a solution for the desired chemical, and will return methods instead of V_over_F, xs, and ys.

Notes

A total of three methods are available for this function. They are:

  • ‘Analytical’, an exact solution derived with SymPy, applicable only only to mixtures of two or three components
  • ‘Rachford-Rice’, which numerically solves an objective function described in Rachford_Rice_solution.
  • ‘Li-Johns-Ahmadi’, which numerically solves an objective function described in Li_Johns_Ahmadi_solution.

Examples

>>> flash_inner_loop(zs=[0.5, 0.3, 0.2], Ks=[1.685, 0.742, 0.532])
(0.6907302627738537, [0.3394086969663437, 0.36505605903717053, 0.29553524399648573], [0.5719036543882892, 0.2708715958055805, 0.1572247498061304])
thermo.activity.NRTL(xs, taus, alphas)[source]

Calculates the activity coefficients of each species in a mixture using the Non-Random Two-Liquid (NRTL) method, given their mole fractions, dimensionless interaction parameters, and nonrandomness constants. Those are normally correlated with temperature in some form, and need to be calculated separately.

\[ \begin{align}\begin{aligned}\ln(\gamma_i)=\frac{\displaystyle\sum_{j=1}^{n}{x_{j}\tau_{ji}G_{ji}}} {\displaystyle\sum_{k=1}^{n}{x_{k}G_{ki}}}+\sum_{j=1}^{n} {\frac{x_{j}G_{ij}}{\displaystyle\sum_{k=1}^{n}{x_{k}G_{kj}}}} {\left ({\tau_{ij}-\frac{\displaystyle\sum_{m=1}^{n}{x_{m}\tau_{mj} G_{mj}}}{\displaystyle\sum_{k=1}^{n}{x_{k}G_{kj}}}}\right )}\\G_{ij}=\text{exp}\left ({-\alpha_{ij}\tau_{ij}}\right )\end{aligned}\end{align} \]
Parameters:

xs : list[float]

Liquid mole fractions of each species, [-]

taus : list[list[float]]

Dimensionless interaction parameters of each compound with each other, [-]

alphas : list[list[float]]

Nonrandomness constants of each compound interacting with each other, [-]

Returns:

gammas : list[float]

Activity coefficient for each species in the liquid mixture, [-]

Notes

This model needs N^2 parameters.

One common temperature dependence of the nonrandomness constants is:

\[\alpha_{ij}=c_{ij}+d_{ij}T\]

Most correlations for the interaction parameters include some of the terms shown in the following form:

\[\tau_{ij}=A_{ij}+\frac{B_{ij}}{T}+\frac{C_{ij}}{T^{2}}+D_{ij} \ln{\left ({T}\right )}+E_{ij}T^{F_{ij}}\]

References

[R16]Renon, Henri, and J. M. Prausnitz. “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures.” AIChE Journal 14, no. 1 (1968): 135-144. doi:10.1002/aic.690140124.
[R17]Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.

Examples

Ethanol-water example, at 343.15 K and 1 MPa:

>>> NRTL(xs=[0.252, 0.748], taus=[[0, -0.178], [1.963, 0]],
... alphas=[[0, 0.2974],[.2974, 0]])
[1.9363183763514304, 1.1537609663170014]
thermo.activity.Wilson(xs, params)[source]

Calculates the activity coefficients of each species in a mixture using the Wilson method, given their mole fractions, and dimensionless interaction parameters. Those are normally correlated with temperature, and need to be calculated separately.

\[\ln \gamma_i = 1 - \ln \left(\sum_j^N \Lambda_{ij} x_j\right) -\sum_j^N \frac{\Lambda_{ji}x_j}{\displaystyle\sum_k^N \Lambda_{jk}x_k}\]
Parameters:

xs : list[float]

Liquid mole fractions of each species, [-]

params : list[list[float]]

Dimensionless interaction parameters of each compound with each other, [-]

Returns:

gammas : list[float]

Activity coefficient for each species in the liquid mixture, [-]

Notes

This model needs N^2 parameters.

The original model correlated the interaction parameters using the standard pure-component molar volumes of each species at 25°C, in the following form:

\[\Lambda_{ij} = \frac{V_j}{V_i} \exp\left(\frac{-\lambda_{i,j}}{RT}\right)\]

However, that form has less flexibility and offered no advantage over using only regressed parameters.

Most correlations for the interaction parameters include some of the terms shown in the following form:

\[\ln \Lambda_{ij} =a_{ij}+\frac{b_{ij}}{T}+c_{ij}\ln T + d_{ij}T + \frac{e_{ij}}{T^2} + h_{ij}{T^2}\]

The Wilson model is not applicable to liquid-liquid systems.

References

[R18]Wilson, Grant M. “Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing.” Journal of the American Chemical Society 86, no. 2 (January 1, 1964): 127-130. doi:10.1021/ja01056a002.
[R19]Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.

Examples

Ethanol-water example, at 343.15 K and 1 MPa:

>>> Wilson([0.252, 0.748], [[1, 0.154], [0.888, 1]])
[1.8814926087178843, 1.1655774931125487]
thermo.activity.UNIQUAC(xs, rs, qs, taus)[source]

Calculates the activity coefficients of each species in a mixture using the Universal quasi-chemical (UNIQUAC) equation, given their mole fractions, rs, qs, and dimensionless interaction parameters. The interaction parameters are normally correlated with temperature, and need to be calculated separately.

\[ \begin{align}\begin{aligned}\ln \gamma_i = \ln \frac{\Phi_i}{x_i} + \frac{z}{2} q_i \ln \frac{\theta_i}{\Phi_i}+ l_i - \frac{\Phi_i}{x_i}\sum_j^N x_j l_j - q_i \ln\left( \sum_j^N \theta_j \tau_{ji}\right)+ q_i - q_i\sum_j^N \frac{\theta_j \tau_{ij}}{\sum_k^N \theta_k \tau_{kj}}\\\theta_i = \frac{x_i q_i}{\displaystyle\sum_{j=1}^{n} x_j q_j}\\ \Phi_i = \frac{x_i r_i}{\displaystyle\sum_{j=1}^{n} x_j r_j}\\ l_i = \frac{z}{2}(r_i - q_i) - (r_i - 1)\end{aligned}\end{align} \]
Parameters:

xs : list[float]

Liquid mole fractions of each species, [-]

rs : list[float]

Van der Waals volume parameters for each species, [-]

qs : list[float]

Surface area parameters for each species, [-]

taus : list[list[float]]

Dimensionless interaction parameters of each compound with each other, [-]

Returns:

gammas : list[float]

Activity coefficient for each species in the liquid mixture, [-]

Notes

This model needs N^2 parameters.

The original expression for the interaction parameters is as follows:

\[\tau_{ji} = \exp\left(\frac{-\Delta u_{ij}}{RT}\right)\]

However, it is seldom used. Most correlations for the interaction parameters include some of the terms shown in the following form:

\[\ln \tau{ij} =a_{ij}+\frac{b_{ij}}{T}+c_{ij}\ln T + d_{ij}T + \frac{e_{ij}}{T^2}\]

This model is recast in a slightly more computationally efficient way in [R21], as shown below:

\[ \begin{align}\begin{aligned}\ln \gamma_i = \ln \gamma_i^{res} + \ln \gamma_i^{comb}\\\ln \gamma_i^{res} = q_i \left(1 - \ln\frac{\sum_j^N q_j x_j \tau_{ji}} {\sum_j^N q_j x_j}- \sum_j \frac{q_k x_j \tau_{ij}}{\sum_k q_k x_k \tau_{kj}}\right)\\\ln \gamma_i^{comb} = (1 - V_i + \ln V_i) - \frac{z}{2}q_i\left(1 - \frac{V_i}{F_i} + \ln \frac{V_i}{F_i}\right)\\V_i = \frac{r_i}{\sum_j^N r_j x_j}\\F_i = \frac{q_i}{\sum_j q_j x_j}\end{aligned}\end{align} \]

References

[R20]Abrams, Denis S., and John M. Prausnitz. “Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems.” AIChE Journal 21, no. 1 (January 1, 1975): 116-28. doi:10.1002/aic.690210115.
[R21](1, 2) Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.
[R22]Maurer, G., and J. M. Prausnitz. “On the Derivation and Extension of the Uniquac Equation.” Fluid Phase Equilibria 2, no. 2 (January 1, 1978): 91-99. doi:10.1016/0378-3812(78)85002-X.

Examples

Ethanol-water example, at 343.15 K and 1 MPa:

>>> UNIQUAC(xs=[0.252, 0.748], rs=[2.1055, 0.9200], qs=[1.972, 1.400],
... taus=[[1.0, 1.0919744384510301], [0.37452902779205477, 1.0]])
[2.35875137797083, 1.2442093415968987]
thermo.activity.flash(P, zs, Psats)[source]
thermo.activity.dew_at_T(zs, Psats, fugacities=None, gammas=None)[source]
>>> dew_at_T([0.5, 0.5], [1400, 7000])
2333.3333333333335
>>> dew_at_T([0.5, 0.5], [1400, 7000], gammas=[1.1, .75])
2381.443298969072
>>> dew_at_T([0.5, 0.5], [1400, 7000], gammas=[1.1, .75], fugacities=[.995, 0.98])
2401.621874512658
thermo.activity.bubble_at_T(zs, Psats, fugacities=None, gammas=None)[source]
>>> bubble_at_T([0.5, 0.5], [1400, 7000])
4200.0
>>> bubble_at_T([0.5, 0.5], [1400, 7000], gammas=[1.1, .75])
3395.0
>>> bubble_at_T([0.5, 0.5], [1400, 7000], gammas=[1.1, .75], fugacities=[.995, 0.98])
3452.440775305097
thermo.activity.identify_phase(T, P, Tm=None, Tb=None, Tc=None, Psat=None)[source]

Determines the phase of a one-species chemical system according to basic rules, using whatever information is available. Considers only the phases liquid, solid, and gas; does not consider two-phase scenarios, as should occurs between phase boundaries.

  • If the melting temperature is known and the temperature is under or equal to it, consider it a solid.
  • If the critical temperature is known and the temperature is greater or equal to it, consider it a gas.
  • If the vapor pressure at T is known and the pressure is under or equal to it, consider it a gas. If the pressure is greater than the vapor pressure, consider it a liquid.
  • If the melting temperature, critical temperature, and vapor pressure are not known, attempt to use the boiling point to provide phase information. If the pressure is between 90 kPa and 110 kPa (approximately normal), consider it a liquid if it is under the boiling temperature and a gas if above the boiling temperature.
  • If the pressure is above 110 kPa and the boiling temperature is known, consider it a liquid if the temperature is under the boiling temperature.
  • Return None otherwise.
Parameters:

T : float

Temperature, [K]

P : float

Pressure, [Pa]

Tm : float, optional

Normal melting temperature, [K]

Tb : float, optional

Normal boiling point, [K]

Tc : float, optional

Critical temperature, [K]

Psat : float, optional

Vapor pressure of the fluid at T, [Pa]

Returns:

phase : str

Either ‘s’, ‘l’, ‘g’, or None if the phase cannot be determined

Notes

No special attential is paid to any phase transition. For the case where the melting point is not provided, the possibility of the fluid being solid is simply ignored.

Examples

>>> identify_phase(T=280, P=101325, Tm=273.15, Psat=991)
'l'
thermo.activity.identify_phase_mixture(T=None, P=None, zs=None, Tcs=None, Pcs=None, Psats=None, CASRNs=None, AvailableMethods=False, Method=None)[source]
>>> identify_phase_mixture(T=280, P=5000., zs=[0.5, 0.5], Psats=[1400, 7000])
('l', [0.5, 0.5], None, 0)
>>> identify_phase_mixture(T=280, P=3000., zs=[0.5, 0.5], Psats=[1400, 7000])
('two-phase', [0.7142857142857143, 0.2857142857142857], [0.33333333333333337, 0.6666666666666666], 0.5625000000000001)
>>> identify_phase_mixture(T=280, P=800., zs=[0.5, 0.5], Psats=[1400, 7000])
('g', None, [0.5, 0.5], 1)
>>> identify_phase_mixture(T=280, P=800., zs=[0.5, 0.5])
(None, None, None, None)
thermo.activity.Pbubble_mixture(T=None, zs=None, Psats=None, CASRNs=None, AvailableMethods=False, Method=None)[source]
>>> Pbubble_mixture(zs=[0.5, 0.5], Psats=[1400, 7000])
4200.0
thermo.activity.bubble_at_P(P, zs, vapor_pressure_eqns, fugacities=None, gammas=None)[source]

Calculates bubble point for a given pressure

Parameters:

P : float

Pressure, [Pa]

zs : list[float]

Overall mole fractions of all species, [-]

vapor_pressure_eqns : list[functions]

Temperature dependent function for each specie, Returns Psat, [Pa]

fugacities : list[float], optional

fugacities of each species, defaults to list of ones[-]

gammas : list[float], optional

gammas of each species, defaults to list of ones[-]

Returns:

Tbubble : float, optional

Temperature of bubble point at pressure P, [K]

thermo.activity.Pdew_mixture(T=None, zs=None, Psats=None, CASRNs=None, AvailableMethods=False, Method=None)[source]
>>> Pdew_mixture(zs=[0.5, 0.5], Psats=[1400, 7000])
2333.3333333333335