thermo.dippr module

thermo.dippr.EQ100(T, A=0, B=0, C=0, D=0, E=0, F=0, G=0)[source]

DIPPR Equation # 100. Used in calculating the molar heat capacities of liquids and solids, liquid thermal conductivity, and solid density. All parameters default to zero. As this is a straightforward polynomial, no restrictions on parameters apply. Note that high-order polynomials like this may need large numbers of decimal places to avoid unnecessary error.

\[Y = A + BT + CT^2 + DT^3 + ET^4 + FT^5 + GT^6\]
Parameters:

T : float

Temperature, [K]

A-G : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R76]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Water liquid heat capacity; DIPPR coefficients normally listed in J/kmol/K.

>>> EQ100(300, 276370., -2090.1, 8.125, -0.014116, 0.0000093701)
75355.81
thermo.dippr.EQ101(T, A, B, C, D, E)[source]

DIPPR Equation # 101. Used in calculating vapor pressure, sublimation pressure, and liquid viscosity. All 5 parameters are required. E is often an integer. As the model is exponential, a sufficiently high temperature will cause an OverflowError. A negative temperature (or just low, if fit poorly) may cause a math domain error.

\[Y = \exp\left(A + \frac{B}{T} + C\cdot \ln T + D \cdot T^E\right)\]
Parameters:

T : float

Temperature, [K]

A-E : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R77]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Water vapor pressure; DIPPR coefficients normally listed in Pa.

>>> EQ101(300, 73.649, -7258.2, -7.3037, 4.1653E-6, 2)
3537.44834545549
thermo.dippr.EQ102(T, A, B, C, D)[source]

DIPPR Equation # 102. Used in calculating vapor viscosity, vapor thermal conductivity, and sometimes solid heat capacity. High values of B raise an OverflowError. All 4 parameters are required. C and D are often 0.

\[Y = \frac{A\cdot T^B}{1 + \frac{C}{T} + \frac{D}{T^2}}\]
Parameters:

T : float

Temperature, [K]

A-D : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R78]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Water vapor viscosity; DIPPR coefficients normally listed in Pa*S.

>>> EQ102(300, 1.7096E-8, 1.1146, 0, 0)
9.860384711890639e-06
thermo.dippr.EQ104(T, A, B, C, D, E)[source]

DIPPR Equation #104. Often used in calculating second virial coefficients of gases. All 5 parameters are required. C, D, and E are normally large values.

\[Y = A + \frac{B}{T} + \frac{C}{T^3} + \frac{D}{T^8} + \frac{E}{T^9}\]
Parameters:

T : float

Temperature, [K]

A-E : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R79]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Water second virial coefficient; DIPPR coefficients normally dimensionless.

>>> EQ104(300, 0.02222, -26.38, -16750000, -3.894E19, 3.133E21)
-1.1204179007265151
thermo.dippr.EQ105(T, A, B, C, D)[source]

DIPPR Equation #105. Often used in calculating liquid molar density. All 4 parameters are required. C is sometimes the fluid’s critical temperature.

\[Y = \frac{A}{B^{1 + (1-\frac{T}{C})^D}}\]
Parameters:

T : float

Temperature, [K]

A-D : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R80]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Hexane molar density; DIPPR coefficients normally in kmol/m^3.

>>> EQ105(300., 0.70824, 0.26411, 507.6, 0.27537)
7.593170096339236
thermo.dippr.EQ106(T, Tc, A, B, C=0, D=0, E=0)[source]

DIPPR Equation #106. Often used in calculating liquid surface tension, and heat of vaporization. Only parameters A and B parameters are required; many fits include no further parameters. Critical temperature is also required.

\[ \begin{align}\begin{aligned}Y = A(1-T_r)^{B + C T_r + D T_r^2 + E T_r^3}\\Tr = \frac{T}{Tc}\end{aligned}\end{align} \]
Parameters:

T : float

Temperature, [K]

Tc : float

Critical temperature, [K]

A-D : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R81]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Water surface tension; DIPPR coefficients normally in Pa*S.

>>> EQ106(300, 647.096, 0.17766, 2.567, -3.3377, 1.9699)
0.07231499373541
thermo.dippr.EQ107(T, A=0, B=0, C=0, D=0, E=0)[source]

DIPPR Equation #107. Often used in calculating ideal-gas heat capacity. All 5 parameters are required. Also called the Aly-Lee equation.

\[Y = A + B\left[\frac{C/T}{\sinh(C/T)}\right]^2 + D\left[\frac{E/T}{ \cosh(E/T)}\right]^2\]
Parameters:

T : float

Temperature, [K]

A-E : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R82]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE
[R83]Aly, Fouad A., and Lloyd L. Lee. “Self-Consistent Equations for Calculating the Ideal Gas Heat Capacity, Enthalpy, and Entropy.” Fluid Phase Equilibria 6, no. 3 (January 1, 1981): 169-79. doi:10.1016/0378-3812(81)85002-9.

Examples

Water ideal gas molar heat capacity; DIPPR coefficients normally in J/kmol/K

>>> EQ107(300., 33363., 26790., 2610.5, 8896., 1169.)
33585.90452768923
thermo.dippr.EQ114(T, Tc, A, B, C, D)[source]

DIPPR Equation #114. Rarely used, normally as an alternate liquid heat capacity expression. All 4 parameters are required, as well as critical temperature.

\[ \begin{align}\begin{aligned}Y = \frac{A^2}{\tau} + B - 2AC\tau - AD\tau^2 - \frac{1}{3}C^2\tau^3 - \frac{1}{2}CD\tau^4 - \frac{1}{5}D^2\tau^5\\\tau = 1 - \frac{T}{Tc}\end{aligned}\end{align} \]
Parameters:

T : float

Temperature, [K]

Tc : float

Critical temperature, [K]

A-D : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R84]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Hydrogen liquid heat capacity; DIPPR coefficients normally in J/kmol/K.

>>> EQ114(20, 33.19, 66.653, 6765.9, -123.63, 478.27)
19423.948911676463
thermo.dippr.EQ115(T, A, B, C=0, D=0, E=0)[source]

DIPPR Equation #115. No major uses; has been used as an alternate liquid viscosity expression, and as a model for vapor pressure. Only parameters A and B are required.

\[Y = \exp\left(A + \frac{B}{T} + C\log T + D T^2 + \frac{E}{T^2}\right)\]
Parameters:

T : float

Temperature, [K]

A-E : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R85]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

No coefficients found for this expression.

thermo.dippr.EQ116(T, Tc, A, B, C, D, E)[source]

DIPPR Equation #116. Used to describe the molar density of water fairly precisely; no other uses listed. All 5 parameters are needed, as well as the critical temperature.

\[ \begin{align}\begin{aligned}Y = A + B\tau^{0.35} + C\tau^{2/3} + D\tau + E\tau^{4/3}\\\tau = 1 - \frac{T}{Tc}\end{aligned}\end{align} \]
Parameters:

T : float

Temperature, [K]

Tc : float

Critical temperature, [K]

A-E : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R86]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Water liquid molar density; DIPPR coefficients normally in kmol/m^3.

>>> EQ116(300., 647.096, 17.863, 58.606, -95.396, 213.89, -141.26)
55.17615446406527
thermo.dippr.EQ127(T, A, B, C, D, E, F, G)[source]

DIPPR Equation #127. Rarely used, and then only in calculating ideal-gas heat capacity. All 7 parameters are required.

\[Y = A+B\left[\frac{\left(\frac{C}{T}\right)^2\exp\left(\frac{C}{T} \right)}{\left(\exp\frac{C}{T}-1 \right)^2}\right] +D\left[\frac{\left(\frac{E}{T}\right)^2\exp\left(\frac{E}{T}\right)} {\left(\exp\frac{E}{T}-1 \right)^2}\right] +F\left[\frac{\left(\frac{G}{T}\right)^2\exp\left(\frac{G}{T}\right)} {\left(\exp\frac{G}{T}-1 \right)^2}\right]\]
Parameters:

T : float

Temperature, [K]

A-G : float

Parameter for the equation; chemical and property specific [-]

Returns:

Y : float

Property [constant-specific]

References

[R87]Design Institute for Physical Properties, 1996. DIPPR Project 801 DIPPR/AIChE

Examples

Ideal gas heat capacity of methanol; DIPPR coefficients normally in J/kmol/K

>>> EQ127(20., 3.3258E4, 3.6199E4, 1.2057E3, 1.5373E7, 3.2122E3, -1.5318E7, 3.2122E3)
33258.0