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CHAPTER

ONE

INTRODUCTION TO CUBIC EQUATIONS OF STATE

• Working With Pure Components

• Pure Component Equilibrium

• Working With Mixtures

• Other features

– Hashing

– Serialization

• Mixture Equilibrium

• Using Units with Cubic Equations of State

Cubic equations of state provide thermodynamically-consistent and relatively fast models for pure chemicals and mix-
tures. They are normally used to represent gases and liquids.

The generic three-parameter form is as follows:

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 2 + 𝛿𝑉 + 𝜖

This forms the basis of the implementation in thermo.

Two separate interfaces are provided, thermo.eos for pure component modeling and thermo.eos_mix for multicom-
ponent modeling. Pure components are quite a bit faster than multicomponent mixtures, because the Van der Waals
mixing rules conventionally used take N^2 operations to compute 𝛼(𝑇 ):

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

The other slow parts which applies to both types are calculating some basic properties (the list is at
set_properties_from_solution) that other properties may depend on, and calculating the molar volume given
a pair of (T, P) inputs (an entire submodule thermo.eos_volume discusses and implements this topic). Both of those
calculations are constant-time, so their overhead is the same for pure components and multicomponent mixtures.

3
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1.1 Working With Pure Components

We can use the GCEOS (short for “General Cubic Equation Of State”) interface with any component or implemented
equation of state, but for simplicity n-hexane is used with the Peng-Robinson EOS. Its critical temperature is 507.6 K,
critical pressure 3.025 MPa, and acentric factor is 0.2975.

The state must be specified along with the critical constants when initializing a GCEOS object; we use 400 K and 1e6
Pa here:

>>> from thermo import *
>>> eos = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=400., P=1E6)
>>> eos
PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=400.0, P=1000000.0)

The __repr__ string is designed to show all the inputs to the object.

We can check the volume solutions with the raw_volumes attribute:

>>> eos.raw_volumes
(0.0001560731847856, 0.002141876816741, 0.000919295474982)

At this point there are three real volume, so there is a liquid-like and a vapor-like solution available. The phase attribute
will have the value of ‘l/g’ in this state; otherwise it will be ‘l’ or ‘g’.

>>> eos.phase
'l/g'

The basic properties calculated at initialization are directly attributes, and can be accessed as such. Liquid-like prop-
erties have “_l” at the end of their name, and “_g” is at the end of gas-like properties.

>>> eos.H_dep_l
-26111.877
>>> eos.S_dep_g
-6.4394518
>>> eos.dP_dT_l
288501.633

All calculations in thermo.eos and thermo.eos_mix are on a molar basis; molecular weight is never provided or
needed. All outputs are in base SI units (K, Pa, m^3, mole, etc). This simplified development substantially. For working
with mass-based units, use the Phase interface. The thermo.eos and thermo.eos_mix interfaces were developed
prior to the Phase interface and does have some features not exposed in the Phase interface however.

Other properties are either implemented as methods that require arguments, or Python properties which act just like
attributes but calculate the results on the fly. For example, the liquid-phase fugacity fugacity_l or the gas isobaric
(constant-pressure) expansion coefficient are properties.

>>> eos.fugacity_l
421597.00785
>>> eos.beta_g
0.0101232239

There are an awful lot of these properties, because many of them are derivatives subject to similar conditions. A full
list is in the documentation for GCEOS. There are fewer calls that take temperature, such as Hvap which calculates the
heat of vaporization of the object at a specified temperature:

4 Chapter 1. Introduction to Cubic Equations of State
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>>> eos.Hvap(300)
31086.2

Once an object has been created, it can be used to instantiate new GCEOS objects at different conditions, without re-
specifying the critical constants and other parameters that may be needed.

>>> eos.to(T=300.0, P=1e5)
PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=300.0, P=100000.0)
>>> eos.to(V=1e2, P=1e5)
PR(Tc=507.6, Pc=3025000.0, omega=0.2975, P=100000.0, V=100.0)
>>> eos.to(V=1e2, T=300)
PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=300, V=100.0)

As was seen in the examples above, any two of T, P, V can be used to specify the state of the object. The input variables
of the object are stored and can be checked with state_specs :

>>> eos.state_specs
{'T': 400.0, 'P': 1000000.0}

The individual parts of the generic cubic equation are stored as well. We can use them to check that the pressure
equation is satisfied:

>>> from thermo.eos import R
>>> R*eos.T/(eos.V_l-eos.b) - eos.a_alpha/(eos.V_l**2 + eos.V_l*eos.delta + eos.epsilon)
1000000.000000
>>> R*eos.T/(eos.V_g-eos.b) - eos.a_alpha/(eos.V_g**2 + eos.V_g*eos.delta + eos.epsilon)
1000000.000000

Note that as floating points are not perfectly precise, some small error may be shown but great care has been taken to
minimize this.

The value of the gas constant used is 8.31446261815324 J/(mol*K). This is near the full precision of floating point
numbers, but not quite. It is now an exact value used as a “definition” in the SI system. Note that other implementa-
tions of equations of state may not use the full value of the gas constant, but the author strongly recommends anyone
considering writing their own EOS implementation use the full gas constant. This will allow more interchangeable
results.

1.2 Pure Component Equilibrium

Continuing with the same state and example as before, there were two solutions available from the equation of state.
However, unless the exact temperature 400 K and pressure 1 MPa happens to be on the saturation line, there is always
one more thermodynamically stable state. We need to use the departure Gibbs free energy to determine which state is
more stable. For a pure component, the state which minimizes departure Gibbs free energy is the most stable state.

>>> eos = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=400., P=1E6)
>>> eos.G_dep_l, eos.G_dep_g
(-2872.498434, -973.5198207)

It is easy to see the liquid phase is more stable. This shortcut of using departure Gibbs free energy is valid only for
pure components with all phases using the ideal-gas reference state. The full criterial is whichever state minimizes the
actual Gibbs free energy.

The method more_stable_phase does this check and returns either ‘l’ or ‘g’:

1.2. Pure Component Equilibrium 5
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>>> eos.more_stable_phase
'l'

For a pure component, there is a vapor-liquid equilibrium line right up to the critical point which defines the vapor
pressure of the fluid. This can be calculated using the Psat method:

>>> eos.Psat(400.0)
466205.073739

The result is accurate to more than 10 digits, and is implemented using some fancy mathematical techniques that allow
a direct calculation of the vapor pressure. A few more digits can be obtained by setting polish to True, which polishes
the result with a newton solver to as much accuracy as a floating point number can provide:

>>> 1-eos.Psat(400, polish=True)/eos.Psat(400)
1.6e-14

A few more methods of interest are V_l_sat and V_g_sat which calculate the saturation liquid and molar volumes;
Tsat which calculates the saturation temperature given a specified pressure, and phi_sat which computes the satu-
ration fugacity coefficient given a temperature.

>>> eos.V_l_sat(298.15), eos.V_g_sat(500)
(0.0001303559, 0.0006827569)
>>> eos.Tsat(101325.0)
341.76265
>>> eos.phi_sat(425.0)
0.8349716

1.3 Working With Mixtures

Using mixture from thermo.eos_mix is first illustrated using an equimolar mixture of nitrogen-methane at 115 K and
1 MPa and the Peng-Robinson equation of state:

>>> eos = PRMIX(T=115.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.04,
→˓ 0.011], zs=[0.5, 0.5], kijs=[[0.0, 0.0289], [0.0289, 0.0]])
>>> eos.V_l, eos.V_g
(3.658707770e-05, 0.00070676607)
>>> eos.fugacities_l, eos.fugacities_g
([838516.99, 78350.27], [438108.61, 359993.48])

All of the properties available in GCEOS are also available for GCEOSMIX objects.

New GCEOSMIX objects can be created with the to method, which accepts new mole fractions zs as well as new state
variables. If a new composition zs is not provided, the current composition is also used for the new object.

>>> eos.to(T=300.0, P=1e5)
PRMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0,␣
→˓0.0289], [0.0289, 0.0]], zs=[0.5, 0.5], T=300.0, P=100000.0)
>>> eos.to(T=300.0, P=1e5, zs=[.1, .9])
PRMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0,␣
→˓0.0289], [0.0289, 0.0]], zs=[0.1, 0.9], T=300.0, P=100000.0)
>>> eos.to(V=1, P=1e5, zs=[.4, .6])
PRMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0,␣
→˓0.0289], [0.0289, 0.0]], zs=[0.4, 0.6], P=100000.0, V=1) (continues on next page)

6 Chapter 1. Introduction to Cubic Equations of State
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(continued from previous page)

>>> eos.to(V=1.0, T=300.0, zs=[.4, .6])
PRMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011], kijs=[[0.0,␣
→˓0.0289], [0.0289, 0.0]], zs=[0.4, 0.6], T=300.0, V=1.0)

It is possible to create new GCEOSMIX objects with the subset method which uses only some of the initially specified
components:

>>> kijs = [[0.0, 0.00076, 0.00171], [0.00076, 0.0, 0.00061], [0.00171, 0.00061, 0.0]]
>>> PR3 = PRMIX(Tcs=[469.7, 507.4, 540.3], zs=[0.8168, 0.1501, 0.0331], omegas=[0.249, 0.
→˓305, 0.349], Pcs=[3.369E6, 3.012E6, 2.736E6], T=322.29, P=101325.0, kijs=kijs)
>>> PR3.subset([1,2])
PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349], kijs=[[0.0,␣
→˓0.00061], [0.00061, 0.0]], zs=[0.8193231441048, 0.1806768558951], T=322.29, P=101325.0)
>>> PR3.subset([1,2], T=500.0, P=1e5, zs=[.2, .8])
PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349], kijs=[[0.0,␣
→˓0.00061], [0.00061, 0.0]], zs=[0.2, 0.8], T=500.0, P=100000.0)
>>> PR3.subset([1,2], zs=[.2, .8])
PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349], kijs=[[0.0,␣
→˓0.00061], [0.00061, 0.0]], zs=[0.2, 0.8], T=322.29, P=101325.0)

It is also possible to create pure GCEOS objects:

>>> PR3.pures()
[PR(Tc=469.7, Pc=3369000.0, omega=0.249, T=322.29, P=101325.0), PR(Tc=507.4, Pc=3012000.
→˓0, omega=0.305, T=322.29, P=101325.0), PR(Tc=540.3, Pc=2736000.0, omega=0.349, T=322.
→˓29, P=101325.0)]

Temperature, pressure, mole number, and mole fraction derivatives of the log fugacity coefficients are available as well
with the methods dlnphis_dT, dlnphis_dP, dlnphis_dns, and dlnphis_dzs:

>>> PR3.dlnphis_dT('l')
[0.029486952019, 0.03514175794, 0.040281845273]
>>> PR3.dlnphis_dP('l')
[-9.8253779e-06, -9.8189093031e-06, -9.8122598e-06]
>>> PR3.dlnphis_dns(PR3.Z_l)
[[-0.0010590517, 0.004153228837, 0.007300114797], [0.0041532288, -0.016918292791, -0.
→˓0257680231], [0.0073001147, -0.02576802316, -0.0632916462]]
>>> PR3.dlnphis_dzs(PR3.Z_l)
[[0.0099380692, 0.0151503498, 0.0182972357], [-0.038517738, -0.059589260, -0.068438990],␣
→˓[-0.070571069, -0.103639207, -0.141162830]]

1.4 Other features

1.4.1 Hashing

It is possible to compare the two objects with each other to see if they have the same kijs, model parameters, and
components by using the model_hash method:

1.4. Other features 7
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>>> PR_case = PRMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.
→˓04, 0.011], zs=[0.5, 0.5], kijs=[[0,0.41],[0.41,0]])
>>> SRK_case = SRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0.41],[0.41,0]])

>>> PR_case.model_hash() == SRK_case.model_hash()
False

It is possible to see if both the exact state and the model match between two different objects by using the state_hash
method:

>>> PR_case2 = PRMIX(T=116, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.
→˓04, 0.011], zs=[0.5, 0.5], kijs=[[0,0.41],[0.41,0]])
>>> PR_case.model_hash() == PR_case2.model_hash()
True
>>> PR_case.state_hash() == PR_case2.state_hash()
False

And finally it is possible to see if two objects are exactly identical, including cached calculation results, by using the
__hash__ method:

>>> PR_case3 = PRMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.
→˓04, 0.011], zs=[0.5, 0.5], kijs=[[0,0.41],[0.41,0]])
>>> PR_case.state_hash() == PR_case3.state_hash()
True
>>> hash(PR_case) == hash(PR_case3)
True
>>> _ = PR_case.da_alpha_dT_ijs
>>> hash(PR_case) == hash(PR_case3)
False

1.4.2 Serialization

All cubic EOS models offer a as_json method and a from_json to serialize the object state for transport over a
network, storing to disk, and passing data between processes.

>>> import json
>>> eos = PRSV2MIX(Tcs=[507.6], Pcs=[3025000], omegas=[0.2975], zs=[1], T=299., P=1E6,␣
→˓kappa1s=[0.05104], kappa2s=[0.8634], kappa3s=[0.460])
>>> json_stuff = json.dumps(eos.as_json())
>>> new_eos = GCEOSMIX.from_json(json.loads(json_stuff))
>>> assert new_eos == eos

Other json libraries can be used besides the standard json library by design.

Storing and recreating objects with Python’s pickle.dumps library is also tested; this can be faster than using JSON
at the cost of being binary data.

8 Chapter 1. Introduction to Cubic Equations of State
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1.5 Mixture Equilibrium

Unlike pure components, it is not straightforward to determine what the equilibrium state is for mixtures. Different
algorithms are used such as sequential substitution and Gibbs minimization. All of those require initial guesses, which
usually come from simpler thermodynamic models. While in practice it is possible to determine the equilibrium com-
position to an N-phase problem, in theory a global optimization algorithm must be used.

More details on this topic can be found in the thermo.flash module.

1.6 Using Units with Cubic Equations of State

There is a pint wrapper to use these objects as well.

>>> from thermo.units import *
>>> kwargs = dict(T=400.0*u.degC, P=30*u.psi, Tcs=[126.1, 190.6]*u.K, Pcs=[33.94E5, 46.
→˓04E5]*u.Pa, omegas=[0.04, 0.011]*u.dimensionless, zs=[0.5, 0.5]*u.dimensionless,␣
→˓kijs=[[0.0, 0.0289], [0.0289, 0.0]]*u.dimensionless)
>>> eos_units = PRMIX(**kwargs)
>>> eos_units.H_dep_g, eos_units.T
(<Quantity(-2.53858854, 'joule / mole')>, <Quantity(673.15, 'kelvin')>)

>>> base = IG(T=300.0*u.K, P=1e6*u.Pa)
>>> base.V_g
<Quantity(0.00249433879, 'meter ** 3 / mole')>

1.5. Mixture Equilibrium 9
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Vapor-liquid and liquid-liquid equilibria systems can have all sorts of different behavior. Raoult’s law can describe only
temperature and pressure dependence, so a correction factor that adds dependence on composition called the “activity
coefficient” is often used. This is a separate approach to using an equation of state, but because direct vapor pressure
correlations are used with the activity coefficients, a higher-accuracy result can be obtained for phase equilibria.

While these models are often called “activity coefficient models”, they are in fact actually a prediction for excess Gibbs
energy. The activity coefficients that are used for phase equilibria are derived from the partial mole number derivative
of excess Gibbs energy according to the following expression:

𝛾𝑖 = exp

(︃
𝜕𝑛𝑖𝐺

𝐸

𝜕𝑛𝑖

𝑅𝑇

)︃
There are 5 basic activity coefficient models in thermo:

• NRTL

• Wilson

• UNIQUAC

• RegularSolution

• UNIFAC

Each of these models are object-oriented, and inherit from a base class GibbsExcess that provides many common
methods. A further dummy class that predicts zero excess Gibbs energy and activity coefficients of 1 is available as
IdealSolution.

The excess Gibbs energy model is typically fairly simple. A number of derivatives are needed to calculate other proper-
ties like activity coefficient so those expressions can seem more complicated than the model really is. In the literature it
is common for a model to be shown directly in activity coefficient form without discussion of the Gibbs excess energy
model. To illustrate the difference, here is the NRTL model Gibbs energy expression and its activity coefficient model:

𝑔𝐸 = 𝑅𝑇
∑︁
𝑖

𝑥𝑖

∑︀
𝑗 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗∑︀
𝑗 𝐺𝑗𝑖𝑥𝑗
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ln(𝛾𝑖) =

𝑛∑︁
𝑗=1

𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖

𝑛∑︁
𝑘=1

𝑥𝑘𝐺𝑘𝑖

+

𝑛∑︁
𝑗=1

𝑥𝑗𝐺𝑖𝑗
𝑛∑︁

𝑘=1

𝑥𝑘𝐺𝑘𝑗

⎛⎜⎜⎜⎜⎝𝜏𝑖𝑗 −
𝑛∑︁

𝑚=1

𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗

𝑛∑︁
𝑘=1

𝑥𝑘𝐺𝑘𝑗

⎞⎟⎟⎟⎟⎠
The models NRTL, Wilson, and UNIQUAC are the most commonly used. Each of them is regression-based - all coeffi-
cients must be found in the literature or regressed yourself. Each of these models has extensive temperature dependence
parameters in addition to the composition dependence. The temperature dependencies implemented should allow pa-
rameters from most other sources to be used here with them.

The model RegularSolution is based on the concept of a solubility parameter; with liquid molar volumes
and solubility parameters it is a predictive model. It does not show temperature dependence. Additional regression
coefficients can be used with that model also.

The UNIFAC model is a predictive group-contribution scheme. In it, each molecule is fragmented into different sections.
These sections have interaction parameters with other sections. Usually the fragmentation is not done by hand. One
online tool for doing this is the DDBST Online Group Assignment Tool.

2.1 Object Structure

The GibbsExcess object doesn’t know anything about phase equilibria, vapor pressure, or flash routines; it is limited in
scope to dealing with excess Gibbs energy. Because of that modularity, an initialized GibbsExcess object is designed
to be passed in an argument to a cubic equations of state that use excess Gibbs energy such as PSRK .

The other place these objects are used are in GibbsExcessLiquid objects, which brings the pieces together to con-
struct a thermodynamically (mostly) consistent phase that the flash algorithms can work with.

This modularity allows new Gibbs excess models to be written and used anywhere - so the PSRK model will happily
allow a UNIFAC object configured like VTPR.

2.2 UNIFAC Example

The UNIFAC model is a group contribution based predictive model that is works using “fragmentations” of each
molecule into a number of different “groups” and their “counts”,

The DDBST has published numerous sample problems using UNIFAC; a simple binary system from example P05.22a
in2 with n-hexane and butanone-2 is shown below:

>>> from thermo.unifac import UFIP, UFSG, UNIFAC
>>> GE = UNIFAC.from_subgroups(chemgroups=[{1:2, 2:4}, {1:1, 2:1, 18:1}], T=60+273.15,␣
→˓xs=[0.5, 0.5], version=0, interaction_data=UFIP, subgroups=UFSG)

The solution given by the DDBST has the activity coefficient values [1.428, 1.365], which match those calculated by
the UNIFAC object:

>>> GE.gammas()
[1.4276025835, 1.3646545010]

Many other properties are also implemented, a few of which are shown below:

2 Gmehling, Jürgen, Michael Kleiber, Bärbel Kolbe, and Jürgen Rarey. Chemical Thermodynamics for Process Simulation. John Wiley & Sons,
2019.
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>>> GE.GE(), GE.dGE_dT(), GE.d2GE_dT2()
(923.641197, 0.206721488, -0.00380070204)
>>> GE.HE(), GE.SE(), GE.dHE_dT(), GE.dSE_dT()
(854.77193363, -0.2067214889, 1.266203886, 0.0038007020460)

Note that the UFIP and UFSG variables contain the actual interaction parameters; none are hardcoded with the class,
so the class could be used for regression. The version parameter controls which variant of UNIFAC to use, as there
are quite a few. The different UNIFAC models implemented include original UNIFAC, Dortmund UNIFAC, PSRK,
VTPR, Lyngby/Larsen, and UNIFAC KT. Interaction parameters for all models are included as well, but the version
argument is not connected to the data files.

For convenience, a number of molecule fragmentations are distributed with the UNIFAC code. All fragmentations were
obtained through the DDBST online portal, where molecular structure files can be submitted. This has the advantage
that what is submitted is unambiguous; there are no worries about CAS numbers like how graphite and diamond have a
different CAS number while being the same element or Air having a CAS number despite being a mixture. Accordingly,
The index in these distributed data files are InChI keys, which can be obtained from chemicals.identifiers or in
various places online.

>>> import thermo.unifac
>>> thermo.unifac.load_group_assignments_DDBST()
>>> len(thermo.unifac.DDBST_UNIFAC_assignments)
28846
>>> len(thermo.unifac.DDBST_MODIFIED_UNIFAC_assignments)
29271
>>> len(thermo.unifac.DDBST_PSRK_assignments)
30034
>>> from chemicals import search_chemical
>>> search_chemical('toluene').InChI_key
'YXFVVABEGXRONW-UHFFFAOYSA-N'
>>> thermo.unifac.DDBST_MODIFIED_UNIFAC_assignments['YXFVVABEGXRONW-UHFFFAOYSA-N']
{9: 5, 11: 1}

Please note that the identifying integer in these {group: count} elements are not necessarily the same in different
UNIFAC versions, making them a royal pain.

2.3 Notes on Performance

Initializing the object for the first time is a not a high performance operation as certain checks need to be done and
data structures set up. Some pieces of the equations of the Gibbs excess model may depend only on temperature or
composition, instead of depending on both. Each model implements the method to_T_xs which should be used to
create a new object at the new temperature and/or composition. The design of the object is to lazy-calculate properties,
and to be immutable: calculations at new temperatures and compositions are done in a new object.

Note also that the __repr__ string for each model is designed to allow lossless reconstruction of the model. This is
very useful when building test cases.

>>> GE.to_T_xs(T=400.0, xs=[.1, .9])
UNIFAC(T=400.0, xs=[0.1, 0.9], rs=[4.4998000000000005, 3.2479], qs=[3.856, 2.876], Qs=[0.
→˓848, 0.54, 1.488], vs=[[2, 1], [4, 1], [0, 1]], psi_abc=([[0.0, 0.0, 476.4], [0.0, 0.0,
→˓ 476.4], [26.76, 26.76, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],␣
→˓[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), version=0)
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When working with small numbers of components (5 or under), PyPy offers the best performance and using the model
with Python lists as inputs is the fastest way to perform the calculations even in CPython.

If working with many components or if Numpy arrays are desired as inputs and outputs, numpy arrays can be provided
as inputs. This will have a negative impact on performance unless the numba interface is used:

>>> import numpy as np
>>> import thermo.numba
>>> N = 3
>>> T = 25.0 + 273.15
>>> xs = np.array([0.7273, 0.0909, 0.1818])
>>> rs = np.array([.92, 2.1055, 3.1878])
>>> qs = np.array([1.4, 1.972, 2.4])
>>> tausA = tausC = tausD = tausE = tausF = np.array([[0.0]*N for i in range(N)])
>>> tausB = np.array([[0, -526.02, -309.64], [318.06, 0, 91.532], [-1325.1, -302.57, 0]])
>>> ABCDEF = (tausA, tausB, tausC, tausD, tausE, tausF)
>>> from thermo import UNIQUAC
>>> GE2 = UNIQUAC(T=T, xs=xs, rs=rs, qs=qs, ABCDEF=ABCDEF)
>>> GE2.gammas()
array([ 1.57039333, 0.29482416, 18.11432905])

The numba interface will speed code up and allow calculations with dozens of components. The numba interface
requires all inputs to be numpy arrays and all of its outputs are also numba arrays.

>>> GE3 = thermo.numba.UNIQUAC(T=T, xs=xs, rs=rs, qs=qs, ABCDEF=ABCDEF)
>>> GE3.gammas()
array([ 1.57039333, 0.29482416, 18.11432905])

As an example of the performance benefits, a 200-component UNIFAC gamma calculation takes 10.6 ms in CPython
and 318 µs when accelerated by Numba. In this case PyPy takes at 664 µs.

When the same benchmark is performed with 10 components, the calculation takes 387 µs in CPython, 88.6 µs with
numba, and 36.2 µs with PyPy.

It can be quite important to use the to_T_xsmethod re-use parts of the calculation; for UNIFAC, several terms depends
only on temperature. If the 200 component calculation is repeated with those already calculated, the timings are 3.26
ms in CPython, 127 µs with numba, and 125 µs with PyPy.

2.4 Other features

The limiting infinite-dilution activity coefficients can be obtained with a call to gammas_infinite_dilution

>>> GE.gammas_infinite_dilution()
[3.5659995166, 4.32849696]

All activity coefficient models offer a as_json method and a from_json to serialize the object state for transport over
a network, storing to disk, and passing data between processes.

>>> from thermo import IdealSolution
>>> import json
>>> model = IdealSolution(T=300.0, xs=[.1, .2, .3, .4])
>>> json_view = model.as_json()
>>> json_str = json.dumps(json_view)

(continues on next page)
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(continued from previous page)

>>> model_copy = IdealSolution.from_json(json.loads(json_str))
>>> assert model_copy == model

Other json libraries can be used besides the standard json library by design.

Storing and recreating objects with Python’s pickle.dumps library is also tested; this can be faster than using JSON
at the cost of being binary data.

All models have a __hash__method that can be used to compare different models to see if they are absolutely identical
(including which values have been calculated already).

They also have a model_hash method that can be used to compare different models to see if they have identical model
parameters.

They also have a state_hash method that can be used to compare different models to see if they have identical
temperature, composition, and model parameters.

2.5 Activity Coefficient Identities

A set of useful equations are as follows. For more information, the reader is directed to1,?,3,4, and5; no one source
contains all this information.

ℎ𝐸 = −𝑇 𝜕𝑔
𝐸

𝜕𝑇
+ 𝑔𝐸

𝜕ℎ𝐸
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= −𝑇 𝜕

2𝑔𝐸

𝜕𝑇 2
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)︃
1 Poling, Bruce E., John M. Prausnitz, and John P. O’Connell. The Properties of Gases and Liquids. 5th edition. New York: McGraw-Hill

Professional, 2000.
3 Nevers, Noel de. Physical and Chemical Equilibrium for Chemical Engineers. 2nd edition. Wiley, 2012.
4 Elliott, J., and Carl Lira. Introductory Chemical Engineering Thermodynamics. 2nd edition. Upper Saddle River, NJ: Prentice Hall, 2012.
5 Walas, Dr Stanley M. Phase Equilibria in Chemical Engineering. Butterworth-Heinemann, 1985.
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For every chemical property, there are lots and lots of methods. The methods can be grouped by which phase they
apply to, although some methods are valid for both liquids and gases.

Properties calculations be separated into three categories:

• Properties of chemicals that depend on temperature. Some properties have weak dependence on pressure, like
surface tension, and others have no dependence on pressure like vapor pressure by definition.

• Properties of chemicals that depend on temperature and pressure. Some properties have weak dependence on
pressure like thermal conductivity, while other properties depend on pressure fundamentally, like gas volume.

• Properties of mixtures, that depend on temperature and pressure and composition. Some properties like gas
mixture heat capacity require the pressure as an input but do not use it.

These properties are implemented in an object oriented way, with the actual functional algorithms themselves having
been separated out into the chemicals library. The goal of these objects is to make it easy to experiment with different
methods.

The base classes for the three respective types of properties are:

• TDependentProperty

• TPDependentProperty

• MixtureProperty

The specific classes for the three respective types of properties are:

• HeatCapacityGas, HeatCapacityLiquid , HeatCapacitySolid , VolumeSolid , VaporPressure,
SublimationPressure, EnthalpyVaporization, EnthalpySublimation, Permittivity,
SurfaceTension.

• VolumeGas, VolumeLiquid , ViscosityGas, ViscosityLiquid , ThermalConductivityGas,
ThermalConductivityLiquid

• HeatCapacityGasMixture, HeatCapacityLiquidMixture, HeatCapacitySolidMixture,
VolumeGasMixture, VolumeLiquidMixture, VolumeSolidMixture, ViscosityLiquidMixture,
ViscosityGasMixture, ThermalConductivityLiquidMixture, ThermalConductivityGasMixture,
SurfaceTensionMixture

3.1 Temperature Dependent Properties

The following examples introduce how to use some of the methods of the TDependentProperty objects. The API
documentation for TDependentProperty as well as each specific property such as VaporPressure should be con-
sulted for full details.

3.1.1 Creating Objects

All arguments and information the property object requires must be provided in the constructor of the object. If a piece
of information is not provided, whichever methods require it will not be available for that object.

>>> from thermo import VaporPressure, HeatCapacityGas
>>> ethanol_psat = VaporPressure(Tb=351.39, Tc=514.0, Pc=6137000.0, omega=0.635, CASRN=
→˓'64-17-5')

Various data files will be searched to see if information such as Antoine coefficients is available for the compound
during the initialization. This behavior can be avoided by setting the optional load_data argument to False. Loading
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data requires pandas, uses more RAM, and is a once-per-process procedure that takes 20-1000 ms per property. For
some applications it may be advantageous to provide your own data instead of using the provided data files.

>>> useless_psat = VaporPressure(CASRN='64-17-5', load_data=False)

3.1.2 Temperature-dependent Methods

As many methods may be available, a single method is always selected automatically during initialization. This method
can be inspected with the method property; if no methods are available, method will be None. method is also a valid
parameter when constructing the object, but if the method specified is not available an exception will be raised.

>>> ethanol_psat.method, useless_psat.method
('WAGNER_MCGARRY', None)

All available methods can be found by inspecting the all_methods attribute:

>>> ethanol_psat.all_methods
{'ANTOINE_POLING', 'EDALAT', 'WAGNER_POLING', 'SANJARI', 'COOLPROP', 'LEE_KESLER_PSAT',
→˓'DIPPR_PERRY_8E', 'VDI_PPDS', 'WAGNER_MCGARRY', 'VDI_TABULAR', 'AMBROSE_WALTON',
→˓'BOILING_CRITICAL'}

Changing the method is as easy as setting a new value to the attribute:

>>> ethanol_psat.method = 'ANTOINE_POLING'
>>> ethanol_psat.method
'ANTOINE_POLING'
>>> ethanol_psat.method = 'WAGNER_MCGARRY'

3.1.3 Calculating Properties

Calculation of the property at a specific temperature is as easy as calling the object which triggers the __call__
method:

>>> ethanol_psat(300.0)
8753.8160

This is actually a cached wrapper around the specific call, T_dependent_property:

>>> ethanol_psat.T_dependent_property(300.0)
8753.8160

The caching of __call__ is quite basic - the previously specified temperature is stored, and if the new T is the same
as the previous T the previously calculated result is returned.

There is a lower-level interface for calculating properties with a specified method by name, calculate.
T_dependent_property is a wrapper around calculate that includes validation of the result.

>>> ethanol_psat.calculate(T=300.0, method='WAGNER_MCGARRY')
8753.8160
>>> ethanol_psat.calculate(T=300.0, method='DIPPR_PERRY_8E')
8812.9812
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3.1.4 Limits and Extrapolation

Each correlation is associated with temperature limits. These can be inspected as part of the T_limits attribute which
is loaded on creation of the property object.

>>> ethanol_psat.T_limits
{'WAGNER_MCGARRY': (293.0, 513.92), 'WAGNER_POLING': (159.05, 513.92), 'ANTOINE_POLING':␣
→˓(276.5, 369.54), 'DIPPR_PERRY_8E': (159.05, 514.0), 'COOLPROP': (159.1, 514.71), 'VDI_
→˓TABULAR': (300.0, 513.9), 'VDI_PPDS': (159.05, 513.9), 'BOILING_CRITICAL': (0.01, 514.
→˓0), 'LEE_KESLER_PSAT': (0.01, 514.0), 'AMBROSE_WALTON': (0.01, 514.0), 'SANJARI': (0.
→˓01, 514.0), 'EDALAT': (0.01, 514.0)}

Because there is often a need to obtain a property outside the range of the correlation, there are some extrapolation
methods available; depending on the method these may be enabled by default. The full list of extrapolation methods
can be see here.

For vapor pressure, there are actually two separate extrapolation techniques used, one for the low-pressure and ther-
modynamically reasonable region and another for extrapolating even past the critical point. This can be useful for
obtaining initial estimates of phase equilibrium.

The low-pressure region uses log(𝑃𝑠𝑎𝑡) = 𝐴 − 𝐵/𝑇 , where the coefficients A and B are calculated from
the low-temperature limit and its temperature derivative. The default high-temperature extrapolation is 𝑃𝑠𝑎𝑡 =
exp (𝐴+𝐵/𝑇 + 𝐶 log(𝑇 )). The coefficients are also determined from the high-temperature limits and its first two
temperature derivatives.

When extrapolation is turned on, it is used automatically if a property is requested out of range:

>>> ethanol_psat(100.0), ethanol_psat(1000)
(1.047582e-11, 1779196575.4962692)

The default extrapolation methods may be changed in the future, but can be manually specified also by changing the
value of the extrapolation attribute. For example, if the linear extrapolation method is set, extrapolation will be
linear instead of using those fit equations. Because not all properties are suitable for linear extrapolation, some methods
have a default transform to make the property behave as linearly as possible. This is also used in tabular interpolation:

>>> ethanol_psat.extrapolation = 'linear'
>>> ethanol_psat(100.0), ethanol_psat(1000)
(1.0475e-11, 385182009.4)

The low-temperature linearly extrapolated value is actually the same as before, because it performs a 1/T transform and
a log(P) transform on the output, which results in the fit being the same as the default equation for vapor pressure.

To better understand what methods are available, the valid_methods method checks all available correlations against
their temperature limits.

>>> ethanol_psat.valid_methods(100)
['AMBROSE_WALTON', 'LEE_KESLER_PSAT', 'EDALAT', 'BOILING_CRITICAL', 'SANJARI']

If the temperature is not provided, all available methods are returned; the returned value favors the methods by the
ranking defined in thermo, with the currently selected method as the first item.

>>> ethanol_psat.valid_methods()
['WAGNER_MCGARRY', 'WAGNER_POLING', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'COOLPROP', 'ANTOINE_
→˓POLING', 'VDI_TABULAR', 'AMBROSE_WALTON', 'LEE_KESLER_PSAT', 'EDALAT', 'BOILING_
→˓CRITICAL', 'SANJARI']
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3.1.5 Plotting

It is also possible to compare the correlations graphically with the method plot_T_dependent_property.

>>> ethanol_psat.plot_T_dependent_property(Tmin=300)
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By default all methods are shown in the plot, but a smaller selection of methods can be specified. The following example
compares 30 points in the temperature range 400 K to 500 K, with three of the best methods.

>>> ethanol_psat.plot_T_dependent_property(Tmin=400, Tmax=500, methods=['COOLPROP',
→˓'WAGNER_MCGARRY', 'DIPPR_PERRY_8E'], pts=30)

It is also possible to plot the nth derivative of the methods with the order parameter. The following plot shows the first
derivative of vapor pressure of three estimation methods, a tabular source being interpolated, and ‘DIPPR_PERRY_8E’
as a reference method.

>>> ethanol_psat.plot_T_dependent_property(Tmin=400, Tmax=500, methods=['BOILING_CRITICAL
→˓', 'SANJARI', 'LEE_KESLER_PSAT', 'VDI_TABULAR', 'DIPPR_PERRY_8E'], pts=50, order=1)

Plots show how the extrapolation methods work. By default plots do not show extrapolated values from methods, but
this can be forced by setting only_valid to False. It is easy to see that extrapolation is designed to show the correct
trend, but that individual methods will have very different extrapolations.

>>> ethanol_psat.plot_T_dependent_property(Tmin=1, Tmax=300, methods=['VDI_TABULAR',
→˓'DIPPR_PERRY_8E', 'COOLPROP'], pts=50, only_valid=False)
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It may also be helpful to see the derivative with respect to temperature of methods. This can be done with the order
keyword:

>>> ethanol_psat.plot_T_dependent_property(Tmin=1, Tmax=300, methods=['VDI_TABULAR',
→˓'DIPPR_PERRY_8E', 'COOLPROP'], pts=50, only_valid=False, order=1)
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Higher order derivatives are also supported; most derivatives are numerically calculated, so there may be some noise.
The derivative plot is particularly good at illustrating what happens at the critical point, when extrapolation takes over
from the actual formulas.

>>> ethanol_psat.plot_T_dependent_property(Tmin=500, Tmax=525, methods=['VDI_TABULAR',
→˓'DIPPR_PERRY_8E', 'AMBROSE_WALTON', 'VDI_PPDS', 'WAGNER_MCGARRY'], pts=50, only_
→˓valid=False, order=2)

3.1.6 Calculating Temperature From Properties

There is also functionality for reversing the calculation - finding out which temperature produces a specific property
value. The method is solve_property. For vapor pressure, we can use this technique to find out the normal boiling
point as follows:

>>> ethanol_psat.solve_property(101325)
351.43136

The experimentally reported value is 351.39 K.
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3.1.7 Property Derivatives

Functionality for calculating the derivative of the property is also implemented as
T_dependent_property_derivative :

>>> ethanol_psat.T_dependent_property_derivative(300)
498.882

The derivatives are numerical unless a special implementation has been added to the property’s
calculate_derivative method.

Higher order derivatives are available as well with the order argument. All higher-order derivatives are numerical, and
they tend to have reduced numerical precision due to floating point limitations.

>>> ethanol_psat.T_dependent_property_derivative(300.0, order=2)
24.74
>>> ethanol_psat.T_dependent_property_derivative(300.0, order=3)
2.75

3.1.8 Property Integrals

Functionality for integrating over a property is implemented as T_dependent_property_integral.

integral =

∫︁ 𝑇2

𝑇1

property 𝑑𝑇

When the property is heat capacity, this calculation represents a change in enthalpy:

∆𝐻 =

∫︁ 𝑇2

𝑇1

𝐶𝑝 𝑑𝑇

>>> CH4_Cp = HeatCapacityGas(CASRN='74-82-8')
>>> CH4_Cp.method = 'POLING_POLY'
>>> CH4_Cp.T_dependent_property_integral(300, 500)
8158.64

Besides enthalpy, a commonly used integral is that of the property divided by T :

integral =

∫︁ 𝑇2

𝑇1

property
𝑇

𝑑𝑇

When the property is heat capacity, this calculation represents a change in entropy:

∆𝑆 =

∫︁ 𝑇2

𝑇1

𝐶𝑝

𝑇
𝑑𝑇

This integral, property over T, is implemented as T_dependent_property_integral_over_T :

>>> CH4_Cp.T_dependent_property_integral_over_T(300, 500)
20.6088

Where speed has been important so far, these integrals have been implemented analytically in a property object’s
calculate_integral and calculate_integral_over_T method; otherwise the integration is performed numer-
ically.
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3.1.9 Using Tabular Data

A common scenario is that there are no correlations available for a compound, and that estimation methods are not
applicable. However, there may be a few experimental data points available in the literature. In this case, the data can
be specified and used directly with the add_tabular_data method. Extrapolation can often show the correct trends
for these properties from even a few data points.

In the example below, we take 5 data points on the vapor pressure of water from 300 K to 350 K, and use them
to extrapolate and estimate the triple temperature and critical temperature (assuming we know the triple and critical
pressures).

>>> from thermo import *
>>> import numpy as np
>>> w = VaporPressure(Tb=373.124, Tc=647.14, Pc=22048320.0, omega=0.344, CASRN='7732-18-5
→˓', extrapolation='AntoineAB')
>>> Ts = np.linspace(300, 350, 5).tolist()
>>> Ps = [3533.9, 7125., 13514., 24287., 41619.]
>>> w.add_tabular_data(Ts=Ts, properties=Ps)
>>> w.solve_property(610.707), w.solve_property(22048320)
(272.83, 617.9)

The experimental values are 273.15 K and 647.14 K.

3.1.10 Adding New Methods

While a great many property methods have been implemented, there is always the case where a new one must be added.
To support that, the method add_method will add a user-specified method and switch the method selected to the newly
added method.

As an example, we can compare the default vapor pressure formulation for n-hexane against a set of Antoine coefficients
on the NIST WebBook.

>>> from chemicals import *
>>> from thermo import *
>>> obj = VaporPressure(CASRN= '110-54-3')
>>> obj(200)
20.742
>>> f = lambda T: Antoine(T=T, A=3.45604+5, B=1044.038, C=-53.893)
>>> obj.add_method(f=f, name='WebBook', Tmin=177.70, Tmax=264.93)
>>> obj.method
'WebBook'
>>> obj.extrapolation = 'AntoineAB'
>>> obj(200.0)
20.432

We can, again, extrapolate quite easily and estimate the triple temperature and critical temperature from these correla-
tions (if we know the triple pressure and critical pressure).

>>> obj.solve_property(1.378), obj.solve_property(3025000.0)
(179.43, 508.04)

Optionally, some derivatives and integrals can be provided for new methods as well. This avoids having to compute
derivatives or integrals numerically. SymPy may be helpful to find these analytical derivatives or integrals in many
cases, as in the following example:
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>>> from sympy import symbols, lambdify, diff
>>> T = symbols('T')
>>> A, B, C = 3.45604+5, 1044.038, -53.893
>>> expr = 10**(A - B/(T + C))
>>> f = lambdify(T, expr)
>>> f_der = lambdify(T, diff(expr, T))
>>> f_der2 = lambdify(T, diff(expr, T, 2))
>>> f_der3 = lambdify(T, diff(expr, T, 3))
>>> obj.add_method(f=f, f_der=f_der, f_der2=f_der2, f_der3=f_der3, name='WebBookSymPy',␣
→˓Tmin=177.70, Tmax=264.93)
>>> obj.method, obj(200), obj.T_dependent_property_derivative(200.0, order=2)
('WebBookSymPy', 20.43298036, 0.2276285)

Note that adding methods like this breaks the ability to export as json and the repr of the object is no longer complete.

3.1.11 Adding New Correlation Coefficient Methods

While adding entirely new methods is useful, it is more common to want to use different coefficients in an existing
equation. A number of different equations are recognized, and accept/require the parameters as per their function name
in e.g. chemicals.vapor_pressure.Antoine. More than one set of coefficients can be added for each model. After
adding a new correlation the method is set to that method.

>>> obj = VaporPressure()
>>> obj.add_correlation(name='WebBook', model='Antoine', Tmin=177.70, Tmax=264.93, A=3.
→˓45604+5, B=1044.038, C=-53.893)
>>> obj(200)
20.43298036711

It is also possible to specify the parameters in the constructor of the object as well:

>>> obj = VaporPressure(Antoine_parameters={'WebBook': {'A': 8.45604, 'B': 1044.038, 'C':
→˓ -53.893, 'Tmin': 177.7, 'Tmax': 264.93}})
>>> obj(200)
20.43298036711

More than one set of parameters and more than one model may be specified this way; the model name is the same, with
‘_parameters’ appended to it.

For a full list of supported correlations (and their names), see add_correlation.

3.1.12 Fitting Correlation Coefficients

Thermo contains functionality for performing regression to obtain equation coefficients from experimental data.

Data is obtained from the DDBST for the vapor pressure of acetone (http://www.ddbst.com/en/EED/PCP/VAP_C4.
php), and coefficients are regressed for several methods. There is data from five sources on that page, but no uncertain-
ties are available; the fit will treat each data point equally.

>>> Ts = [203.65, 209.55, 212.45, 234.05, 237.04, 243.25, 249.35, 253.34, 257.25, 262.12,
→˓ 264.5, 267.05, 268.95, 269.74, 272.95, 273.46, 275.97, 276.61, 277.23, 282.03, 283.06,
→˓ 288.94, 291.49, 293.15, 293.15, 293.85, 294.25, 294.45, 294.6, 294.63, 294.85, 297.05,
→˓ 297.45, 298.15, 298.15, 298.15, 298.15, 298.15, 299.86, 300.75, 301.35, 303.15, 303.
→˓15, 304.35, 304.85, 305.45, 306.25, 308.15, 308.15, 308.15, 308.22, 308.35, 308.45,␣
→˓308.85, 309.05, 311.65, 311.85, 311.85, 311.95, 312.25, 314.68, 314.85, 317.75, 317.85,
→˓ 318.05, 318.15, 318.66, 320.35, 320.35, 320.45, 320.65, 322.55, 322.65, 322.85, 322.
→˓95, 322.95, 323.35, 323.55, 324.65, 324.75, 324.85, 324.85, 325.15, 327.05, 327.15,␣
→˓327.2, 327.25, 327.35, 328.22, 328.75, 328.85, 333.73, 338.95]

(continues on next page)
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(continued from previous page)

>>> Psats = [58.93, 94.4, 118.52, 797.1, 996.5, 1581.2, 2365, 3480, 3893, 5182, 6041,␣
→˓6853, 7442, 7935, 9290, 9639, 10983, 11283, 13014, 14775, 15559, 20364, 22883, 24478,␣
→˓24598, 25131, 25665, 25931, 25998, 26079, 26264, 29064, 29598, 30397, 30544, 30611,␣
→˓30784, 30851, 32636, 33931, 34864, 37637, 37824, 39330, 40130, 41063, 42396, 45996,␣
→˓46090, 46356, 45462, 46263, 46396, 47129, 47396, 52996, 52929, 53262, 53062, 53796,␣
→˓58169, 59328, 66395, 66461, 67461, 67661, 67424, 72927, 73127, 73061, 73927, 79127,␣
→˓79527, 80393, 79927, 80127, 81993, 80175, 85393, 85660, 85993, 86260, 86660, 92726,␣
→˓92992, 92992, 93126, 93326, 94366, 98325, 98592, 113737, 136626]
>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='Antoine',
→˓ do_statistics=True, multiple_tries=True, model_kwargs={'base': 10.0})
>>> res, stats['MAE']
({'A': 9.2515513342, 'B': 1230.099383065, 'C': -40.08076540233, 'base': 10.0}, 0.
→˓01059288655304)

The fitting function returns the regressed coefficients, and optionally some statistics. The mean absolute relative error
or “MAE” is often a good parameter for determining the goodness of fit; Antoine yielded an error of about 1%.

There are lots of methods available; Antoine was just used (the returned coefficients are in units of K and Pa with a base
of 10), but for comparison several more are as well. Note that some require the critical temperature and/or pressure.

>>> Tc, Pc = 508.1, 4700000.0
>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='Yaws_Psat
→˓', do_statistics=True, multiple_tries=True)
>>> res, stats['MAE']
({'A': 1650.7, 'B': -32673., 'C': -728.7, 'D': 1.1, 'E': -0.000609}, 0.0178)
>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='DIPPR101
→˓', do_statistics=True, multiple_tries=3)
>>> stats['MAE']
0.0106
>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='Wagner',␣
→˓do_statistics=True, multiple_tries=True, model_kwargs={'Tc': Tc, 'Pc': Pc})
>>> res, stats['MAE']
({'Tc': 508.1, 'Pc': 4700000.0, 'a': -15.7110, 'b': 23.63, 'c': -27.74, 'd': 25.152}, 0.
→˓0485)
>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='TRC_
→˓Antoine_extended', do_statistics=True, multiple_tries=True, model_kwargs={'Tc': Tc})
>>> res, stats['MAE']
({'Tc': 508.1, 'to': 67.0, 'A': 9.2515481, 'B': 1230.0976, 'C': -40.080954, 'n': 2.5, 'E
→˓': 333.0, 'F': -24950.0}, 0.01059)

A very common scenario is that some coefficients are desired to be fixed in the regression. This is supported with the
model_kwargs attribute. For example, in the above DIPPR101 case we can fix the E coefficient to 1 as follows:

>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='DIPPR101
→˓', do_statistics=True, multiple_tries=3, model_kwargs={'E': -1})
>>> res['E'], stats['MAE']
(-1, 0.01310)

Similarly, the feature is often used to set unneeded coefficients to zero In this case the TDE_PVExpansion function has
up to 8 parameters but only three are justified.

>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='TDE_
→˓PVExpansion', do_statistics=True, multiple_tries=True, model_kwargs={'a4': 0.0, 'a5':␣
→˓0.0, 'a6': 0.0, 'a7': 0.0, 'a8': 0}) (continues on next page)
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(continued from previous page)

>>> res, stats['MAE']
({'a4': 0.0, 'a5': 0.0, 'a6': 0.0, 'a7': 0.0, 'a8': 0, 'a1': 48.396547, 'a2': -4914.1260,
→˓ 'a3': -3.78894783}, 0.0131003)

Fitting coefficients is a complicated numerical problem. MINPACK’s lmfit implements Levenberg-Marquardt with a
number of tricks, and is used through SciPy in the fitting by default. Other minimization algorithms are supported, but
generally don’t do nearly as well. All minimization algorithms can only converge to a minima near points that they
evaluate, and the choice of initial guesses is quite important. For many methods, there are several hardcoded guesses.
By default, each of those guesses are evaluated and the minimization is initialized with the best guess. However,
for maximum accuracy, multiple_tries should be set to True, and all initial guesses are converged, and the best fit is
returned.

Initial guesses for parameters can also be provided. In the below example, the initial parameters from http://ddbonline.
ddbst.com/AntoineCalculation/AntoineCalculationCGI.exe for acetone are provided as initial guesses (converting them
to a Pa and K basis, from mmHg and deg C).

>>> from math import log10
>>> res, stats = TDependentProperty.fit_data_to_model(Ts=Ts, data=Psats, model='Antoine',
→˓ do_statistics=True, multiple_tries=True, guesses={'A': 7.6313 +log10(101325/760), 'B
→˓': 1566.69 , 'C': 273.419 -273.15}, model_kwargs={'base': 10.0})

In this case the initial guesses are good, but different parameters are still obtained by the fitting algorithm.

To speed up these calculations, an interface to numba is available. Simply set use_numba to True. Note that the first
regression per session may be slower as it has to compile the function.

3.1.13 Adding New Correlation Coefficient Methods From Data

In the following example, data for the molar volume of three phases of liquid oxygen are added, from Roder, H. M. “The
Molar Volume (Density) of Solid Oxygen in Equilibrium with Vapor.” Journal of Physical and Chemical Reference Data
7, no. 3 (1978): 949–58.

Each of the phases is treated as a different method. After fitting the data to linear and quadratic fits, the results are
plotted.

>>> Ts_alpha = [4.2, 10.0, 18.5, 20, 21, 22, 23.880]
>>> Vms_alpha = [20.75e-6, 20.75e-6, 20.75e-6, 20.75e-6, 20.75e-6, 20.78e-6, 20.82e-6]
>>> Ts_beta = [23.880, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 43.801]
>>> Vms_beta = [20.95e-6, 20.95e-6, 21.02e-6, 21.08e-6, 21.16e-6, 21.24e-6, 21.33e-6, 21.
→˓42e-6, 21.52e-6, 21.63e-6, 21.75e-6, 21.87e-6]
>>> Ts_gamma = [42.801, 44.0, 46.0, 48.0, 50.0, 52.0, 54.0, 54.361]
>>> Vms_gamma = [23.05e-6, 23.06e-6, 23.18e-6, 23.30e-6, 23.43e-6, 23.55e-6, 23.67e-6,␣
→˓23.69e-6]

>>> obj = VolumeSolid(CASRN='7782-44-7')
>>> obj.fit_add_model(Ts=Ts_alpha, data=Vms_alpha, model='linear', name='alpha')
>>> obj.fit_add_model(Ts=Ts_beta, data=Vms_beta, model='quadratic', name='beta')
>>> obj.fit_add_model(Ts=Ts_gamma, data=Vms_gamma, model='quadratic', name='gamma')
>>> obj.plot_T_dependent_property(Tmin=4.2, Tmax=50)
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3.2 Temperature and Pressure Dependent Properties

The pressure dependent objects work much like the temperature dependent ones; in fact, they subclass
TDependentProperty. They have many new methods that require pressure as an input however. They work in two
parts: a low-pressure correlation component, and a high-pressure correlation component. The high-pressure compo-
nent usually but not always requires a low-pressure calculation to be performed first as its input.

3.2.1 Creating Objects

All arguments and information the property object requires must be provided in the constructor of the object. If a
piece of information is not provided, whichever methods require it will not be available for that object. Many pressure-
dependent property correlations are actually dependent on other properties being calculated first. A mapping of those
dependencies is as follows:

• Liquid molar volume: Depends on VaporPressure

• Gas viscosity: Depends on VolumeGas

• Liquid viscosity: Depends on VaporPressure

• Gas thermal conductivity: Depends on VolumeGas, HeatCapacityGas, ViscosityGas

The required input objects should be created first, and provided as an input to the dependent object:

>>> water_psat = VaporPressure(Tb=373.124, Tc=647.14, Pc=22048320.0, omega=0.344, CASRN=
→˓'7732-18-5')
>>> water_mu = ViscosityLiquid(CASRN="7732-18-5", MW=18.01528, Tm=273.15, Tc=647.14,␣
→˓Pc=22048320.0, Vc=5.6e-05, omega=0.344, method="DIPPR_PERRY_8E", Psat=water_psat,␣
→˓method_P="LUCAS")

Various data files will be searched to see if information such as DIPPR expression coefficients are available for the
compound during the initialization. This behavior can be avoided by setting the optional load_data argument to False.

3.2.2 Pressure-dependent Methods

The pressure and temperature dependent object selects a low-pressure and a high-pressure method automatically during
initialization. These method can be inspected with the method and method_P properties. If no low-pressure methods
are available, method will be None. If no high-pressure methods are available, method_P will be None. method and
method_P are also valid parameters when constructing the object, but if either of the methods specified is not available
an exception will be raised.

>>> water_mu.method, water_mu.method_P
('DIPPR_PERRY_8E', 'LUCAS')

All available low-pressure methods can be found by inspecting the all_methods attribute:

>>> water_mu.all_methods
{'COOLPROP', 'DIPPR_PERRY_8E', 'VISWANATH_NATARAJAN_3', 'VDI_PPDS', 'LETSOU_STIEL'}

All available high-pressure methods can be found by inspecting the all_methods_P attribute:

>>> water_mu.all_methods_P
{'COOLPROP', 'LUCAS'}

Changing the low-pressure method or the high-pressure method is as easy as setting a new value to the attribute:
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>>> water_mu.method = 'VDI_PPDS'
>>> water_mu.method
'VDI_PPDS'
>>> water_mu.method_P = 'COOLPROP'
>>> water_mu.method_P
'COOLPROP'

3.2.3 Calculating Properties

Calculation of the property at a specific temperature and pressure is as easy as calling the object which triggers the
__call__ method:

>>> water_mu.method = 'VDI_PPDS'
>>> water_mu.method_P = 'COOLPROP'
>>> water_mu(T=300.0, P=1e5)
0.000853742

This is actually a cached wrapper around the specific call, TP_dependent_property:

>>> water_mu.TP_dependent_property(300.0, P=1e5)
0.000853742

The caching of __call__ is quite basic - the previously specified temperature and pressure are stored, and if the new
T and P are the same as the previous T and P the previously calculated result is returned.

There is a lower-level interface for calculating properties with a specified method by name, calculate_P.
TP_dependent_property is a wrapper around calculate_P that includes validation of the result.

>>> water_mu.calculate_P(T=300.0, P=1e5, method='COOLPROP')
0.000853742
>>> water_mu.calculate_P(T=300.0, P=1e5, method='LUCAS')
0.000865292

The above examples all show using calculating the property with a pressure specified. The same
TDependentProperty methods are available too, so all the low-pressure calculation calls are also available.

>>> water_mu.calculate(T=300.0, method='VISWANATH_NATARAJAN_3')
0.000856467
>>> water_mu.T_dependent_property(T=400.0)
0.000217346

3.2.4 Limits and Extrapolation

The same temperature limits and low-pressure extrapolation methods are available as for TDependentProperty.

>>> water_mu.valid_methods(T=480)
['DIPPR_PERRY_8E', 'COOLPROP', 'VDI_PPDS', 'LETSOU_STIEL']
>>> water_mu.extrapolation
'linear'

To better understand what methods are available, the valid_methods_P method checks all available high-pressure
correlations against their temperature and pressure limits.
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>>> water_mu.valid_methods_P(T=300, P=1e9)
['LUCAS', 'COOLPROP']
>>> water_mu.valid_methods_P(T=300, P=1e10)
['LUCAS']
>>> water_mu.valid_methods_P(T=900, P=1e6)
['LUCAS']

If the temperature and pressure are not provided, all available methods are returned; the returned value favors the
methods by the ranking defined in thermo, with the currently selected method as the first item.

>>> water_mu.valid_methods_P()
['LUCAS', 'COOLPROP']

3.2.5 Plotting

It is possible to compare the correlations graphically with the method plot_TP_dependent_property.

>>> water_mu.plot_TP_dependent_property(Tmin=400, Pmin=1e5, Pmax=1e8, methods_P=[
→˓'COOLPROP','LUCAS'], pts=15, only_valid=False)
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This can be a little confusing; but isotherms and isobars can be plotted as well, which are more straight forward. The
respective methods are plot_isotherm and plot_isobar:

>>> water_mu.plot_isotherm(T=350, Pmin=1e5, Pmax=1e7, pts=50)
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>>> water_mu.plot_isobar(P=1e7, Tmin=300, Tmax=600, pts=50)
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3.2.6 Calculating Conditions From Properties

The method is solve_property works only on the low-pressure correlations.

>>> water_mu.solve_property(1e-3)
294.0711641

3.2.7 Property Derivatives

Functionality for calculating the temperature derivative of the property is implemented
twice; as T_dependent_property_derivative using the low-pressure correlations, and as
TP_dependent_property_derivative_T using the high-pressure correlations that require pressure as an
input.

>>> water_mu.T_dependent_property_derivative(300)
-1.893961e-05
>>> water_mu.TP_dependent_property_derivative_T(300, P=1e7)
-1.927268e-05

The derivatives are numerical unless a special implementation has been added to the property’s
calculate_derivative_T and/or calculate_derivative method.
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Higher order derivatives are available as well with the order argument.

>>> water_mu.T_dependent_property_derivative(300.0, order=2)
5.923372e-07
>>> water_mu.TP_dependent_property_derivative_T(300.0, P=1e6, order=2)
-1.40946e-06

Functionality for calculating the pressure derivative of the property is also implemented as
TP_dependent_property_derivative_P:

>>> water_mu.TP_dependent_property_derivative_P(P=5e7, T=400)
4.27782809e-13

The derivatives are numerical unless a special implementation has been added to the property’s
calculate_derivative_P method.

Higher order derivatives are available as well with the order argument.

>>> water_mu.TP_dependent_property_derivative_P(P=5e7, T=400, order=2)
-1.1858461e-15

3.2.8 Property Integrals

The same functionality for integrating over a property as in temperature-dependent objects is available, but only for inte-
grating over temperature using low pressure correlations. No other use cases have been identified requiring integration
over high-pressure conditions, or integration over the pressure domain.

>>> water_mu.T_dependent_property_integral(300, 400) # Integrating over viscosity has no␣
→˓physical meaning
0.04243

3.2.9 Using Tabular Data

If there are experimentally available data for a property at high and low pressure, an interpolation table can be created
and used as follows. The CoolProp method is used to generate a small table, and is then added as a new method in the
example below.

>>> from thermo import *
>>> import numpy as np
>>> Ts = [300, 400, 500]
>>> Ps = [1e5, 1e6, 1e7]
>>> table = [[water_mu.calculate_P(T, P, "COOLPROP") for T in Ts] for P in Ps]
>>> water_mu.method_P
'LUCAS'
>>> water_mu.add_tabular_data_P(Ts, Ps, table)
>>> water_mu.method_P
'Tabular data series #0'
>>> water_mu(400, 1e7), water_mu.calculate_P(400, 1e7, "COOLPROP")
(0.000221166933349, 0.000221166933349)
>>> water_mu(450, 5e6), water_mu.calculate_P(450, 5e6, "COOLPROP")
(0.00011340, 0.00015423)

The more data points used, the closer a property will match.

3.2. Temperature and Pressure Dependent Properties 37



thermo Documentation, Release 0.2.20

3.3 Mixture Properties

3.4 Notes

There is also the challenge that there is no clear criteria for distinguishing liquids from gases in supercritical mixtures.
If the same method is not used for liquids and gases, there will be a sudden discontinuity which can cause numerical
issues in modeling.
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FOUR

INTRODUCTION TO CHEMICALCONSTANTSPACKAGE AND
PROPERTYCORRELATIONSPACKAGE

• ChemicalConstantsPackage Object

– Creating ChemicalConstantsPackage Objects

– Using ChemicalConstantsPackage Objects

– Creating Smaller ChemicalConstantsPackage Objects

– Adding or Replacing Constants

– Creating ChemicalConstantsPackage Objects from chemicals

– Storing and Loading ChemicalConstantsPackage Objects

• PropertyCorrelationsPackage

These two objects are designed to contain information needed by flash algorithms. In the first iteration of thermo,
data was automatically looked up in databases and there was no way to replace that data. Thermo now keeps data and
algorithms completely separate. This has also been very helpful to make unit tests that do not change their results.

There are five places to configure the flash and phase infrastructure:

• Constant data about chemicals, like melting point or boiling point or UNIFAC groups. This information needs
to be put into an immutable ChemicalConstantsPackage object.

• Temperature-dependent data, like Antoine coefficients, Tait pressure-dependent volume parameters, or
Laliberte electrolyte viscosity interaction parameters. These are stored in TDependentProperty,
TPDependentProperty, and MixtureProperty objects. More information about configuring those to pro-
vide the desired properties can be found in property objects tutorial; this tutorial assumes you have already con-
figured them as desired. These many objects are added to an PropertyCorrelationsPackage object before
being provided to the flash algorithms.

• Phase-specific parameters that are not general and depend on a specific phase configuration for meaning; such as
a volume translation coefficient or a binary interaction parameter. This information is provided when configuring
each Phase.

• Information about bulk mixing rules or bulk property calculation methods; these don’t have true thermodynamic
definitions, and are configurable in the BulkSettings object.

• Settings of the Flash object; ideally no configuration would be required there. In some cases it might be useful
to lower the tolerances or change an algorithm.

This tutorial covers the first two places, ChemicalConstantsPackage and PropertyCorrelationsPackage.
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4.1 ChemicalConstantsPackage Object

4.1.1 Creating ChemicalConstantsPackage Objects

A ChemicalConstantsPackage can be created by specifying the known constant values of each chemical. All values
are technically optional; the requirements of each Flash algorithm are different, but a minimum suggested amount is
names, CASs, MWs, Tcs, Pcs, omegas, Tbs, and atomss. The list of all accepted properties can be found here.

>>> from thermo import ChemicalConstantsPackage, PropertyCorrelationsPackage
>>> constants = ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165],␣
→˓names=['water', 'o-xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.324, 0.
→˓331], Pcs=[22048320.0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14, 630.3, 616.2,␣
→˓617.0])

4.1.2 Using ChemicalConstantsPackage Objects

Once created, all properties, even missing ones, can be accessed as attributes using the same names as required by the
constructor:

>>> constants.MWs
[18.01528, 106.165, 106.165, 106.165]
>>> constants.Vml_STPs
[None, None, None, None]

It is the intention for these ChemicalConstantsPackage to be immutable. Python doesn’t easily allow this to be
enforced, but unexpected behavior will probably result if they are edited. If different properties are desired; create new
ChemicalConstantsPackage objects.

The __repr__ of the ChemicalConstantsPackage object returns a representation of the object that can be used to
reconstruct it:

>>> constants
ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165], names=['water', 'o-
→˓xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.324, 0.331], Pcs=[22048320.
→˓0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14, 630.3, 616.2, 617.0])
>>> hash(eval(constants.__repr__())) == hash(constants)
True

4.1.3 Creating Smaller ChemicalConstantsPackage Objects

It is possible to create a new, smaller ChemicalConstantsPackage with fewer components by using the subset
method, which accepts either indexes or slices and returns a new object:

>>> constants.subset([0, 1])
ChemicalConstantsPackage(MWs=[18.01528, 106.165], names=['water', 'o-xylene'], omegas=[0.
→˓344, 0.3118], Pcs=[22048320.0, 3732000.0], Tcs=[647.14, 630.3])
>>> constants.subset(slice(1,3))
ChemicalConstantsPackage(MWs=[106.165, 106.165], names=['o-xylene', 'p-xylene'],␣
→˓omegas=[0.3118, 0.324], Pcs=[3732000.0, 3511000.0], Tcs=[630.3, 616.2])
>>> constants.subset([0])
ChemicalConstantsPackage(MWs=[18.01528], names=['water'], omegas=[0.344], Pcs=[22048320.
→˓0], Tcs=[647.14]) (continues on next page)
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(continued from previous page)

It is also possible to reduce the number of properties set with the subset methods:

>>> constants.subset([1, 3], properties=('names', 'MWs'))
ChemicalConstantsPackage(MWs=[106.165, 106.165], names=['o-xylene', 'm-xylene'])

4.1.4 Adding or Replacing Constants

It is possible to create a new ChemicalConstantsPackage with added properties and/or replacing the old properties,
from an existing object. This is helpful if better values for select properties are known. The with_new_constants
method does this.

>>> constants.with_new_constants(Tcs=[650.0, 630.0, 620.0, 620.0], Tms=[20.0, 100.0, 50.
→˓0, 12.3])
ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165], names=['water', 'o-
→˓xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.324, 0.331], Pcs=[22048320.
→˓0, 3732000.0, 3511000.0, 3541000.0], Tcs=[650.0, 630.0, 620.0, 620.0], Tms=[20.0, 100.
→˓0, 50.0, 12.3])

4.1.5 Creating ChemicalConstantsPackage Objects from chemicals

A convenience method exists to load these constants from a different data files exists. Some values for all properties
are available; not all compounds have all properties.

>>> obj = ChemicalConstantsPackage.constants_from_IDs(['methanol', 'ethanol',
→˓'isopropanol'])
>>> obj.Tbs
[337.65, 351.39, 355.36]

When working with a fixed set of components, it may be a good idea to take this generated package, select only those
properties being used, convert it to a string, and then embed that new object in a program. This will remove the need
to load various data files, and if chemicals updates data files, different results won’t be obtained from your constants
package.

>>> small_obj = obj.subset(properties=('names', 'CASs', 'MWs', 'Tcs', 'Pcs', 'omegas',
→˓'Tbs', 'Tms', 'atomss'))
>>> small_obj
ChemicalConstantsPackage(atomss=[{'C': 1, 'H': 4, 'O': 1}, {'C': 2, 'H': 6, 'O': 1}, {'C
→˓': 3, 'H': 8, 'O': 1}], CASs=['67-56-1', '64-17-5', '67-63-0'], MWs=[32.04186, 46.
→˓06844, 60.09502], names=['methanol', 'ethanol', 'isopropanol'], omegas=[0.559, 0.635,␣
→˓0.665], Pcs=[8084000.0, 6137000.0, 4764000.0], Tbs=[337.65, 351.39, 355.36], Tcs=[512.
→˓5, 514.0, 508.3], Tms=[175.15, 159.05, 183.65])

Once the object is printed, the generated text can be copy/pasted as valid Python into a program:

>>> obj = ChemicalConstantsPackage(atomss=[{'C': 1, 'H': 4, 'O': 1}, {'C': 2, 'H': 6, 'O
→˓': 1}, {'C': 3, 'H': 8, 'O': 1}], CASs=['67-56-1', '64-17-5', '67-63-0'], MWs=[32.
→˓04186, 46.06844, 60.09502], names=['methanol', 'ethanol', 'isopropanol'], omegas=[0.
→˓5589999999999999, 0.635, 0.665], Pcs=[8084000.0, 6137000.0, 4764000.0], Tbs=[337.65,␣
→˓351.39, 355.36], Tcs=[512.5, 514.0, 508.3], Tms=[175.15, 159.05, 183.65])
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Warning: chemicals is a project with a focus on collecting data and correlations from various sources. In no way is
it a project to critically evaluate these and provide recommendations. You are strongly encouraged to check values
from it and modify them if you want different values. If you believe there is a value which has a typographical error
please report it to the chemicals project. If data is missing or not as accuracte as you would like, and you know
of a better method or source, new methods and sources can be added to chemicals fairly easily once the data entry
is complete. It is not feasible to add individual components, so please submit a complete table of data from the
source.

4.1.6 Storing and Loading ChemicalConstantsPackage Objects

For larger applications with many components, it is not as feasible to convert the ChemicalConstantsPackage to a
string and embed it in a program. For that application, the object can be converted back and forth from JSON:

>>> obj = ChemicalConstantsPackage(MWs=[106.165, 106.165], names=['o-xylene', 'm-xylene
→˓'])
>>> constants = ChemicalConstantsPackage(MWs=[18.01528, 106.165], names=['water', 'm-
→˓xylene'])
>>> string = constants.as_json()
>>> new_constants = ChemicalConstantsPackage.from_json(string)
>>> hash(new_constants) == hash(constants)
True

4.2 PropertyCorrelationsPackage
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FIVE

INTRODUCTION TO PHASE AND FLASH CALCULATIONS

• Phase Objects

– Available Phases

– Serialization

– Hashing

• Flashes with Pure Compounds

– Vapor-Liquid Cubic Equation Of State Example

– Vapor-Liquid Steam Example

The framework for performing phase and flash calculations is designed around the following principles:

• Immutability

• Calculations are completely independent from any databases or lookups - every input must be provided as input

• Default to general-purpose algorithms that make no assumptions about specific systems

• Inclusion of separate flashes algorithms wherever faster algorithms can be used for specific cases

• Allow options to restart a flash from a nearby previously calculated result, with options to skip checking the
result for stability

• Use very tight tolerances on all calculations

• Expose all constants used by algorithms

5.1 Phase Objects

A phase is designed to have a single state at any time, and contain all the information needed to compute phase-specific
properties. Phases should always be initialized at a specific molar composition zs, T and P; and new phase objects at
different conditions should be created from the existing ones with the Phase.to method (a little faster than creating
them from scratch). That method also allows the new state to be set from any two of T, P, or V. When working in the
T and P domain only, the Phase.to_TP_zs method is a little faster.

Phases are designed to be able to calculate every thermodynamic property. T and P are always attributes of the phase,
but all other properties are functions that need to be called. Some examples of these properties are V , H , S, Cp, dP_dT,
d2P_dV2, fugacities, lnphis, dlnphis_dT, and dlnphis_dP.

If a system is already known to be single-phase, the phase framework can be used directly without performing flash
calculations. This may offer a speed boost in some applications.
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5.1.1 Available Phases

Although the underlying equations of state often don’t distinguish between liquid or vapor phase, it was convenient to
create separate phase objects designed to hold gas, liquid, and solid phases separately.

The following phases can represent both a liquid and a vapor state. Their class is not a true indication that their
properties are liquid or gas.

• Cubic equations of state - CEOSLiquid and CEOSGas

• IAPWS-95 Water and Steam - IAPWS95Liquid and IAPWS95Gas

• Wrapper objects for CoolProp’s Helmholtz EOSs - CoolPropLiquid and CoolPropGas

The following phase objects can only represent a gas phase:

• Ideal-gas law - IdealGas

• High-accuracy properties of dry air - DryAirLemmon

The following phase objects can only represent a liquid phase:

• Ideal-liquid and/or activity coefficient models - GibbsExcessLiquid

5.1.2 Serialization

All phase models offer a as_json method and a from_json to serialize the object state for transport over a network,
storing to disk, and passing data between processes.

>>> import json
>>> from scipy.constants import R
>>> from thermo import HeatCapacityGas, IdealGas, Phase
>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13, R*1.57e-09,
→˓ R*7e-08, R*-0.000261, R*3.539])), HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12,
→˓ R*-6e-09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21], HeatCapacityGases=HeatCapacityGases)
>>> json_stuff = json.dumps(phase.as_json())
>>> new_phase = Phase.from_json(json.loads(json_stuff))
>>> assert new_phase == phase

Other json libraries can be used besides the standard json library by design.

Storing and recreating objects with Python’s pickle.dumps library is also tested; this can be faster than using JSON
at the cost of being binary data.

5.1.3 Hashing

All models have a __hash__method that can be used to compare different phases to see if they are absolutely identical
(including which values have been calculated already).

They also have a model_hash method that can be used to compare different phases to see if they have identical model
parameters.

They also have a state_hash method that can be used to compare different phases to see if they have identical tem-
perature, composition, and model parameters.
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5.2 Flashes with Pure Compounds

Pure components are really nice to work with because they have nice boundaries between each state, and the mole
fraction is always 1; there is no composition dependence. There is a separate flash interfaces for pure components.
These flashes are very mature and should be quite reliable.

5.2.1 Vapor-Liquid Cubic Equation Of State Example

The following example illustrates some of the types of flashes supported using the component methanol, the stated
critical properties, a heat capacity correlation from Poling et. al., and the Peng-Robinson equation of state.

Obtain a heat capacity object, and select a source:

>>> from thermo.heat_capacity import POLING_POLY
>>> CpObj = HeatCapacityGas(CASRN='67-56-1')
>>> CpObj.method = POLING_POLY
>>> CpObj.POLING_coefs # Show the coefficients
[4.714, -0.006986, 4.211e-05, -4.443e-08, 1.535e-11]
>>> HeatCapacityGases = [CpObj]

Create a ChemicalConstantsPackage object which holds constant properties of the object, using a minimum of
values:

>>> from thermo import ChemicalConstantsPackage, PropertyCorrelationsPackage, PRMIX,␣
→˓SRKMIX, CEOSLiquid, CEOSGas, FlashPureVLS
>>> constants = ChemicalConstantsPackage(Tcs=[512.5], Pcs=[8084000.0], omegas=[0.559],␣
→˓MWs=[32.04186], CASs=['67-56-1'])

Create a PropertyCorrelationsPackage object which holds temperature-dependent property objects, also setting
skip_missing to True so no database lookups are performed:

>>> correlations = PropertyCorrelationsPackage(constants,␣
→˓HeatCapacityGases=HeatCapacityGases, skip_missing=True)

Create liquid and gas cubic phase objects using the Peng-Robinson equation of state:

>>> eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
>>> liquid = CEOSLiquid(PRMIX, HeatCapacityGases=HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
>>> gas = CEOSGas(PRMIX, HeatCapacityGases=HeatCapacityGases, eos_kwargs=eos_kwargs)

Create the Flash object FlashPureVLS for pure components:

>>> flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

Do a T-P flash:

>>> res = flasher.flash(T=300, P=1e5)
>>> res.phase, res.liquid0
('L', CEOSLiquid(eos_class=PRMIX, eos_kwargs={"Tcs": [512.5], "Pcs": [8084000.0], "omegas
→˓": [0.559]}, HeatCapacityGases=[HeatCapacityGas(CASRN="67-56-1", extrapolation="linear
→˓", method="POLING_POLY")], T=300.0, P=100000.0, zs=[1.0]))

Do a temperature and vapor-fraction flash:
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>>> res = flasher.flash(T=300, VF=.3)

Do a pressure and vapor-fraction flash:

>>> res = flasher.flash(P=1e5, VF=.5)

Do a pressure and enthalpy flash:

>>> res = flasher.flash(P=1e5, H=100)

Do a pressure and entropy flash:

>>> res = flasher.flash(P=1e5, S=30)

Do a temperature and entropy flash:

>>> res = flasher.flash(T=400.0, S=30)

Do a temperature and enthalpy flash:

>>> res = flasher.flash(T=400.0, H=1000)

Do a volume and internal energy flash:

>>> res = flasher.flash(V=1e-4, U=1000)

As you can see, the interface is convenient and supports most types of flashes. In fact, the algorithms are generic; any
of H, S, U, and can be combined with any combination of T, P, and V. Although most of the flashes shown above except
TS and TH are usually well behaved, depending on the EOS combination there may be multiple solutions. No real
guarantees can be made about which solution will be returned in those cases.

Flashes with two of H, S, and U are not implemented at present.

It is not necessary to use the same phase model for liquid and gas phases; the below example shows a flash switching
the gas phase model to SRK.

>>> SRK_gas = CEOSGas(SRKMIX, HeatCapacityGases=HeatCapacityGases, eos_kwargs=eos_kwargs)
>>> flasher_inconsistent = FlashPureVLS(constants, correlations, gas=SRK_gas,␣
→˓liquids=[liquid], solids=[])
>>> res = flasher_inconsistent.flash(T=400.0, VF=1)

Choosing to use an inconsistent model will slow down many calculations as more checks are required; and some flashes
may have issues with discontinuities in some conditions, and simply a lack of solution in other conditions.

5.2.2 Vapor-Liquid Steam Example

The IAPWS-95 standard is implemented and available for easy use:

>>> from thermo import FlashPureVLS, IAPWS95Liquid, IAPWS95Gas, iapws_constants, iapws_
→˓correlations
>>> liquid = IAPWS95Liquid(T=300, P=1e5, zs=[1])
>>> gas = IAPWS95Gas(T=300, P=1e5, zs=[1])
>>> flasher = FlashPureVLS(iapws_constants, iapws_correlations, gas, [liquid], [])
>>> PT = flasher.flash(T=800.0, P=1e7)

(continues on next page)
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(continued from previous page)

>>> PT.rho_mass()
29.1071839176
>>> print(flasher.flash(T=600, VF=.5))
<EquilibriumState, T=600.0000, P=12344824.3572, zs=[1.0], betas=[0.5, 0.5], phases=[
→˓<IAPWS95Gas, T=600 K, P=1.23448e+07 Pa>, <IAPWS95Liquid, T=600 K, P=1.23448e+07 Pa>]>
>>> print(flasher.flash(T=600.0, H=50802))
<EquilibriumState, T=600.0000, P=10000469.1288, zs=[1.0], betas=[1.0], phases=[
→˓<IAPWS95Gas, T=600 K, P=1.00005e+07 Pa>]>
>>> print(flasher.flash(P=1e7, S=104.))
<EquilibriumState, T=599.6790, P=10000000.0000, zs=[1.0], betas=[1.0], phases=[
→˓<IAPWS95Gas, T=599.679 K, P=1e+07 Pa>]>
>>> print(flasher.flash(V=.00061, U=55850))
<EquilibriumState, T=800.5922, P=10144789.0899, zs=[1.0], betas=[1.0], phases=[
→˓<IAPWS95Gas, T=800.592 K, P=1.01448e+07 Pa>]>

Not all flash calculations have been fully optimized, but the basic flashes are quite fast.
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CHAPTER

SIX

DETAILS OF GIBBSEXCESSLIQUID PHASE MODEL

There are lots of options that get called “ideal”. The GibbsExcessLiquid object implements many of them, which means
the configuration is complicated and the defaults may not act as expected.
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CHAPTER

SEVEN

API REFERENCE

7.1 Activity Coefficients (thermo.activity)

This module contains a base class GibbsExcess for handling activity coefficient based models. The design is for a
sub-class to provide the minimum possible number of derivatives of Gibbs energy, and for this base class to provide
the rest of the methods. An ideal-liquid class with no excess Gibbs energy IdealSolution is also available.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Base Class

• Ideal Liquid Class

• Notes

– References

7.1.1 Base Class

class thermo.activity.GibbsExcess
Bases: object

Class for representing an activity coefficient model. While these are typically presented as tools to compute
activity coefficients, in truth they are excess Gibbs energy models and activity coefficients are just one derived
aspect of them.

This class does not implement any activity coefficient models itself; it must be subclassed by another model. All
properties are derived with the CAS SymPy, not relying on any derivations previously published, and checked
numerically for consistency.

Different subclasses have different parameter requirements for initialization; IdealSolution is available as a
simplest model with activity coefficients of 1 to show what needs to be implemented in subclasses. It is also
intended subclasses implement the method to_T_xs, which creates a new object at the specified temperature and
composition but with the same parameters.

These objects are intended to lazy-calculate properties as much as possible, and for the temperature and compo-
sition of an object to be immutable.
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Methods

CpE() Calculate and return the first temperature derivative
of excess enthalpy of a liquid phase using an activity
coefficient model.

HE() Calculate and return the excess entropy of a liquid
phase using an activity coefficient model.

SE() Calculates the excess entropy of a liquid phase using
an activity coefficient model.

as_json() Method to create a JSON-friendly representation of
the Gibbs Excess model which can be stored, and
reloaded later.

d2GE_dTdns() Calculate and return the mole number derivative of
the first temperature derivative of excess Gibbs en-
ergy of a liquid phase using an activity coefficient
model.

d2nGE_dTdns() Calculate and return the partial mole number deriva-
tive of the first temperature derivative of excess Gibbs
energy of a liquid phase using an activity coefficient
model.

d2nGE_dninjs() Calculate and return the second partial mole number
derivative of excess Gibbs energy of a liquid phase
using an activity coefficient model.

dGE_dns() Calculate and return the mole number derivative of
excess Gibbs energy of a liquid phase using an activ-
ity coefficient model.

dHE_dT() Calculate and return the first temperature derivative
of excess enthalpy of a liquid phase using an activity
coefficient model.

dHE_dns() Calculate and return the mole number derivative of
excess enthalpy of a liquid phase using an activity co-
efficient model.

dHE_dxs() Calculate and return the mole fraction derivative of
excess enthalpy of a liquid phase using an activity co-
efficient model.

dSE_dT() Calculate and return the first temperature derivative
of excess entropy of a liquid phase using an activity
coefficient model.

dSE_dns() Calculate and return the mole number derivative of
excess entropy of a liquid phase using an activity co-
efficient model.

dSE_dxs() Calculate and return the mole fraction derivative of
excess entropy of a liquid phase using an activity co-
efficient model.

dgammas_dT() Calculate and return the temperature derivatives of
activity coefficients of a liquid phase using an activity
coefficient model.

dgammas_dns() Calculate and return the mole number derivative of
activity coefficients of a liquid phase using an activity
coefficient model.

continues on next page
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Table 1 – continued from previous page
dnGE_dns() Calculate and return the partial mole number deriva-

tive of excess Gibbs energy of a liquid phase using an
activity coefficient model.

dnHE_dns() Calculate and return the partial mole number deriva-
tive of excess enthalpy of a liquid phase using an ac-
tivity coefficient model.

dnSE_dns() Calculate and return the partial mole number deriva-
tive of excess entropy of a liquid phase using an ac-
tivity coefficient model.

from_json(json_repr) Method to create a Gibbs Excess model from a JSON-
friendly serialization of another Gibbs Excess model.

gammas() Calculate and return the activity coefficients of a liq-
uid phase using an activity coefficient model.

gammas_infinite_dilution() Calculate and return the infinite dilution activity co-
efficients of each component.

model_hash () Basic method to calculate a hash of the non-state
parts of the model This is useful for comparing to
models to determine if they are the same, i.e. in a
VLL flash it is important to know if both liquids have
the same model.

state_hash () Basic method to calculate a hash of the state of the
model and its model parameters.

CpE()
Calculate and return the first temperature derivative of excess enthalpy of a liquid phase using an activity
coefficient model.

𝜕ℎ𝐸

𝜕𝑇
= −𝑇 𝜕

2𝑔𝐸

𝜕𝑇 2

Returns
dHE_dT [float] First temperature derivative of excess enthalpy of the liquid phase, [J/mol/K]

HE()
Calculate and return the excess entropy of a liquid phase using an activity coefficient model.

ℎ𝐸 = −𝑇 𝜕𝑔
𝐸

𝜕𝑇
+ 𝑔𝐸

Returns
HE [float] Excess enthalpy of the liquid phase, [J/mol]

SE()
Calculates the excess entropy of a liquid phase using an activity coefficient model.

𝑠𝐸 =
ℎ𝐸 − 𝑔𝐸

𝑇

Returns
SE [float] Excess entropy of the liquid phase, [J/mol/K]
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Notes

Note also the relationship of the expressions for partial excess entropy:

𝑆𝐸
𝑖 = −𝑅

(︂
𝑇
𝜕 ln 𝛾𝑖
𝜕𝑇

+ ln 𝛾𝑖

)︂

__eq__(other)
Return self==value.

__hash__()
Method to calculate and return a hash representing the exact state of the object. This includes T, xs, the
model class, and which values have already been calculated.

Returns
hash [int] Hash of the object, [-]

__repr__()
Method to create a string representation of the state of the model. Included is T, xs, and all constants
necessary to create the model. This can be passed into exec to re-create the model. Note that parsing
strings like this can be slow.

Returns
repr [str] String representation of the object, [-]

Examples

>>> IdealSolution(T=300.0, xs=[.1, .2, .3, .4])
IdealSolution(T=300.0, xs=[.1, .2, .3, .4])

as_json()
Method to create a JSON-friendly representation of the Gibbs Excess model which can be stored, and
reloaded later.

Returns
json_repr [dict] JSON-friendly representation, [-]

Examples

>>> import json
>>> model = IdealSolution(T=300.0, xs=[.1, .2, .3, .4])
>>> json_view = model.as_json()
>>> json_str = json.dumps(json_view)
>>> assert type(json_str) is str
>>> model_copy = IdealSolution.from_json(json.loads(json_str))
>>> assert model_copy == model

d2GE_dTdns()
Calculate and return the mole number derivative of the first temperature derivative of excess Gibbs energy
of a liquid phase using an activity coefficient model.

𝜕2𝐺𝐸

𝜕𝑛𝑖𝜕𝑇
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Returns
d2GE_dTdns [list[float]] First mole number derivative of the temperature derivative of ex-

cess Gibbs entropy of the liquid phase, [J/(mol^2*K)]

d2nGE_dTdns()
Calculate and return the partial mole number derivative of the first temperature derivative of excess Gibbs
energy of a liquid phase using an activity coefficient model.

𝜕2𝑛𝐺𝐸

𝜕𝑛𝑖𝜕𝑇

Returns
d2nGE_dTdns [list[float]] First partial mole number derivative of the temperature derivative

of excess Gibbs entropy of the liquid phase, [J/(mol*K)]

d2nGE_dninjs()
Calculate and return the second partial mole number derivative of excess Gibbs energy of a liquid phase
using an activity coefficient model.

𝜕2𝑛𝐺𝐸

𝜕𝑛𝑖𝜕𝑛𝑖

Returns
d2nGE_dninjs [list[list[float]]] Second partial mole number derivative of excess Gibbs en-

ergy of a liquid phase, [J/(mol^2)]

dGE_dns()
Calculate and return the mole number derivative of excess Gibbs energy of a liquid phase using an activity
coefficient model.

𝜕𝐺𝐸

𝜕𝑛𝑖

Returns
dGE_dns [list[float]] First mole number derivative of excess Gibbs entropy of the liquid

phase, [J/(mol^2*K)]

dHE_dT()
Calculate and return the first temperature derivative of excess enthalpy of a liquid phase using an activity
coefficient model.

𝜕ℎ𝐸

𝜕𝑇
= −𝑇 𝜕

2𝑔𝐸

𝜕𝑇 2

Returns
dHE_dT [float] First temperature derivative of excess enthalpy of the liquid phase, [J/mol/K]

dHE_dns()
Calculate and return the mole number derivative of excess enthalpy of a liquid phase using an activity
coefficient model.

𝜕ℎ𝐸

𝜕𝑛𝑖

Returns
dHE_dns [list[float]] First mole number derivative of excess enthalpy of the liquid phase,

[J/mol^2]
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dHE_dxs()
Calculate and return the mole fraction derivative of excess enthalpy of a liquid phase using an activity
coefficient model.

𝜕ℎ𝐸

𝜕𝑥𝑖
= −𝑇 𝜕2𝑔𝐸

𝜕𝑇𝜕𝑥𝑖
+
𝜕𝑔𝐸

𝜕𝑥𝑖

Returns
dHE_dxs [list[float]] First mole fraction derivative of excess enthalpy of the liquid phase,

[J/mol]

dSE_dT()
Calculate and return the first temperature derivative of excess entropy of a liquid phase using an activity
coefficient model.

𝜕𝑠𝐸

𝜕𝑇
=

1

𝑇

(︂
−𝜕𝑔𝐸

𝜕𝑇
+
𝜕ℎ𝐸

𝜕𝑇
− (𝐺+𝐻)

𝑇

)︂
Returns

dSE_dT [float] First temperature derivative of excess entropy of the liquid phase, [J/mol/K]

dSE_dns()
Calculate and return the mole number derivative of excess entropy of a liquid phase using an activity coef-
ficient model.

𝜕𝑆𝐸

𝜕𝑛𝑖

Returns
dSE_dns [list[float]] First mole number derivative of excess entropy of the liquid phase,

[J/(mol^2*K)]

dSE_dxs()
Calculate and return the mole fraction derivative of excess entropy of a liquid phase using an activity
coefficient model.

𝜕𝑆𝐸

𝜕𝑥𝑖
=

1

𝑇

(︂
𝜕ℎ𝐸

𝜕𝑥𝑖
− 𝜕𝑔𝐸

𝜕𝑥𝑖

)︂
= − 𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑇

Returns
dSE_dxs [list[float]] First mole fraction derivative of excess entropy of the liquid phase,

[J/(mol*K)]

dgammas_dT()
Calculate and return the temperature derivatives of activity coefficients of a liquid phase using an activity
coefficient model.

𝜕𝛾𝑖
𝜕𝑇

=

(︃
𝜕2𝑛𝐺𝐸

𝜕𝑇𝜕𝑛𝑖

𝑅𝑇
−

𝜕𝑛𝑖𝐺
𝐸

𝜕𝑛𝑖

𝑅𝑇 2

)︃
exp

(︃
𝜕𝑛𝑖𝐺

𝐸

𝜕𝑛𝑖

𝑅𝑇

)︃
Returns

dgammas_dT [list[float]] Temperature derivatives of activity coefficients, [1/K]

dgammas_dns()
Calculate and return the mole number derivative of activity coefficients of a liquid phase using an activity
coefficient model.

𝜕𝛾𝑖
𝜕𝑛𝑖

= 𝛾𝑖

⎛⎝ 𝜕2𝐺𝐸

𝜕𝑥𝑖𝜕𝑥𝑗

𝑅𝑇

⎞⎠
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Returns
dgammas_dns [list[list[float]]] Mole number derivatives of activity coefficients, [1/mol]

dnGE_dns()
Calculate and return the partial mole number derivative of excess Gibbs energy of a liquid phase using an
activity coefficient model.

𝜕𝑛𝐺𝐸

𝜕𝑛𝑖

Returns
dnGE_dns [list[float]] First partial mole number derivative of excess Gibbs entropy of the

liquid phase, [J/(mol)]

dnHE_dns()
Calculate and return the partial mole number derivative of excess enthalpy of a liquid phase using an activity
coefficient model.

𝜕𝑛ℎ𝐸

𝜕𝑛𝑖

Returns
dnHE_dns [list[float]] First partial mole number derivative of excess enthalpy of the liquid

phase, [J/mol]

dnSE_dns()
Calculate and return the partial mole number derivative of excess entropy of a liquid phase using an activity
coefficient model.

𝜕𝑛𝑆𝐸

𝜕𝑛𝑖

Returns
dnSE_dns [list[float]] First partial mole number derivative of excess entropy of the liquid

phase, [J/(mol*K)]

classmethod from_json(json_repr)
Method to create a Gibbs Excess model from a JSON-friendly serialization of another Gibbs Excess model.

Parameters
json_repr [dict] JSON-friendly representation, [-]

Returns
model [GibbsExcess] Newly created object from the json serialization, [-]

Notes

It is important that the input string be in the same format as that created by GibbsExcess.as_json.
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Examples

>>> model = IdealSolution(T=300.0, xs=[.1, .2, .3, .4])
>>> json_view = model.as_json()
>>> new_model = IdealSolution.from_json(json_view)
>>> assert model == new_model

gammas()
Calculate and return the activity coefficients of a liquid phase using an activity coefficient model.

𝛾𝑖 = exp

(︃
𝜕𝑛𝑖𝐺

𝐸

𝜕𝑛𝑖

𝑅𝑇

)︃

Returns
gammas [list[float]] Activity coefficients, [-]

gammas_infinite_dilution()
Calculate and return the infinite dilution activity coefficients of each component.

Returns
gammas_infinite [list[float]] Infinite dilution activity coefficients, [-]

Notes

The algorithm is as follows. For each component, set its composition to zero. Normalize the remaining
compositions to 1. Create a new object with that composition, and calculate the activity coefficient of the
component whose concentration was set to zero.

model_hash()
Basic method to calculate a hash of the non-state parts of the model This is useful for comparing to models
to determine if they are the same, i.e. in a VLL flash it is important to know if both liquids have the same
model.

Note that the hashes should only be compared on the same system running in the same process!

Returns
model_hash [int] Hash of the object’s model parameters, [-]

state_hash()
Basic method to calculate a hash of the state of the model and its model parameters.

Note that the hashes should only be compared on the same system running in the same process!

Returns
state_hash [int] Hash of the object’s model parameters and state, [-]
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7.1.2 Ideal Liquid Class

class thermo.activity.IdealSolution(T=None, xs=None)
Bases: thermo.activity.GibbsExcess

Class for representing an ideal liquid, with no excess gibbs energy and thus activity coefficients of 1.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Examples

>>> model = IdealSolution(T=300.0, xs=[.1, .2, .3, .4])
>>> model.GE()
0.0
>>> model.gammas()
[1.0, 1.0, 1.0, 1.0]
>>> model.dgammas_dT()
[0.0, 0.0, 0.0, 0.0]

Attributes
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Methods

GE() Calculate and return the excess Gibbs energy of a liq-
uid phase using an activity coefficient model.

d2GE_dT2() Calculate and return the second temperature deriva-
tive of excess Gibbs energy of a liquid phase using an
activity coefficient model.

d2GE_dTdxs() Calculate and return the temperature derivative of
mole fraction derivatives of excess Gibbs energy of
an ideal liquid.

d2GE_dxixjs() Calculate and return the second mole fraction deriva-
tives of excess Gibbs energy of an ideal liquid.

d3GE_dT3() Calculate and return the third temperature derivative
of excess Gibbs energy of a liquid phase using an ac-
tivity coefficient model.

d3GE_dxixjxks() Calculate and return the third mole fraction deriva-
tives of excess Gibbs energy of an ideal liquid.

dGE_dT() Calculate and return the temperature derivative of ex-
cess Gibbs energy of a liquid phase using an activity
coefficient model.

dGE_dxs() Calculate and return the mole fraction derivatives of
excess Gibbs energy of an ideal liquid.

continues on next page
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Table 2 – continued from previous page
to_T_xs(T, xs) Method to construct a new IdealSolution instance

at temperature T, and mole fractions xs with the same
parameters as the existing object.

GE()
Calculate and return the excess Gibbs energy of a liquid phase using an activity coefficient model.

𝑔𝐸 = 0

Returns
GE [float] Excess Gibbs energy of an ideal liquid, [J/mol]

d2GE_dT2()
Calculate and return the second temperature derivative of excess Gibbs energy of a liquid phase using an
activity coefficient model.

𝜕2𝑔𝐸

𝜕𝑇 2
= 0

Returns
d2GE_dT2 [float] Second temperature derivative of excess Gibbs energy of an ideal liquid,

[J/(mol*K^2)]

d2GE_dTdxs()
Calculate and return the temperature derivative of mole fraction derivatives of excess Gibbs energy of an
ideal liquid.

𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑇
= 0

Returns
d2GE_dTdxs [list[float]] Temperature derivative of mole fraction derivatives of excess

Gibbs energy of an ideal liquid, [J/(mol*K)]

d2GE_dxixjs()
Calculate and return the second mole fraction derivatives of excess Gibbs energy of an ideal liquid.

𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑥𝑗
= 0

Returns
d2GE_dxixjs [list[list[float]]] Second mole fraction derivatives of excess Gibbs energy of

an ideal liquid, [J/mol]

d3GE_dT3()
Calculate and return the third temperature derivative of excess Gibbs energy of a liquid phase using an
activity coefficient model.

𝜕3𝑔𝐸

𝜕𝑇 3
= 0

Returns
d3GE_dT3 [float] Third temperature derivative of excess Gibbs energy of an ideal liquid,

[J/(mol*K^3)]
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d3GE_dxixjxks()
Calculate and return the third mole fraction derivatives of excess Gibbs energy of an ideal liquid.

𝜕3𝑔𝐸

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
= 0

Returns
d3GE_dxixjxks [list[list[list[float]]]] Third mole fraction derivatives of excess Gibbs energy

of an ideal liquid, [J/mol]

dGE_dT()
Calculate and return the temperature derivative of excess Gibbs energy of a liquid phase using an activity
coefficient model.

𝜕𝑔𝐸

𝜕𝑇
= 0

Returns
dGE_dT [float] First temperature derivative of excess Gibbs energy of an ideal liquid,

[J/(mol*K)]

dGE_dxs()
Calculate and return the mole fraction derivatives of excess Gibbs energy of an ideal liquid.

𝜕𝑔𝐸

𝜕𝑥𝑖
= 0

Returns
dGE_dxs [list[float]] Mole fraction derivatives of excess Gibbs energy of an ideal liquid,

[J/mol]

to_T_xs(T, xs)
Method to construct a new IdealSolution instance at temperature T, and mole fractions xs with the same
parameters as the existing object.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions of each component, [-]

Returns
obj [IdealSolution] New IdealSolution object at the specified conditions [-]

Examples

>>> p = IdealSolution(T=300.0, xs=[.1, .2, .3, .4])
>>> p.to_T_xs(T=500.0, xs=[.25, .25, .25, .25])
IdealSolution(T=500.0, xs=[0.25, 0.25, 0.25, 0.25])
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7.1.3 Notes

Excellent references for working with activity coefficient models are [1] and [2].

References

7.2 Bulk Phases (thermo.bulk)

This module contains a phase wrapper for obtaining properties of a pseudo-phase made of multiple other phases. This
is useful in the context of multiple liquid phases; or multiple solid phases; or looking at all the phases together.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Bulk Class

• Bulk Settings Class

7.2.1 Bulk Class

class thermo.bulk.Bulk(T, P, zs, phases, phase_fractions, phase_bulk=None)
Bases: thermo.phases.phase.Phase

Class to encapsulate multiple Phase objects and provide a unified interface for obtaining properties from a group
of phases.

This class exists for three purposes:

• Providing a common interface for obtaining properties like Cp - whether there is one phase or 100, calling
Cp on the bulk will retrieve that value.

• Retrieving “bulk” properties that do make sense to be calculated for a combination of phases together.

• Allowing configurable estimations of non-bulk properties like isothermal compressibility or speed of sound
for the group of phases together.

Parameters
T [float] Temperature of the bulk, [K]

P [float] Pressure of the bulk, [Pa]

zs [list[float]] Mole fractions of the bulk, [-]

phases [list[Phase]] Phase objects, [-]

phase_fractions [list[float]] Molar fractions of each phase, [-]

phase_bulk [str, optional] None to represent a bulk of all present phases; ‘l’ to represent a bulk
of only liquid phases; s to represent a bulk of only solid phases, [-]
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Notes

Please think carefully when retrieving a property of the bulk. If there are two liquid phases in a bulk, and a single
viscosity value is retrieved, can that be used directly for a single phase pressure drop calculation? Not with any
theoretical consistency, that’s for sure.

Attributes
beta Phase fraction of the bulk phase.

betas_mass Method to calculate and return the mass fraction of all of the phases in the bulk.

betas_volume Method to calculate and return the volume fraction of all of the phases in the
bulk.

Methods

Cp() Method to calculate and return the constant-
temperature and constant phase-fraction heat
capacity of the bulk phase.

Cp_ideal_gas() Method to calculate and return the ideal-gas heat ca-
pacity of the phase.

H() Method to calculate and return the constant-
temperature and constant phase-fraction enthalpy of
the bulk phase.

H_ideal_gas() Method to calculate and return the ideal-gas enthalpy
of the phase.

H_reactive() Method to calculate and return the constant-
temperature and constant phase-fraction reactive
enthalpy of the bulk phase.

Joule_Thomson() Method to calculate and return the Joule-Thomson
coefficient of the bulk according to the selected cal-
culation methodology.

MW() Method to calculate and return the molecular weight
of the bulk phase.

Pmc() Method to calculate and return the mechanical criti-
cal pressure of the phase.

S() Method to calculate and return the constant-
temperature and constant phase-fraction entropy of
the bulk phase.

S_ideal_gas() Method to calculate and return the ideal-gas entropy
of the phase.

S_reactive() Method to calculate and return the constant-
temperature and constant phase-fraction reactive
entropy of the bulk phase.

Tmc() Method to calculate and return the mechanical criti-
cal temperature of the phase.

V() Method to calculate and return the molar volume of
the bulk phase.

V_iter([force]) Method to calculate and return the molar volume of
the bulk phase, with precision suitable for a TV cal-
culation to calculate a matching pressure.

continues on next page
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Table 3 – continued from previous page
Vmc() Method to calculate and return the mechanical criti-

cal volume of the phase.
Zmc() Method to calculate and return the mechanical criti-

cal compressibility of the phase.
d2P_dT2() Method to calculate and return the second tempera-

ture derivative of pressure of the bulk according to
the selected calculation methodology.

d2P_dT2_frozen() Method to calculate and return the second constant-
volume derivative of pressure with respect to temper-
ature of the bulk phase, at constant phase fractions
and phase compositions.

d2P_dTdV() Method to calculate and return the second deriva-
tive of pressure with respect to temperature and vol-
ume of the bulk according to the selected calculation
methodology.

d2P_dTdV_frozen() Method to calculate and return the second derivative
of pressure with respect to volume and temperature of
the bulk phase, at constant phase fractions and phase
compositions.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the bulk according to the se-
lected calculation methodology.

d2P_dV2_frozen() Method to calculate and return the constant-
temperature second derivative of pressure with
respect to volume of the bulk phase, at constant
phase fractions and phase compositions.

dA_dP() Method to calculate and return the constant-
temperature pressure derivative of Helmholtz
energy.

dA_dT() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dG_dP() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dT() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

dP_dT() Method to calculate and return the first temperature
derivative of pressure of the bulk according to the se-
lected calculation methodology.

dP_dT_frozen() Method to calculate and return the constant-volume
derivative of pressure with respect to temperature of
the bulk phase, at constant phase fractions and phase
compositions.

dP_dV() Method to calculate and return the first volume
derivative of pressure of the bulk according to the se-
lected calculation methodology.

dP_dV_frozen() Method to calculate and return the constant-
temperature derivative of pressure with respect to
volume of the bulk phase, at constant phase fractions
and phase compositions.

continues on next page
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Table 3 – continued from previous page
dU_dP() Method to calculate and return the constant-

temperature pressure derivative of internal energy.
dU_dT() Method to calculate and return the constant-pressure

temperature derivative of internal energy.
isobaric_expansion() Method to calculate and return the isobatic expansion

coefficient of the bulk according to the selected cal-
culation methodology.

k() Calculate and return the thermal conductivity
of the bulk according to the selected thermal
conductivity settings in BulkSettings, the set-
tings in ThermalConductivityGasMixture
and ThermalConductivityLiquidMixture,
and the configured pure-component set-
tings in ThermalConductivityGas and
ThermalConductivityLiquid .

kappa() Method to calculate and return the isothermal com-
pressibility of the bulk according to the selected cal-
culation methodology.

mu() Calculate and return the viscosity of the
bulk according to the selected viscos-
ity settings in BulkSettings, the set-
tings in ViscosityGasMixture and
ViscosityLiquidMixture, and the config-
ured pure-component settings in ViscosityGas
and ViscosityLiquid .

sigma() Calculate and return the surface tension of the
bulk according to the selected surface ten-
sion settings in BulkSettings, the settings in
SurfaceTensionMixture and the configured
pure-component settings in SurfaceTension.

speed_of_sound() Method to calculate and return the molar speed of
sound of the bulk according to the selected calcula-
tion methodology.

Cp()
Method to calculate and return the constant-temperature and constant phase-fraction heat capacity of the
bulk phase. This is a phase-fraction weighted calculation.

𝐶𝑝 =

𝑝∑︁
𝑖

𝐶𝑝,𝑖𝛽𝑖

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

Cp_ideal_gas()
Method to calculate and return the ideal-gas heat capacity of the phase.

𝐶𝑖𝑔
𝑝 =

∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖

Returns
Cp [float] Ideal gas heat capacity, [J/(mol*K)]
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H()
Method to calculate and return the constant-temperature and constant phase-fraction enthalpy of the bulk
phase. This is a phase-fraction weighted calculation.

𝐻 =

𝑝∑︁
𝑖

𝐻𝑖𝛽𝑖

Returns
H [float] Molar enthalpy, [J/(mol)]

H_ideal_gas()
Method to calculate and return the ideal-gas enthalpy of the phase.

𝐻𝑖𝑔 =
∑︁
𝑖

𝑧𝑖𝐻
𝑖𝑔
𝑖

Returns
H [float] Ideal gas enthalpy, [J/(mol)]

H_reactive()
Method to calculate and return the constant-temperature and constant phase-fraction reactive enthalpy of
the bulk phase. This is a phase-fraction weighted calculation.

𝐻reactive =

𝑝∑︁
𝑖

𝐻reactive,𝑖𝛽𝑖

Returns
H_reactive [float] Reactive molar enthalpy, [J/(mol)]

Joule_Thomson()
Method to calculate and return the Joule-Thomson coefficient of the bulk according to the selected calcu-
lation methodology.

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

Returns
mu_JT [float] Joule-Thomson coefficient [K/Pa]

MW()
Method to calculate and return the molecular weight of the bulk phase. This is a phase-fraction weighted
calculation.

MW =

𝑝∑︁
𝑖

MW𝑖𝛽𝑖

Returns
MW [float] Molecular weight, [g/mol]

Pmc()
Method to calculate and return the mechanical critical pressure of the phase.

Returns
Pmc [float] Mechanical critical pressure, [Pa]
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S()
Method to calculate and return the constant-temperature and constant phase-fraction entropy of the bulk
phase. This is a phase-fraction weighted calculation.

𝑆 =

𝑝∑︁
𝑖

𝑆𝑖𝛽𝑖

Returns
S [float] Molar entropy, [J/(mol*K)]

S_ideal_gas()
Method to calculate and return the ideal-gas entropy of the phase.

𝑆𝑖𝑔 =
∑︁
𝑖

𝑧𝑖𝑆
𝑖𝑔
𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−𝑅

∑︁
𝑖

𝑧𝑖 ln(𝑧𝑖)

Returns
S [float] Ideal gas molar entropy, [J/(mol*K)]

S_reactive()
Method to calculate and return the constant-temperature and constant phase-fraction reactive entropy of the
bulk phase. This is a phase-fraction weighted calculation.

𝑆reactive =

𝑝∑︁
𝑖

𝑆reactive,𝑖𝛽𝑖

Returns
S_reactive [float] Reactive molar entropy, [J/(mol*K)]

Tmc()
Method to calculate and return the mechanical critical temperature of the phase.

Returns
Tmc [float] Mechanical critical temperature, [K]

V()
Method to calculate and return the molar volume of the bulk phase. This is a phase-fraction weighted
calculation.

𝑉 =

𝑝∑︁
𝑖

𝑉𝑖𝛽𝑖

Returns
V [float] Molar volume, [m^3/mol]

V_iter(force=False)
Method to calculate and return the molar volume of the bulk phase, with precision suitable for a TV calcu-
lation to calculate a matching pressure. This is a phase-fraction weighted calculation.

𝑉 =

𝑝∑︁
𝑖

𝑉𝑖𝛽𝑖

Returns
V [float or mpf] Molar volume, [m^3/mol]
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Vmc()
Method to calculate and return the mechanical critical volume of the phase.

Returns
Vmc [float] Mechanical critical volume, [m^3/mol]

Zmc()
Method to calculate and return the mechanical critical compressibility of the phase.

Returns
Zmc [float] Mechanical critical compressibility, [-]

property beta
Phase fraction of the bulk phase. Should always be 1 when representing all phases of a flash; but can be
less than one if representing multiple solids or liquids as a single phase in a larger mixture.

Returns
beta [float] Phase fraction of bulk, [-]

property betas_mass
Method to calculate and return the mass fraction of all of the phases in the bulk.

Returns
betas_mass [list[float]] Mass phase fractions of all the phases in the bulk object, ordered

vapor, liquid, then solid, [-]

property betas_volume
Method to calculate and return the volume fraction of all of the phases in the bulk.

Returns
betas_volume [list[float]] Volume phase fractions of all the phases in the bulk, ordered vapor,

liquid, then solid , [-]

d2P_dT2()
Method to calculate and return the second temperature derivative of pressure of the bulk according to the
selected calculation methodology.

Returns
d2P_dT2 [float] Second temperature derivative of pressure, [Pa/K^2]

d2P_dT2_frozen()
Method to calculate and return the second constant-volume derivative of pressure with respect to tempera-
ture of the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction
weighted calculation. (︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑖,𝑉𝑖,𝛽𝑖,𝑧𝑠𝑖

Returns
d2P_dT2_frozen [float] Frozen constant-volume second derivative of pressure with respect

to temperature of the bulk phase, [Pa/K^2]

d2P_dTdV()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the bulk according to the selected calculation methodology.

Returns

68 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

d2P_dTdV [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_dTdV_frozen()
Method to calculate and return the second derivative of pressure with respect to volume and temperature of
the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction weighted
calculation. (︂

𝜕2𝑃

𝜕𝑉 𝜕𝑇

)︂
𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕2𝑃

𝜕𝑉 𝜕𝑇

)︂
𝑖,𝛽𝑖,𝑧𝑠𝑖

Returns
d2P_dTdV_frozen [float] Frozen second derivative of pressure with respect to volume and

temperature of the bulk phase, [Pa*mol^2/m^6]

d2P_dV2()
Method to calculate and return the second volume derivative of pressure of the bulk according to the selected
calculation methodology.

Returns
d2P_dV2 [float] Second volume derivative of pressure, [Pa*mol^2/m^6]

d2P_dV2_frozen()
Method to calculate and return the constant-temperature second derivative of pressure with respect to vol-
ume of the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction
weighted calculation. (︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑖,𝑇,𝛽𝑖,𝑧𝑠𝑖

Returns
d2P_dV2_frozen [float] Frozen constant-temperature second derivative of pressure with re-

spect to volume of the bulk phase, [Pa*mol^2/m^6]

dA_dP()
Method to calculate and return the constant-temperature pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

Returns
dA_dP [float] Constant-temperature pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dT()
Method to calculate and return the constant-pressure temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

Returns
dA_dT [float] Constant-pressure temperature derivative of Helmholtz energy, [J/(mol*K)]

dG_dP()
Method to calculate and return the constant-temperature pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇
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Returns
dG_dP [float] Constant-temperature pressure derivative of Gibbs free energy, [J/(mol*Pa)]

dG_dT()
Method to calculate and return the constant-pressure temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dG_dT [float] Constant-pressure temperature derivative of Gibbs free energy, [J/(mol*K)]

dP_dT()
Method to calculate and return the first temperature derivative of pressure of the bulk according to the
selected calculation methodology.

Returns
dP_dT [float] First temperature derivative of pressure, [Pa/K]

dP_dT_frozen()
Method to calculate and return the constant-volume derivative of pressure with respect to temperature of
the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction weighted
calculation. (︂

𝜕𝑃

𝜕𝑇

)︂
𝑉,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑖,𝑉𝑖,𝛽𝑖,𝑧𝑠𝑖

Returns
dP_dT_frozen [float] Frozen constant-volume derivative of pressure with respect to temper-

ature of the bulk phase, [Pa/K]

dP_dV()
Method to calculate and return the first volume derivative of pressure of the bulk according to the selected
calculation methodology.

Returns
dP_dV [float] First volume derivative of pressure, [Pa*mol/m^3]

dP_dV_frozen()
Method to calculate and return the constant-temperature derivative of pressure with respect to volume of
the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction weighted
calculation. (︂

𝜕𝑃

𝜕𝑉

)︂
𝑇,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑖,𝑇,𝛽𝑖,𝑧𝑠𝑖

Returns
dP_dV_frozen [float] Frozen constant-temperature derivative of pressure with respect to

volume of the bulk phase, [Pa*mol/m^3]

dU_dP()
Method to calculate and return the constant-temperature pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑇

= −𝑃
(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

− 𝑉 +

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
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dU_dP [float] Constant-temperature pressure derivative of internal energy, [J/(mol*Pa)]

dU_dT()
Method to calculate and return the constant-pressure temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑃

= −𝑃
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

+

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dU_dT [float] Constant-pressure temperature derivative of internal energy, [J/(mol*K)]

isobaric_expansion()
Method to calculate and return the isobatic expansion coefficient of the bulk according to the selected
calculation methodology.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Returns
beta [float] Isobaric coefficient of a thermal expansion, [1/K]

k()
Calculate and return the thermal conductivity of the bulk according to the selected thermal
conductivity settings in BulkSettings, the settings in ThermalConductivityGasMixture
and ThermalConductivityLiquidMixture, and the configured pure-component settings in
ThermalConductivityGas and ThermalConductivityLiquid .

Returns
k [float] Thermal Conductivity of bulk phase calculated with mixing rules, [Pa*s]

kappa()
Method to calculate and return the isothermal compressibility of the bulk according to the selected calcu-
lation methodology.

𝜅 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Returns
kappa [float] Isothermal coefficient of compressibility, [1/Pa]

mu()
Calculate and return the viscosity of the bulk according to the selected viscosity settings in BulkSettings,
the settings in ViscosityGasMixture and ViscosityLiquidMixture, and the configured pure-
component settings in ViscosityGas and ViscosityLiquid .

Returns
mu [float] Viscosity of bulk phase calculated with mixing rules, [Pa*s]

sigma()
Calculate and return the surface tension of the bulk according to the selected surface tension settings in
BulkSettings, the settings in SurfaceTensionMixture and the configured pure-component settings in
SurfaceTension.

Returns
sigma [float] Surface tension of bulk phase calculated with mixing rules, [N/m]
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Notes

A value is only returned if all phases in the bulk are liquids; this property is for a liquid-ideal gas calculation,
not the interfacial tension between two liquid phases.

speed_of_sound()
Method to calculate and return the molar speed of sound of the bulk according to the selected calculation
methodology.

𝑤 =

[︂
−𝑉 2

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
A similar expression based on molar density is:

𝑤 =

[︂(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
Returns

w [float] Speed of sound for a real gas, [m*kg^0.5/(s*mol^0.5)]

7.2.2 Bulk Settings Class

class thermo.bulk.BulkSettings(dP_dT='MOLE_WEIGHTED', dP_dV='MOLE_WEIGHTED',
d2P_dV2='MOLE_WEIGHTED', d2P_dT2='MOLE_WEIGHTED',
d2P_dTdV='MOLE_WEIGHTED',
mu_LL='LOG_PROP_MASS_WEIGHTED', mu_LL_power_exponent=0.4,
mu_VL='McAdams', mu_VL_power_exponent=0.4,
k_LL='MASS_WEIGHTED', k_LL_power_exponent=0.4,
k_VL='MASS_WEIGHTED', k_VL_power_exponent=0.4,
sigma_LL='MASS_WEIGHTED', sigma_LL_power_exponent=0.4,
T_liquid_volume_ref=298.15, T_normal=273.15, P_normal=101325.0,
T_standard=288.15, P_standard=101325.0, T_gas_ref=288.15,
P_gas_ref=101325.0, speed_of_sound='MOLE_WEIGHTED',
kappa='MOLE_WEIGHTED', isobaric_expansion='MOLE_WEIGHTED',
Joule_Thomson='MOLE_WEIGHTED', VL_ID='PIP',
VL_ID_settings=None, S_ID='d2P_dVdT', S_ID_settings=None,
solid_sort_method='prop', liquid_sort_method='prop',
liquid_sort_cmps=[], solid_sort_cmps=[], liquid_sort_cmps_neg=[],
solid_sort_cmps_neg=[], liquid_sort_prop='DENSITY_MASS',
solid_sort_prop='DENSITY_MASS', phase_sort_higher_first=True,
water_sort='water not special', equilibrium_perturbation=1e-07)

Bases: object

Class containing configuration methods for determining how properties of a Bulk phase made of different phases
are handled. All parameters are also attributes.

Parameters
dP_dT [str, optional] The method used to calculate the constant-volume temperature derivative

of pressure of the bulk. One of DP_DT_METHODS, [-]

dP_dV [str, optional] The method used to calculate the constant-temperature volume derivative
of pressure of the bulk. One of DP_DV_METHODS, [-]

d2P_dV2 [str, optional] The method used to calculate the second constant-temperature volume
derivative of pressure of the bulk. One of D2P_DV2_METHODS, [-]
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d2P_dT2 [str, optional] The method used to calculate the second constant-volume temperature
derivative of pressure of the bulk. One of D2P_DT2_METHODS, [-]

d2P_dTdV [str, optional] The method used to calculate the temperature and volume derivative
of pressure of the bulk. One of D2P_DTDV_METHODS, [-]

T_liquid_volume_ref [float, optional] Liquid molar volume reference temperature; if this
is 298.15 K exactly, the molar volumes in Vml_STPs will be used, and if it is
288.7055555555555 K exactly, Vml_60Fs will be used, and otherwise the molar liquid vol-
umes will be obtained from the temperature-dependent correlations specified, [K]

T_gas_ref [float, optional] Reference temperature to use for the calculation of ideal-gas molar
volume and flow rate, [K]

P_gas_ref [float, optional] Reference pressure to use for the calculation of ideal-gas molar vol-
ume and flow rate, [Pa]

T_normal [float, optional] “Normal” gas reference temperature for the calculation of ideal-gas
molar volume in the “normal” reference state; default 273.15 K (0 C) according to [1], [K]

P_normal [float, optional] “Normal” gas reference pressure for the calculation of ideal-gas mo-
lar volume in the “normal” reference state; default 101325 Pa (1 atm) according to [1], [Pa]

T_standard [float, optional] “Standard” gas reference temperature for the calculation of ideal-
gas molar volume in the “standard” reference state; default 288.15 K (15° C) according to
[2]; 288.7055555555555 is also often used (60° F), [K]

P_standard [float, optional] “Standard” gas reference pressure for the calculation of ideal-gas
molar volume in the “standard” reference state; default 101325 Pa (1 atm) according to [2],
[Pa]

mu_LL [str, optional] Mixing rule for multiple liquid phase liquid viscosity calculations; see
MU_LL_METHODS for available options, [-]

mu_LL_power_exponent [float, optional] Liquid-liquid viscosity power-law mixing parame-
ter, used only when a power law mixing rule is selected, [-]

mu_VL [str, optional] Mixing rule for vapor-liquid viscosity calculations; see MU_VL_METHODS
for available options, [-]

mu_VL_power_exponent [float, optional] Vapor-liquid viscosity power-law mixing parameter,
used only when a power law mixing rule is selected, [-]

k_LL [str, optional] Mixing rule for multiple liquid phase liquid thermal conductivity calcula-
tions; see K_LL_METHODS for available options, [-]

k_LL_power_exponent [float, optional] Liquid-liquid thermal conductivity power-law mixing
parameter, used only when a power law mixing rule is selected, [-]

k_VL [str, optional] Mixing rule for vapor-liquid thermal conductivity calculations; see
K_VL_METHODS for available options, [-]

k_VL_power_exponent [float, optional] Vapor-liquid thermal conductivity power-law mixing
parameter, used only when a power law mixing rule is selected, [-]

sigma_LL [str, optional] Mixing rule for multiple liquid phase, air-liquid surface tension calcu-
lations; see SIGMA_LL_METHODS for available options, [-]

sigma_LL_power_exponent [float, optional] Air-liquid Liquid-liquid surface tension power-
law mixing parameter, used only when a power law mixing rule is selected, [-]

equilibrium_perturbation [float, optional] The relative perturbation to use when calculating
equilibrium derivatives numerically; for example if this is 1e-3 and T is the perturbation
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variable and the statis is 500 K, the perturbation calculation temperature will be 500.5 K,
[various]

isobaric_expansion [str, optional] Mixing rule for multiphase isobaric expansion calculations;
see BETA_METHODS for available options, [-]

speed_of_sound [str, optional] Mixing rule for multiphase speed of sound calculations; see
SPEED_OF_SOUND_METHODS for available options, [-]

kappa [str, optional] Mixing rule for multiphase kappa calculations; see KAPPA_METHODS for
available options, [-]

Joule_Thomson [str, optional] Mixing rule for multiphase Joule-Thomson calculations; see
JT_METHODS for available options, [-]

Notes

The linear mixing rules “MOLE_WEIGHTED”, “MASS_WEIGHTED”, and “VOLUME_WEIGHTED” have
the following formula, with 𝛽 representing molar, mass, or volume phase fraction:

bulk property =

(︃
𝑝ℎ𝑎𝑠𝑒𝑠∑︁

𝑖

𝛽𝑖property

)︃

The power mixing rules “POWER_PROP_MOLE_WEIGHTED”, “POWER_PROP_MASS_WEIGHTED”, and
“POWER_PROP_VOLUME_WEIGHTED” have the following formula, with 𝛽 representing molar, mass, or
volume phase fraction:

bulk property =

(︃
𝑝ℎ𝑎𝑠𝑒𝑠∑︁

𝑖

𝛽𝑖property exponent

)︃1/exponent

The logarithmic mixing rules “LOG_PROP_MOLE_WEIGHTED”, “LOG_PROP_MASS_WEIGHTED”, and
“LOG_PROP_VOLUME_WEIGHTED” have the following formula, with 𝛽 representing molar, mass, or volume
phase fraction:

bulk property = exp

(︃
𝑝ℎ𝑎𝑠𝑒𝑠∑︁

𝑖

𝛽𝑖 ln(property )

)︃

The mixing rule “MINIMUM_PHASE_PROP” selects the lowest phase value of the property, always. The
mixing rule “MAXIMUM_PHASE_PROP” selects the highest phase value of the property, always.

The mixing rule “AS_ONE_LIQUID” calculates a property using the bulk composition but applied to the liquid
model only. The mixing rule “AS_ONE_GAS” calculates a property using the bulk composition but applied to
the gas model only.

The mixing rule “FROM_DERIVATIVE_SETTINGS” is used to indicate that the property depends on other
configurable properties; and when this is the specified option, those configurations will be used in the calculation
of this property.

The mixing rule “EQUILIBRIUM_DERIVATIVE” performs derivative calculations on flashes themselves. This
is quite slow in comparison to other methods.
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References

[1], [2]

Methods

as_json

as_json()

thermo.bulk.DP_DT_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'EQUILIBRIUM_DERIVATIVE', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented calculation methods for the DP_DT bulk setting

thermo.bulk.DP_DV_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'EQUILIBRIUM_DERIVATIVE', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented calculation methods for the DP_DV bulk setting

thermo.bulk.D2P_DV2_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented calculation methods for the D2P_DV2 bulk setting

thermo.bulk.D2P_DT2_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented calculation methods for the D2P_DT2 bulk setting

thermo.bulk.D2P_DTDV_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented calculation methods for the D2P_DTDV bulk setting

thermo.bulk.MU_LL_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'AS_ONE_LIQUID', 'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED',
'LOG_PROP_VOLUME_WEIGHTED', 'POWER_PROP_MOLE_WEIGHTED', 'POWER_PROP_MASS_WEIGHTED',
'POWER_PROP_VOLUME_WEIGHTED', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented mixing rules for the MU_LL setting

thermo.bulk.MU_VL_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'AS_ONE_LIQUID', 'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED',
'LOG_PROP_VOLUME_WEIGHTED', 'POWER_PROP_MOLE_WEIGHTED', 'POWER_PROP_MASS_WEIGHTED',
'POWER_PROP_VOLUME_WEIGHTED', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP', 'AS_ONE_GAS',
'Beattie Whalley', 'McAdams', 'Cicchitti', 'Lin Kwok', 'Fourar Bories', 'Duckler']

List of all valid and implemented mixing rules for the MU_VL setting

thermo.bulk.K_LL_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'AS_ONE_LIQUID', 'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED',
'LOG_PROP_VOLUME_WEIGHTED', 'POWER_PROP_MOLE_WEIGHTED', 'POWER_PROP_MASS_WEIGHTED',
'POWER_PROP_VOLUME_WEIGHTED', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented mixing rules for the K_LL setting
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thermo.bulk.K_VL_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'AS_ONE_LIQUID', 'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED',
'LOG_PROP_VOLUME_WEIGHTED', 'POWER_PROP_MOLE_WEIGHTED', 'POWER_PROP_MASS_WEIGHTED',
'POWER_PROP_VOLUME_WEIGHTED', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP', 'AS_ONE_GAS']

List of all valid and implemented mixing rules for the K_VL setting

thermo.bulk.SIGMA_LL_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'AS_ONE_LIQUID', 'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED',
'LOG_PROP_VOLUME_WEIGHTED', 'POWER_PROP_MOLE_WEIGHTED', 'POWER_PROP_MASS_WEIGHTED',
'POWER_PROP_VOLUME_WEIGHTED', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP']

List of all valid and implemented mixing rules for the SIGMA_LL setting

thermo.bulk.BETA_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP', 'EQUILIBRIUM_DERIVATIVE',
'FROM_DERIVATIVE_SETTINGS']

List of all valid and implemented calculation methods for the isothermal_compressibility bulk setting

thermo.bulk.SPEED_OF_SOUND_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED',
'VOLUME_WEIGHTED', 'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED',
'LOG_PROP_VOLUME_WEIGHTED', 'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP',
'FROM_DERIVATIVE_SETTINGS']

List of all valid and implemented calculation methods for the speed_of_sound bulk setting

thermo.bulk.KAPPA_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP', 'EQUILIBRIUM_DERIVATIVE',
'FROM_DERIVATIVE_SETTINGS']

List of all valid and implemented calculation methods for the kappa bulk setting

thermo.bulk.JT_METHODS = ['MOLE_WEIGHTED', 'MASS_WEIGHTED', 'VOLUME_WEIGHTED',
'LOG_PROP_MOLE_WEIGHTED', 'LOG_PROP_MASS_WEIGHTED', 'LOG_PROP_VOLUME_WEIGHTED',
'MINIMUM_PHASE_PROP', 'MAXIMUM_PHASE_PROP', 'EQUILIBRIUM_DERIVATIVE',
'FROM_DERIVATIVE_SETTINGS']

List of all valid and implemented calculation methods for the JT bulk setting

7.3 Legacy Chemicals (thermo.chemical)

class thermo.chemical.Chemical(ID, T=298.15, P=101325, autocalc=True)
Bases: object

Creates a Chemical object which contains basic information such as molecular weight and the structure of the
species, as well as thermodynamic and transport properties as a function of temperature and pressure.

Parameters
ID [str]

One of the following [-]:
• Name, in IUPAC form or common form or a synonym registered in PubChem

• InChI name, prefixed by ‘InChI=1S/’ or ‘InChI=1/’

• InChI key, prefixed by ‘InChIKey=’

• PubChem CID, prefixed by ‘PubChem=’

• SMILES (prefix with ‘SMILES=’ to ensure smiles parsing)

76 Chapter 7. API Reference

https://docs.python.org/3/library/functions.html#object


thermo Documentation, Release 0.2.20

• CAS number

T [float, optional] Temperature of the chemical (default 298.15 K), [K]

P [float, optional] Pressure of the chemical (default 101325 Pa) [Pa]

Notes

Warning: The Chemical class is not designed for high-performance or the ability to use different thermo-
dynamic models. It is especially limited in its multiphase support and the ability to solve with specifications
other than temperature and pressure. It is impossible to change constant properties such as a compound’s
critical temperature in this interface.

It is recommended to switch over to the thermo.flash interface which solves those problems and is better
positioned to grow. That interface also requires users to be responsible for their chemical constants and pure
component correlations; while default values can easily be loaded for most compounds, the user is ultimately
responsible for them.

Examples

Creating chemical objects:

>>> Chemical('hexane')
<Chemical [hexane], T=298.15 K, P=101325 Pa>

>>> Chemical('CCCCCCCC', T=500, P=1E7)
<Chemical [octane], T=500.00 K, P=10000000 Pa>

>>> Chemical('7440-36-0', P=1000)
<Chemical [antimony], T=298.15 K, P=1000 Pa>

Getting basic properties:

>>> N2 = Chemical('Nitrogen')
>>> N2.Tm, N2.Tb, N2.Tc # melting, boiling, and critical points [K]
(63.15, 77.355, 126.2)
>>> N2.Pt, N2.Pc # sublimation and critical pressure [Pa]
(12526.9697368421, 3394387.5)
>>> N2.CAS, N2.formula, N2.InChI, N2.smiles, N2.atoms # CAS number, formula, InChI␣
→˓string, smiles string, dictionary of atomic elements and their count
('7727-37-9', 'N2', 'N2/c1-2', 'N#N', {'N': 2})

Changing the T/P of the chemical, and gettign temperature-dependent properties:

>>> N2.Cp, N2.rho, N2.mu # Heat capacity [J/kg/K], density [kg/m^3], viscosity␣
→˓[Pa*s]
(1039.4978324480921, 1.1452416223829405, 1.7804740647270688e-05)
>>> N2.calculate(T=65, P=1E6) # set it to a liquid at 65 K and 1 MPa
>>> N2.phase
'l'
>>> N2.Cp, N2.rho, N2.mu # properties are now of the liquid phase
(2002.8819854804037, 861.3539919443364, 0.0002857739143670701)
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Molar units are also available for properties:

>>> N2.Cpm, N2.Vm, N2.Hvapm # heat capacity [J/mol/K], molar volume [m^3/mol],␣
→˓enthalpy of vaporization [J/mol]
(56.10753421205674, 3.252251717875631e-05, 5982.710998291719)

A great deal of properties are available; for a complete list look at the attributes list.

>>> N2.alpha, N2.JT # thermal diffusivity [m^2/s], Joule-Thompson coefficient [K/Pa]
(9.874883993253272e-08, -4.0009932695519242e-07)

>>> N2.isentropic_exponent, N2.isobaric_expansion
(1.4000000000000001, 0.0047654228408661571)

For pure species, the phase is easily identified, allowing for properties to be obtained without needing to specify
the phase. However, the properties are also available in the hypothetical gas phase (when under the boiling point)
and in the hypothetical liquid phase (when above the boiling point) as these properties are needed to evaluate
mixture properties. Specify the phase of a property to be retrieved by appending ‘l’ or ‘g’ or ‘s’ to the property.

>>> tol = Chemical('toluene')

>>> tol.rhog, tol.Cpg, tol.kg, tol.mug
(4.241646701894199, 1126.5533755283168, 0.00941385692301755, 6.973325939594919e-06)

Temperature dependent properties are calculated by objects which provide many useful features related to the
properties. To determine the temperature at which nitrogen has a saturation pressure of 1 MPa:

>>> N2.VaporPressure.solve_property(1E6)
103.73528598652341

To compute an integral of the ideal-gas heat capacity of nitrogen to determine the enthalpy required for a given
change in temperature. Note the thermodynamic objects calculate values in molar units always.

>>> N2.HeatCapacityGas.T_dependent_property_integral(100, 120) # J/mol/K
582.0121860897898

Derivatives of properties can be calculated as well, as may be needed by for example heat transfer calculations:

>>> N2.SurfaceTension.T_dependent_property_derivative(77)
-0.00022695346296730534

If a property is needed at multiple temperatures or pressures, it is faster to use the object directly to perform the
calculation rather than setting the conditions for the chemical.

>>> [N2.VaporPressure(T) for T in range(80, 120, 10)]
[136979.4840843189, 360712.5746603142, 778846.276691705, 1466996.7208525643]

These objects are also how the methods by which the properties are calculated can be changed. To see the
available methods for a property:

>>> N2.VaporPressure.all_methods
set(['VDI_PPDS', 'BOILING_CRITICAL', 'WAGNER_MCGARRY', 'AMBROSE_WALTON', 'COOLPROP',
→˓ 'LEE_KESLER_PSAT', 'EOS', 'ANTOINE_POLING', 'SANJARI', 'DIPPR_PERRY_8E', 'Edalat
→˓', 'WAGNER_POLING'])
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To specify the method which should be used for calculations of a property. In the example below, the Lee-kesler
correlation for vapor pressure is specified.

>>> N2.calculate(80)
>>> N2.Psat
136979.4840843189
>>> N2.VaporPressure.method = 'LEE_KESLER_PSAT'
>>> N2.Psat
134987.76815364443

For memory reduction, these objects are shared by all chemicals which are the same; new instances will use the
same specified methods.

>>> N2_2 = Chemical('nitrogen')
>>> N2_2.VaporPressure.user_methods
['LEE_KESLER_PSAT']

To disable this behavior, set thermo.chemical.caching to False.

>>> import thermo
>>> thermo.chemical.caching = False
>>> N2_3 = Chemical('nitrogen')
>>> N2_3.VaporPressure.user_methods
[]

Properties may also be plotted via these objects:

>>> N2.VaporPressure.plot_T_dependent_property()
>>> N2.VolumeLiquid.plot_isotherm(T=77, Pmin=1E5, Pmax=1E7)
>>> N2.VolumeLiquid.plot_isobar(P=1E6, Tmin=66, Tmax=120)
>>> N2.VolumeLiquid.plot_TP_dependent_property(Tmin=60, Tmax=100, Pmin=1E5,␣
→˓Pmax=1E7)

Attributes
T [float] Temperature of the chemical, [K]

P [float] Pressure of the chemical, [Pa]

phase [str] Phase of the chemical; one of ‘s’, ‘l’, ‘g’, or ‘l/g’.

ID [str] User specified string by which the chemical’s CAS was looked up.

CAS [str] The CAS number of the chemical.

PubChem [int] PubChem Compound identifier (CID) of the chemical; all chemicals are sourced
from their database. Chemicals can be looked at online at https://pubchem.ncbi.nlm.nih.gov.

MW [float] Molecular weight of the compound, [g/mol]

formula [str] Molecular formula of the compound.

atoms [dict] dictionary of counts of individual atoms, indexed by symbol with proper capital-
ization, [-]

similarity_variable [float] Similarity variable, see chemicals.elements.
similarity_variable for the definition, [mol/g]

smiles [str] Simplified molecular-input line-entry system representation of the compound.
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InChI [str] IUPAC International Chemical Identifier of the compound.

InChI_Key [str] 25-character hash of the compound’s InChI.

IUPAC_name [str] Preferred IUPAC name for a compound.

synonyms [list of strings] All synonyms for the compound found in PubChem, sorted by popu-
larity.

Tm [float] Melting temperature [K]

Tb [float] Boiling temperature [K]

Tc [float] Critical temperature [K]

Pc [float] Critical pressure [Pa]

Vc [float] Critical volume [m^3/mol]

Zc [float] Critical compressibility [-]

rhoc [float] Critical density [kg/m^3]

rhocm [float] Critical molar density [mol/m^3]

omega [float] Acentric factor [-]

StielPolar [float] Stiel Polar factor, see chemicals.acentric.Stiel_polar_factor for the
definition [-]

Tt [float] Triple temperature, [K]

Pt [float] Triple pressure, [Pa]

Hfus [float] Enthalpy of fusion [J/kg]

Hfusm [float] Molar enthalpy of fusion [J/mol]

Hsub [float] Enthalpy of sublimation [J/kg]

Hsubm [float] Molar enthalpy of sublimation [J/mol]

Hfm [float] Standard state molar enthalpy of formation, [J/mol]

Hf [float] Standard enthalpy of formation in a mass basis, [J/kg]

Hfgm [float] Ideal-gas molar enthalpy of formation, [J/mol]

Hfg [float] Ideal-gas enthalpy of formation in a mass basis, [J/kg]

Hcm [float] Molar higher heat of combustion [J/mol]

Hc [float] Higher Heat of combustion [J/kg]

Hcm_lower [float] Molar lower heat of combustion [J/mol]

Hc_lower [float] Lower Heat of combustion [J/kg]

S0m [float] Standard state absolute molar entropy of the chemical, [J/mol/K]

S0 [float] Standard state absolute entropy of the chemical, [J/kg/K]

S0gm [float] Absolute molar entropy in an ideal gas state of the chemical, [J/mol/K]

S0g [float] Absolute mass entropy in an ideal gas state of the chemical, [J/kg/K]

Gfm [float] Standard state molar change of Gibbs energy of formation [J/mol]

Gf [float] Standard state change of Gibbs energy of formation [J/kg]

Gfgm [float] Ideal-gas molar change of Gibbs energy of formation [J/mol]
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Gfg [float] Ideal-gas change of Gibbs energy of formation [J/kg]

Sfm [float] Standard state molar change of entropy of formation, [J/mol/K]

Sf [float] Standard state change of entropy of formation, [J/kg/K]

Sfgm [float] Ideal-gas molar change of entropy of formation, [J/mol/K]

Sfg [float] Ideal-gas change of entropy of formation, [J/kg/K]

Hcgm [float] Higher molar heat of combustion of the chemical in the ideal gas state, [J/mol]

Hcg [float] Higher heat of combustion of the chemical in the ideal gas state, [J/kg]

Hcgm_lower [float] Lower molar heat of combustion of the chemical in the ideal gas state,
[J/mol]

Hcg_lower [float] Lower heat of combustion of the chemical in the ideal gas state, [J/kg]

Tflash [float] Flash point of the chemical, [K]

Tautoignition [float] Autoignition point of the chemical, [K]

LFL [float] Lower flammability limit of the gas in an atmosphere at STP, mole fraction [-]

UFL [float] Upper flammability limit of the gas in an atmosphere at STP, mole fraction [-]

TWA [tuple[quantity, unit]] Time-Weighted Average limit on worker exposure to dangerous
chemicals.

STEL [tuple[quantity, unit]] Short-term Exposure limit on worker exposure to dangerous chem-
icals.

Ceiling [tuple[quantity, unit]] Ceiling limits on worker exposure to dangerous chemicals.

Skin [bool] Whether or not a chemical can be absorbed through the skin.

Carcinogen [str or dict] Carcinogen status information.

dipole [float] Dipole moment in debye, [3.33564095198e-30 ampere*second^2]

Stockmayer [float] Lennard-Jones depth of potential-energy minimum over k, [K]

molecular_diameter [float] Lennard-Jones molecular diameter, [angstrom]

GWP [float] Global warming potential (default 100-year outlook) (impact/mass chemi-
cal)/(impact/mass CO2), [-]

ODP [float] Ozone Depletion potential (impact/mass chemical)/(impact/mass CFC-11), [-]

logP [float] Octanol-water partition coefficient, [-]

legal_status [str or dict] Dictionary of legal status indicators for the chemical.

economic_status [list] Dictionary of economic status indicators for the chemical.

RI [float] Refractive Index on the Na D line, [-]

RIT [float] Temperature at which refractive index reading was made

conductivity [float] Electrical conductivity of the fluid, [S/m]

conductivityT [float] Temperature at which conductivity measurement was made

VaporPressure [object] Instance of thermo.vapor_pressure.VaporPressure, with data
and methods loaded for the chemical; performs the actual calculations of vapor pressure
of the chemical.
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EnthalpyVaporization [object] Instance of thermo.phase_change.
EnthalpyVaporization, with data and methods loaded for the chemical; performs
the actual calculations of molar enthalpy of vaporization of the chemical.

VolumeSolid [object] Instance of thermo.volume.VolumeSolid , with data and methods
loaded for the chemical; performs the actual calculations of molar volume of the solid phase
of the chemical.

VolumeLiquid [object] Instance of thermo.volume.VolumeLiquid , with data and methods
loaded for the chemical; performs the actual calculations of molar volume of the liquid phase
of the chemical.

VolumeGas [object] Instance of thermo.volume.VolumeGas, with data and methods loaded
for the chemical; performs the actual calculations of molar volume of the gas phase of the
chemical.

HeatCapacitySolid [object] Instance of thermo.heat_capacity.HeatCapacitySolid ,
with data and methods loaded for the chemical; performs the actual calculations of molar
heat capacity of the solid phase of the chemical.

HeatCapacityLiquid [object] Instance of thermo.heat_capacity.HeatCapacityLiquid ,
with data and methods loaded for the chemical; performs the actual calculations of molar
heat capacity of the liquid phase of the chemical.

HeatCapacityGas [object] Instance of thermo.heat_capacity.HeatCapacityGas, with
data and methods loaded for the chemical; performs the actual calculations of molar heat
capacity of the gas phase of the chemical.

ViscosityLiquid [object] Instance of thermo.viscosity.ViscosityLiquid , with data and
methods loaded for the chemical; performs the actual calculations of viscosity of the liquid
phase of the chemical.

ViscosityGas [object] Instance of thermo.viscosity.ViscosityGas, with data and meth-
ods loaded for the chemical; performs the actual calculations of viscosity of the gas phase of
the chemical.

ThermalConductivityLiquid [object] Instance of thermo.thermal_conductivity.
ThermalConductivityLiquid , with data and methods loaded for the chemical; performs
the actual calculations of thermal conductivity of the liquid phase of the chemical.

ThermalConductivityGas [object] Instance of thermo.thermal_conductivity.
ThermalConductivityGas, with data and methods loaded for the chemical; performs the
actual calculations of thermal conductivity of the gas phase of the chemical.

SurfaceTension [object] Instance of thermo.interface.SurfaceTension, with data and
methods loaded for the chemical; performs the actual calculations of surface tension of the
chemical.

Permittivity [object] Instance of thermo.permittivity.PermittivityLiquid , with data
and methods loaded for the chemical; performs the actual calculations of permittivity of the
chemical.

Psat_298 [float] Vapor pressure of the chemical at 298.15 K, [Pa]

phase_STP [str] Phase of the chemical at 298.15 K and 101325 Pa; one of ‘s’, ‘l’, ‘g’, or ‘l/g’.

Vml_Tb [float] Molar volume of liquid phase at the normal boiling point [m^3/mol]

Vml_Tm [float] Molar volume of liquid phase at the melting point [m^3/mol]

Vml_STP [float] Molar volume of liquid phase at 298.15 K and 101325 Pa [m^3/mol]

rhoml_STP [float] Molar density of liquid phase at 298.15 K and 101325 Pa [mol/m^3]
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Vmg_STP [float] Molar volume of gas phase at 298.15 K and 101325 Pa according to the ideal
gas law, [m^3/mol]

Vms_Tm [float] Molar volume of solid phase at the melting point [m^3/mol]

rhos_Tm [float] Mass density of solid phase at the melting point [kg/m^3]

Hvap_Tbm [float] Molar enthalpy of vaporization at the normal boiling point [J/mol]

Hvap_Tb [float] Mass enthalpy of vaporization at the normal boiling point [J/kg]

Hvapm_298 [float] Molar enthalpy of vaporization at 298.15 K [J/mol]

Hvap_298 [float] Mass enthalpy of vaporization at 298.15 K [J/kg]

alpha Thermal diffusivity of the chemical at its current temperature, pressure, and phase in
units of [m^2/s].

alphag Thermal diffusivity of the gas phase of the chemical at its current temperature and pres-
sure, in units of [m^2/s].

alphal Thermal diffusivity of the liquid phase of the chemical at its current temperature and
pressure, in units of [m^2/s].

API API gravity of the liquid phase of the chemical, [degrees].

aromatic_rings Number of aromatic rings in a chemical, computed with RDKit from a chem-
ical’s SMILES.

atom_fractions Dictionary of atom:fractional occurence of the elements in a chemical.

Bvirial Second virial coefficient of the gas phase of the chemical at its current temperature
and pressure, in units of [mol/m^3].

charge Charge of a chemical, computed with RDKit from a chemical’s SMILES.

Cp Mass heat capacity of the chemical at its current phase and temperature, in units of [J/kg/K].

Cpg Gas-phase heat capacity of the chemical at its current temperature, in units of [J/kg/K].

Cpgm Gas-phase ideal gas heat capacity of the chemical at its current temperature, in units of
[J/mol/K].

Cpl Liquid-phase heat capacity of the chemical at its current temperature, in units of [J/kg/K].

Cplm Liquid-phase heat capacity of the chemical at its current temperature, in units of [J/mol/K].

Cpm Molar heat capacity of the chemical at its current phase and temperature, in units of
[J/mol/K].

Cps Solid-phase heat capacity of the chemical at its current temperature, in units of [J/kg/K].

Cpsm Solid-phase heat capacity of the chemical at its current temperature, in units of [J/mol/K].

Cvg Gas-phase ideal-gas contant-volume heat capacity of the chemical at its current temperature,
in units of [J/kg/K].

Cvgm Gas-phase ideal-gas contant-volume heat capacity of the chemical at its current tempera-
ture, in units of [J/mol/K].

eos Equation of state object held by the chemical; used to calculate excess thermodynamic quan-
tities, and also provides a vapor pressure curve, enthalpy of vaporization curve, fugacity,
thermodynamic partial derivatives, and more; see thermo.eos for a full listing.

Hill Hill formula of a compound.

Hvap Enthalpy of vaporization of the chemical at its current temperature, in units of [J/kg].
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Hvapm Enthalpy of vaporization of the chemical at its current temperature, in units of [J/mol].

isentropic_exponent Gas-phase ideal-gas isentropic exponent of the chemical at its current
temperature, [dimensionless].

isobaric_expansion Isobaric (constant-pressure) expansion of the chemical at its current
phase and temperature, in units of [1/K].

isobaric_expansion_g Isobaric (constant-pressure) expansion of the gas phase of the chem-
ical at its current temperature and pressure, in units of [1/K].

isobaric_expansion_l Isobaric (constant-pressure) expansion of the liquid phase of the
chemical at its current temperature and pressure, in units of [1/K].

JT Joule Thomson coefficient of the chemical at its current phase and temperature, in units of
[K/Pa].

JTg Joule Thomson coefficient of the chemical in the gas phase at its current temperature and
pressure, in units of [K/Pa].

JTl Joule Thomson coefficient of the chemical in the liquid phase at its current temperature and
pressure, in units of [K/Pa].

k Thermal conductivity of the chemical at its current phase, temperature, and pressure in units
of [W/m/K].

kg Thermal conductivity of the chemical in the gas phase at its current temperature and pressure,
in units of [W/m/K].

kl Thermal conductivity of the chemical in the liquid phase at its current temperature and pres-
sure, in units of [W/m/K].

mass_fractions Dictionary of atom:mass-weighted fractional occurence of elements.

mu Viscosity of the chemical at its current phase, temperature, and pressure in units of [Pa*s].

mug Viscosity of the chemical in the gas phase at its current temperature and pressure, in units
of [Pa*s].

mul Viscosity of the chemical in the liquid phase at its current temperature and pressure, in units
of [Pa*s].

nu Kinematic viscosity of the the chemical at its current temperature, pressure, and phase in
units of [m^2/s].

nug Kinematic viscosity of the gas phase of the chemical at its current temperature and pressure,
in units of [m^2/s].

nul Kinematic viscosity of the liquid phase of the chemical at its current temperature and pres-
sure, in units of [m^2/s].

Parachor Parachor of the chemical at its current temperature and pressure, in units of
[N^0.25*m^2.75/mol].

permittivity Relative permittivity (dielectric constant) of the chemical at its current temper-
ature, [dimensionless].

Poynting Poynting correction factor [dimensionless] for use in phase equilibria methods based
on activity coefficients or other reference states.

Pr Prandtl number of the chemical at its current temperature, pressure, and phase; [dimension-
less].

Prg Prandtl number of the gas phase of the chemical at its current temperature and pressure,
[dimensionless].
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Prl Prandtl number of the liquid phase of the chemical at its current temperature and pressure,
[dimensionless].

Psat Vapor pressure of the chemical at its current temperature, in units of [Pa].

PSRK_groups Dictionary of PSRK subgroup: count groups for the PSRK subgroups, as deter-
mined by DDBST’s online service.

rdkitmol RDKit object of the chemical, without hydrogen.

rdkitmol_Hs RDKit object of the chemical, with hydrogen.

rho Mass density of the chemical at its current phase and temperature and pressure, in units of
[kg/m^3].

rhog Gas-phase mass density of the chemical at its current temperature and pressure, in units
of [kg/m^3].

rhogm Molar density of the chemical in the gas phase at the current temperature and pressure,
in units of [mol/m^3].

rhol Liquid-phase mass density of the chemical at its current temperature and pressure, in units
of [kg/m^3].

rholm Molar density of the chemical in the liquid phase at the current temperature and pressure,
in units of [mol/m^3].

rhom Molar density of the chemical at its current phase and temperature and pressure, in units
of [mol/m^3].

rhos Solid-phase mass density of the chemical at its current temperature, in units of [kg/m^3].

rhosm Molar density of the chemical in the solid phase at the current temperature and pressure,
in units of [mol/m^3].

rings Number of rings in a chemical, computed with RDKit from a chemical’s SMILES.

SG Specific gravity of the chemical, [dimensionless].

SGg Specific gravity of the gas phase of the chemical, [dimensionless].

SGl Specific gravity of the liquid phase of the chemical at the specified temperature and pressure,
[dimensionless].

SGs Specific gravity of the solid phase of the chemical at the specified temperature and pressure,
[dimensionless].

sigma Surface tension of the chemical at its current temperature, in units of [N/m].

solubility_parameter Solubility parameter of the chemical at its current temperature and
pressure, in units of [Pa^0.5].

UNIFAC_Dortmund_groups Dictionary of Dortmund UNIFAC subgroup: count groups for the
Dortmund UNIFAC subgroups, as determined by DDBST’s online service.

UNIFAC_groups Dictionary of UNIFAC subgroup: count groups for the original UNIFAC sub-
groups, as determined by DDBST’s online service.

UNIFAC_R UNIFAC R (normalized Van der Waals volume), dimensionless.

UNIFAC_Q UNIFAC Q (normalized Van der Waals area), dimensionless.

Van_der_Waals_area Unnormalized Van der Waals area, in units of [m^2/mol].

Van_der_Waals_volume Unnormalized Van der Waals volume, in units of [m^3/mol].
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Vm Molar volume of the chemical at its current phase and temperature and pressure, in units of
[m^3/mol].

Vmg Gas-phase molar volume of the chemical at its current temperature and pressure, in units of
[m^3/mol].

Vml Liquid-phase molar volume of the chemical at its current temperature and pressure, in units
of [m^3/mol].

Vms Solid-phase molar volume of the chemical at its current temperature, in units of [m^3/mol].

Z Compressibility factor of the chemical at its current phase and temperature and pressure, [di-
mensionless].

Zg Compressibility factor of the chemical in the gas phase at the current temperature and pres-
sure, [dimensionless].

Zl Compressibility factor of the chemical in the liquid phase at the current temperature and
pressure, [dimensionless].

Zs Compressibility factor of the chemical in the solid phase at the current temperature and pres-
sure, [dimensionless].

Methods

Reynolds([V, D])

draw_2d([width, height, Hs]) Interface for drawing a 2D image of the molecule.
draw_3d([width, height, style, Hs, atom_labels]) Interface for drawing an interactive 3D view of the

molecule.

Bond
Capillary
Grashof
Jakob
Peclet_heat
Tsat
Weber
calc_H
calc_H_excess
calc_S
calc_S_excess
calculate
calculate_PH
calculate_PS
calculate_TH
calculate_TS
set_TP_sources
set_constant_sources
set_constants
set_eos
set_ref
set_thermo
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property A
Helmholtz energy of the chemical at its current temperature and pressure, in units of [J/kg].

This property requires that thermo.chemical.set_thermo ran successfully to be accurate. It also de-
pends on the molar volume of the chemical at its current conditions.

property API
API gravity of the liquid phase of the chemical, [degrees]. The reference condition is water at 15.6 °C (60
°F) and 1 atm (rho=999.016 kg/m^3, standardized).

Examples

>>> Chemical('water').API
9.999752435378895

property Am
Helmholtz energy of the chemical at its current temperature and pressure, in units of [J/mol].

This property requires that thermo.chemical.set_thermo ran successfully to be accurate. It also de-
pends on the molar volume of the chemical at its current conditions.

Bond(L=None)

property Bvirial
Second virial coefficient of the gas phase of the chemical at its current temperature and pressure, in units
of [mol/m^3].

This property uses the object-oriented interface thermo.volume.VolumeGas, converting its result with
thermo.utils.B_from_Z.

Examples

>>> Chemical('water').Bvirial
-0.0009596286322838357

Capillary(V=None)

property Cp
Mass heat capacity of the chemical at its current phase and temperature, in units of [J/kg/K].

Utilizes the object oriented interfaces thermo.heat_capacity.HeatCapacitySolid , thermo.
heat_capacity.HeatCapacityLiquid , and thermo.heat_capacity.HeatCapacityGas to perform
the actual calculation of each property. Note that those interfaces provide output in molar units (J/mol/K).
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Examples

>>> w = Chemical('water')
>>> w.Cp, w.phase
(4180.597021827336, 'l')
>>> Chemical('palladium').Cp
234.26767209171211

property Cpg
Gas-phase heat capacity of the chemical at its current temperature, in units of [J/kg/K]. For calculation
of this property at other temperatures, or specifying manually the method used to calculate it, and more -
see the object oriented interface thermo.heat_capacity.HeatCapacityGas; each Chemical instance
creates one to actually perform the calculations. Note that that interface provides output in molar units.

Examples

>>> w = Chemical('water', T=520)
>>> w.Cpg
1967.6698314620658

property Cpgm
Gas-phase ideal gas heat capacity of the chemical at its current temperature, in units of [J/mol/K]. For
calculation of this property at other temperatures, or specifying manually the method used to calculate it,
and more - see the object oriented interface thermo.heat_capacity.HeatCapacityGas; each Chemical
instance creates one to actually perform the calculations.

Examples

>>> Chemical('water').Cpgm
33.583577868850675
>>> Chemical('water').HeatCapacityGas.T_dependent_property(320)
33.67865044005934
>>> Chemical('water').HeatCapacityGas.T_dependent_property_integral(300, 320)
672.6480417835064

property Cpl
Liquid-phase heat capacity of the chemical at its current temperature, in units of [J/kg/K]. For calculation of
this property at other temperatures, or specifying manually the method used to calculate it, and more - see
the object oriented interface thermo.heat_capacity.HeatCapacityLiquid ; each Chemical instance
creates one to actually perform the calculations. Note that that interface provides output in molar units.

Examples

>>> Chemical('water', T=320).Cpl
4177.518996988284

Ideal entropy change of water from 280 K to 340 K, output converted back to mass-based units of J/kg/K.
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>>> dSm = Chemical('water').HeatCapacityLiquid.T_dependent_property_integral_
→˓over_T(280, 340)
>>> property_molar_to_mass(dSm, Chemical('water').MW)
812.1024585274956

property Cplm
Liquid-phase heat capacity of the chemical at its current temperature, in units of [J/mol/K]. For calculation
of this property at other temperatures, or specifying manually the method used to calculate it, and more - see
the object oriented interface thermo.heat_capacity.HeatCapacityLiquid ; each Chemical instance
creates one to actually perform the calculations.

Notes

Some methods give heat capacity along the saturation line, some at 1 atm but only up to the normal boiling
point, and some give heat capacity at 1 atm up to the normal boiling point and then along the saturation
line. Real-liquid heat capacity is pressure dependent, but this interface is not.

Examples

>>> Chemical('water').Cplm
75.31462591538556
>>> Chemical('water').HeatCapacityLiquid.T_dependent_property(320)
75.2591744360631
>>> Chemical('water').HeatCapacityLiquid.T_dependent_property_integral(300, 320)
1505.0619005000553

property Cpm
Molar heat capacity of the chemical at its current phase and temperature, in units of [J/mol/K].

Utilizes the object oriented interfaces thermo.heat_capacity.HeatCapacitySolid , thermo.
heat_capacity.HeatCapacityLiquid , and thermo.heat_capacity.HeatCapacityGas to perform
the actual calculation of each property.

Examples

>>> Chemical('cubane').Cpm
137.05489206785944
>>> Chemical('ethylbenzene', T=550, P=3E6).Cpm
294.18449553310046

property Cps
Solid-phase heat capacity of the chemical at its current temperature, in units of [J/kg/K]. For calculation of
this property at other temperatures, or specifying manually the method used to calculate it, and more - see
the object oriented interface thermo.heat_capacity.HeatCapacitySolid ; each Chemical instance
creates one to actually perform the calculations. Note that that interface provides output in molar units.
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Examples

>>> Chemical('palladium', T=400).Cps
241.63563239992484
>>> Pd = Chemical('palladium', T=400)
>>> Cpsms = [Pd.HeatCapacitySolid.T_dependent_property(T) for T in np.
→˓linspace(300,500, 5)]
>>> [property_molar_to_mass(Cps, Pd.MW) for Cps in Cpsms]
[234.40150347679008, 238.01856793835751, 241.63563239992484, 245.25269686149224,
→˓ 248.86976132305958]

property Cpsm
Solid-phase heat capacity of the chemical at its current temperature, in units of [J/mol/K]. For calculation of
this property at other temperatures, or specifying manually the method used to calculate it, and more - see
the object oriented interface thermo.heat_capacity.HeatCapacitySolid ; each Chemical instance
creates one to actually perform the calculations.

Examples

>>> Chemical('palladium').Cpsm
24.930765664000003
>>> Chemical('palladium').HeatCapacitySolid.T_dependent_property(320)
25.098979200000002
>>> Chemical('palladium').HeatCapacitySolid.all_methods
set(["PERRY151", 'CRCSTD', 'LASTOVKA_S'])

property Cvg
Gas-phase ideal-gas contant-volume heat capacity of the chemical at its current temperature, in units of
[J/kg/K]. Subtracts R from the ideal-gas heat capacity; does not include pressure-compensation from an
equation of state.

Examples

>>> w = Chemical('water', T=520)
>>> w.Cvg
1506.1471795798861

property Cvgm
Gas-phase ideal-gas contant-volume heat capacity of the chemical at its current temperature, in units of
[J/mol/K]. Subtracts R from the ideal-gas heat capacity; does not include pressure-compensation from an
equation of state.
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Examples

>>> w = Chemical('water', T=520)
>>> w.Cvgm
27.13366316134193

Grashof(Tw=None, L=None)

property Hill
Hill formula of a compound. For a description of the Hill system, see chemicals.elements.
atoms_to_Hill.

Examples

>>> Chemical('furfuryl alcohol').Hill
'C5H6O2'

property Hvap
Enthalpy of vaporization of the chemical at its current temperature, in units of [J/kg].

This property uses the object-oriented interface thermo.phase_change.EnthalpyVaporization, but
converts its results from molar to mass units.

Examples

>>> Chemical('water', T=320).Hvap
2389540.219347256

property Hvapm
Enthalpy of vaporization of the chemical at its current temperature, in units of [J/mol]. For calculation of
this property at other temperatures, or specifying manually the method used to calculate it, and more - see
the object oriented interface thermo.phase_change.EnthalpyVaporization; each Chemical instance
creates one to actually perform the calculations.

Examples

>>> Chemical('water', T=320).Hvapm
43048.23612280223
>>> Chemical('water').EnthalpyVaporization.T_dependent_property(320)
43048.23612280223
>>> Chemical('water').EnthalpyVaporization.all_methods
set(['VDI_PPDS', 'MORGAN_KOBAYASHI', 'VETERE', 'VELASCO', 'LIU', 'COOLPROP',
→˓'CRC_HVAP_298', 'CLAPEYRON', 'SIVARAMAN_MAGEE_KOBAYASHI', 'ALIBAKHSHI',
→˓'DIPPR_PERRY_8E', 'RIEDEL', 'CHEN', 'PITZER', 'CRC_HVAP_TB'])

property JT
Joule Thomson coefficient of the chemical at its current phase and temperature, in units of [K/Pa].
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Examples

>>> Chemical('water').JT
-2.2150394958666407e-07

property JTg
Joule Thomson coefficient of the chemical in the gas phase at its current temperature and pressure, in units
of [K/Pa].
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Utilizes the temperature-derivative method of thermo.volume.VolumeGas and the temperature-
dependent heat capacity method thermo.heat_capacity.HeatCapacityGas to obtain the properties
required for the actual calculation.

Examples

>>> Chemical('dodecane', T=400, P=1000).JTg
5.4089897835384913e-05

property JTl
Joule Thomson coefficient of the chemical in the liquid phase at its current temperature and pressure, in
units of [K/Pa].
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Utilizes the temperature-derivative method of thermo.volume.VolumeLiquid and the temperature-
dependent heat capacity method thermo.heat_capacity.HeatCapacityLiquid to obtain the prop-
erties required for the actual calculation.

Examples

>>> Chemical('dodecane', T=400).JTl
-3.0827160465192742e-07

Jakob(Tw=None)

property PSRK_groups
Dictionary of PSRK subgroup: count groups for the PSRK subgroups, as determined by DDBST’s online
service.

Examples

>>> Chemical('Cumene').PSRK_groups
{1: 2, 9: 5, 13: 1}

property Parachor
Parachor of the chemical at its current temperature and pressure, in units of [N^0.25*m^2.75/mol].

𝑃 =
𝜎0.25𝑀𝑊

𝜌𝐿 − 𝜌𝑉
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Calculated based on surface tension, density of the liquid phase, and molecular weight. For uses of this
property, see thermo.utils.Parachor.

The gas density is calculated using the ideal-gas law.

Examples

>>> Chemical('octane').Parachor
6.2e-05

Peclet_heat(V=None, D=None)

property Poynting
Poynting correction factor [dimensionless] for use in phase equilibria methods based on activity coeffi-
cients or other reference states. Performs the shortcut calculation assuming molar volume is independent
of pressure.

Poy = exp

[︂
𝑉𝑙(𝑃 − 𝑃 𝑠𝑎𝑡)

𝑅𝑇

]︂
The full calculation normally returns values very close to the approximate ones. This property is defined
in terms of pure components only.

Notes

The full equation shown below can be used as follows:

Poy = exp

⎡⎣∫︀ 𝑃

𝑃 𝑠𝑎𝑡
𝑖

𝑉 𝑙
𝑖 𝑑𝑃

𝑅𝑇

⎤⎦
>>> from scipy.integrate import quad
>>> c = Chemical('pentane', T=300, P=1E7)
>>> exp(quad(lambda P : c.VolumeLiquid(c.T, P), c.Psat, c.P)[0]/R/c.T)
1.5821826990975127

Examples

>>> Chemical('pentane', T=300, P=1E7).Poynting
1.5743051250679803

property Pr
Prandtl number of the chemical at its current temperature, pressure, and phase; [dimensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘
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Examples

>>> Chemical('acetone').Pr
4.183039103542709

property Prg
Prandtl number of the gas phase of the chemical at its current temperature and pressure, [dimensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

Utilizes the temperature and pressure dependent object oriented interfaces thermo.viscosity.
ViscosityGas, thermo.thermal_conductivity.ThermalConductivityGas, and thermo.
heat_capacity.HeatCapacityGas to calculate the actual properties.

Examples

>>> Chemical('NH3').Prg
0.847263731933008

property Prl
Prandtl number of the liquid phase of the chemical at its current temperature and pressure, [dimensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

Utilizes the temperature and pressure dependent object oriented interfaces thermo.viscosity.
ViscosityLiquid , thermo.thermal_conductivity.ThermalConductivityLiquid , and thermo.
heat_capacity.HeatCapacityLiquid to calculate the actual properties.

Examples

>>> Chemical('nitrogen', T=70).Prl
2.7828214501488886

property Psat
Vapor pressure of the chemical at its current temperature, in units of [Pa]. For calculation of this property
at other temperatures, or specifying manually the method used to calculate it, and more - see the object
oriented interface thermo.vapor_pressure.VaporPressure; each Chemical instance creates one to
actually perform the calculations.

Examples

>>> Chemical('water', T=320).Psat
10533.614271198725
>>> Chemical('water').VaporPressure.T_dependent_property(320)
10533.614271198725
>>> Chemical('water').VaporPressure.all_methods
set(['VDI_PPDS', 'BOILING_CRITICAL', 'WAGNER_MCGARRY', 'AMBROSE_WALTON',
→˓'COOLPROP', 'LEE_KESLER_PSAT', 'EOS', 'ANTOINE_POLING', 'SANJARI', 'DIPPR_
→˓PERRY_8E', 'Edalat'])

property R_specific
Specific gas constant, in units of [J/kg/K].
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Examples

>>> Chemical('water').R_specific
461.52265188218

Reynolds(V=None, D=None)

property SG
Specific gravity of the chemical, [dimensionless].

For gas-phase conditions, this is calculated at 15.6 °C (60 °F) and 1 atm for the chemical and the reference
fluid, air. For liquid and solid phase conditions, this is calculated based on a reference fluid of water at 4°C
at 1 atm, but the with the liquid or solid chemical’s density at the currently specified conditions.

Examples

>>> Chemical('MTBE').SG
0.7428160596603596

property SGg
Specific gravity of the gas phase of the chemical, [dimensionless]. The reference condition is air at 15.6
°C (60 °F) and 1 atm (rho=1.223 kg/m^3). The definition for gases uses the compressibility factor of the
reference gas and the chemical both at the reference conditions, not the conditions of the chemical.

Examples

>>> Chemical('argon').SGg
1.3795835970877504

property SGl
Specific gravity of the liquid phase of the chemical at the specified temperature and pressure, [dimension-
less]. The reference condition is water at 4 °C and 1 atm (rho=999.017 kg/m^3). For liquids, SG is defined
that the reference chemical’s T and P are fixed, but the chemical itself varies with the specified T and P.

Examples

>>> Chemical('water', T=365).SGl
0.9650065522428539

property SGs
Specific gravity of the solid phase of the chemical at the specified temperature and pressure, [dimension-
less]. The reference condition is water at 4 °C and 1 atm (rho=999.017 kg/m^3). The SG varries with
temperature and pressure but only very slightly.
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Examples

>>> Chemical('iron').SGs
7.87774317235069

Tsat(P)

property U
Internal energy of the chemical at its current temperature and pressure, in units of [J/kg].

This property requires that thermo.chemical.set_thermo ran successfully to be accurate. It also de-
pends on the molar volume of the chemical at its current conditions.

property UNIFAC_Dortmund_groups
Dictionary of Dortmund UNIFAC subgroup: count groups for the Dortmund UNIFAC subgroups, as de-
termined by DDBST’s online service.

Examples

>>> Chemical('Cumene').UNIFAC_Dortmund_groups
{1: 2, 9: 5, 13: 1}

property UNIFAC_Q
UNIFAC Q (normalized Van der Waals area), dimensionless. Used in the UNIFAC model.

Examples

>>> Chemical('decane').UNIFAC_Q
6.016

property UNIFAC_R
UNIFAC R (normalized Van der Waals volume), dimensionless. Used in the UNIFAC model.

Examples

>>> Chemical('benzene').UNIFAC_R
3.1878

property UNIFAC_groups
Dictionary of UNIFAC subgroup: count groups for the original UNIFAC subgroups, as determined by
DDBST’s online service.
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Examples

>>> Chemical('Cumene').UNIFAC_groups
{1: 2, 9: 5, 13: 1}

property Um
Internal energy of the chemical at its current temperature and pressure, in units of [J/mol].

This property requires that thermo.chemical.set_thermo ran successfully to be accurate. It also de-
pends on the molar volume of the chemical at its current conditions.

property Van_der_Waals_area
Unnormalized Van der Waals area, in units of [m^2/mol].

Examples

>>> Chemical('hexane').Van_der_Waals_area
964000.0

property Van_der_Waals_volume
Unnormalized Van der Waals volume, in units of [m^3/mol].

Examples

>>> Chemical('hexane').Van_der_Waals_volume
6.8261966e-05

property Vm
Molar volume of the chemical at its current phase and temperature and pressure, in units of [m^3/mol].

Utilizes the object oriented interfaces thermo.volume.VolumeSolid , thermo.volume.
VolumeLiquid , and thermo.volume.VolumeGas to perform the actual calculation of each property.

Examples

>>> Chemical('ethylbenzene', T=550, P=3E6).Vm
0.00017758024401627633

property Vmg
Gas-phase molar volume of the chemical at its current temperature and pressure, in units of [m^3/mol].
For calculation of this property at other temperatures or pressures, or specifying manually the method used
to calculate it, and more - see the object oriented interface thermo.volume.VolumeGas; each Chemical
instance creates one to actually perform the calculations.
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Examples

Estimate the molar volume of the core of the sun, at 15 million K and 26.5 PetaPascals, assuming pure
helium (actually 68% helium):

>>> Chemical('helium', T=15E6, P=26.5E15).Vmg
4.805464238181197e-07

property Vmg_ideal
Gas-phase molar volume of the chemical at its current temperature and pressure calculated with the ideal-
gas law, in units of [m^3/mol].

Examples

>>> Chemical('helium', T=300.0, P=1e5).Vmg_ideal
0.0249433878544

property Vml
Liquid-phase molar volume of the chemical at its current temperature and pressure, in units of [m^3/mol].
For calculation of this property at other temperatures or pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.volume.VolumeLiquid ; each
Chemical instance creates one to actually perform the calculations.

Examples

>>> Chemical('cyclobutane', T=225).Vml
7.42395423425395e-05

property Vms
Solid-phase molar volume of the chemical at its current temperature, in units of [m^3/mol]. For calculation
of this property at other temperatures, or specifying manually the method used to calculate it, and more -
see the object oriented interface thermo.volume.VolumeSolid ; each Chemical instance creates one to
actually perform the calculations.

Examples

>>> Chemical('iron').Vms
7.09593392630242e-06

Weber(V=None, D=None)

property Z
Compressibility factor of the chemical at its current phase and temperature and pressure, [dimensionless].
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Examples

>>> Chemical('MTBE', T=900, P=1E-2).Z
0.9999999999079768

property Zg
Compressibility factor of the chemical in the gas phase at the current temperature and pressure, [dimen-
sionless].

Utilizes the object oriented interface and thermo.volume.VolumeGas to perform the actual calculation
of molar volume.

Examples

>>> Chemical('sulfur hexafluoride', T=700, P=1E9).Zg
11.140084184207813

property Zl
Compressibility factor of the chemical in the liquid phase at the current temperature and pressure, [dimen-
sionless].

Utilizes the object oriented interface and thermo.volume.VolumeLiquid to perform the actual calcula-
tion of molar volume.

Examples

>>> Chemical('water').Zl
0.0007385375470263454

property Zs
Compressibility factor of the chemical in the solid phase at the current temperature and pressure, [dimen-
sionless].

Utilizes the object oriented interface and thermo.volume.VolumeSolid to perform the actual calculation
of molar volume.

Examples

>>> Chemical('palladium').Z
0.00036248477437931853

property absolute_permittivity
Absolute permittivity of the chemical at its current temperature, in units of [farad/meter]. Those units are
equivalent to ampere^2*second^4/kg/m^3.
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Examples

>>> Chemical('water', T=293.15).absolute_permittivity
7.096684821859018e-10

property alpha
Thermal diffusivity of the chemical at its current temperature, pressure, and phase in units of [m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝

Examples

>>> Chemical('furfural').alpha
8.696537158635412e-08

property alphag
Thermal diffusivity of the gas phase of the chemical at its current temperature and pressure, in units of
[m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝

Utilizes the temperature and pressure dependent object oriented interfaces thermo.volume.VolumeGas,
thermo.thermal_conductivity.ThermalConductivityGas, and thermo.heat_capacity.
HeatCapacityGas to calculate the actual properties.

Examples

>>> Chemical('ammonia').alphag
1.6931865425158556e-05

property alphal
Thermal diffusivity of the liquid phase of the chemical at its current temperature and pressure, in units of
[m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝

Utilizes the temperature and pressure dependent object oriented interfaces thermo.volume.
VolumeLiquid , thermo.thermal_conductivity.ThermalConductivityLiquid , and thermo.
heat_capacity.HeatCapacityLiquid to calculate the actual properties.

Examples

>>> Chemical('nitrogen', T=70).alphal
9.444949636299626e-08

property aromatic_rings
Number of aromatic rings in a chemical, computed with RDKit from a chemical’s SMILES. If RDKit is
not available, holds None.
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Examples

>>> Chemical('Paclitaxel').aromatic_rings
3

property atom_fractions
Dictionary of atom:fractional occurence of the elements in a chemical. Useful when performing element
balances. For mass-fraction occurences, see mass_fractions.

Examples

>>> Chemical('Ammonium aluminium sulfate').atom_fractions
{'H': 0.25, 'S': 0.125, 'Al': 0.0625, 'O': 0.5, 'N': 0.0625}

calc_H(T, P)

calc_H_excess(T, P)

calc_S(T, P)

calc_S_excess(T, P)

calculate(T=None, P=None)

calculate_PH(P, H)

calculate_PS(P, S)

calculate_TH(T, H)

calculate_TS(T, S)

property charge
Charge of a chemical, computed with RDKit from a chemical’s SMILES. If RDKit is not available, holds
None.

Examples

>>> Chemical('sodium ion').charge
1

draw_2d(width=300, height=300, Hs=False)
Interface for drawing a 2D image of the molecule. Requires an HTML5 browser, and the libraries RDKit
and IPython. An exception is raised if either of these libraries is absent.

Parameters
width [int] Number of pixels wide for the view
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height [int] Number of pixels tall for the view

Hs [bool] Whether or not to show hydrogen

Examples

>>> Chemical('decane').draw_2d()
<PIL.Image.Image image mode=RGBA size=300x300 at 0x...>

draw_3d(width=300, height=500, style='stick', Hs=True, atom_labels=True)
Interface for drawing an interactive 3D view of the molecule. Requires an HTML5 browser, and the libraries
RDKit, pymol3D, and IPython. An exception is raised if all three of these libraries are not installed.

Parameters
width [int] Number of pixels wide for the view, [pixels]

height [int] Number of pixels tall for the view, [pixels]

style [str] One of ‘stick’, ‘line’, ‘cross’, or ‘sphere’, [-]

Hs [bool] Whether or not to show hydrogen, [-]

atom_labels [bool] Whether or not to label the atoms, [-]

Examples

>>> Chemical('cubane').draw_3d()
<IPython.core.display.HTML object>

property economic_status
Dictionary of economic status indicators for the chemical.

Examples

>>> Chemical('benzene').economic_status
["US public: {'Manufactured': 6165232.1, 'Imported': 463146.474, 'Exported':␣
→˓271908.252}",
u'1,000,000 - 10,000,000 tonnes per annum',
u'Intermediate Use Only',
'OECD HPV Chemicals']

property eos
Equation of state object held by the chemical; used to calculate excess thermodynamic quantities, and also
provides a vapor pressure curve, enthalpy of vaporization curve, fugacity, thermodynamic partial deriva-
tives, and more; see thermo.eos for a full listing.
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Examples

>>> Chemical('methane').eos.V_g
0.02441019502181826

property isentropic_exponent
Gas-phase ideal-gas isentropic exponent of the chemical at its current temperature, [dimensionless]. Does
not include pressure-compensation from an equation of state.

Examples

>>> Chemical('hydrogen').isentropic_exponent
1.405237786321222

property isobaric_expansion
Isobaric (constant-pressure) expansion of the chemical at its current phase and temperature, in units of
[1/K].

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Examples

Radical change in value just above and below the critical temperature of water:

>>> Chemical('water', T=647.1, P=22048320.0).isobaric_expansion
0.34074205839222449

>>> Chemical('water', T=647.2, P=22048320.0).isobaric_expansion
0.18143324022215077

property isobaric_expansion_g
Isobaric (constant-pressure) expansion of the gas phase of the chemical at its current temperature and pres-
sure, in units of [1/K].

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Utilizes the temperature-derivative method of thermo.VolumeGas to perform the actual calculation. The
derivatives are all numerical.

Examples

>>> Chemical('Hexachlorobenzene', T=900).isobaric_expansion_g
0.001151869741981048

property isobaric_expansion_l
Isobaric (constant-pressure) expansion of the liquid phase of the chemical at its current temperature and
pressure, in units of [1/K].

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃
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Utilizes the temperature-derivative method of thermo.volume.VolumeLiquid to perform the actual cal-
culation. The derivatives are all numerical.

Examples

>>> Chemical('dodecane', T=400).isobaric_expansion_l
0.0011617555762469477

property k
Thermal conductivity of the chemical at its current phase, temperature, and pressure in units of [W/m/K].

Utilizes the object oriented interfaces thermo.thermal_conductivity.
ThermalConductivityLiquid and thermo.thermal_conductivity.ThermalConductivityGas
to perform the actual calculation of each property.

Examples

>>> Chemical('ethanol', T=300).kl
0.16313594741877802
>>> Chemical('ethanol', T=400).kg
0.026019924109310026

property kg
Thermal conductivity of the chemical in the gas phase at its current temperature and pressure, in units of
[W/m/K].

For calculation of this property at other temperatures and pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.thermal_conductivity.
ThermalConductivityGas; each Chemical instance creates one to actually perform the calculations.

Examples

>>> Chemical('water', T=320).kg
0.021273128263091207

property kl
Thermal conductivity of the chemical in the liquid phase at its current temperature and pressure, in units
of [W/m/K].

For calculation of this property at other temperatures and pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.thermal_conductivity.
ThermalConductivityLiquid ; each Chemical instance creates one to actually perform the calculations.
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Examples

>>> Chemical('water', T=320).kl
0.6369957248212118

property legal_status
Dictionary of legal status indicators for the chemical.

Examples

>>> Chemical('benzene').legal_status
{'DSL': 'LISTED', 'EINECS': 'LISTED', 'NLP': 'UNLISTED', 'SPIN': 'LISTED', 'TSCA
→˓': 'LISTED'}

property mass_fractions
Dictionary of atom:mass-weighted fractional occurence of elements. Useful when performing mass bal-
ances. For atom-fraction occurences, see atom_fractions.

Examples

>>> Chemical('water').mass_fractions
{'H': 0.11189834407236524, 'O': 0.8881016559276347}

property mu
Viscosity of the chemical at its current phase, temperature, and pressure in units of [Pa*s].

Utilizes the object oriented interfaces thermo.viscosity.ViscosityLiquid and thermo.
viscosity.ViscosityGas to perform the actual calculation of each property.

Examples

>>> Chemical('ethanol', T=300).mu
0.001044526538460911
>>> Chemical('ethanol', T=400).mu
1.1853097849748217e-05

property mug
Viscosity of the chemical in the gas phase at its current temperature and pressure, in units of [Pa*s].

For calculation of this property at other temperatures and pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.viscosity.ViscosityGas;
each Chemical instance creates one to actually perform the calculations.

7.3. Legacy Chemicals (thermo.chemical) 105



thermo Documentation, Release 0.2.20

Examples

>>> Chemical('water', T=320, P=100).mug
1.0431450856297212e-05

property mul
Viscosity of the chemical in the liquid phase at its current temperature and pressure, in units of [Pa*s].

For calculation of this property at other temperatures and pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.viscosity.ViscosityLiquid ;
each Chemical instance creates one to actually perform the calculations.

Examples

>>> Chemical('water', T=320).mul
0.0005767262693751547

property nu
Kinematic viscosity of the the chemical at its current temperature, pressure, and phase in units of [m^2/s].

𝜈 =
𝜇

𝜌

Examples

>>> Chemical('argon').nu
1.3846930410865003e-05

property nug
Kinematic viscosity of the gas phase of the chemical at its current temperature and pressure, in units of
[m^2/s].

𝜈 =
𝜇

𝜌

Utilizes the temperature and pressure dependent object oriented interfaces thermo.volume.VolumeGas,
thermo.viscosity.ViscosityGas to calculate the actual properties.

Examples

>>> Chemical('methane', T=115).nug
2.5056924327995865e-06

property nul
Kinematic viscosity of the liquid phase of the chemical at its current temperature and pressure, in units of
[m^2/s].

𝜈 =
𝜇

𝜌

Utilizes the temperature and pressure dependent object oriented interfaces thermo.volume.
VolumeLiquid , thermo.viscosity.ViscosityLiquid to calculate the actual properties.
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Examples

>>> Chemical('methane', T=110).nul
2.858088468937331e-07

property permittivity
Relative permittivity (dielectric constant) of the chemical at its current temperature, [dimensionless].

For calculation of this property at other temperatures, or specifying manually the method used to calculate
it, and more - see the object oriented interface thermo.permittivity.PermittivityLiquid ; each
Chemical instance creates one to actually perform the calculations.

Examples

>>> Chemical('toluene', T=250).permittivity
2.49775625

property rdkitmol
RDKit object of the chemical, without hydrogen. If RDKit is not available, holds None.

For examples of what can be done with RDKit, see their website.

property rdkitmol_Hs
RDKit object of the chemical, with hydrogen. If RDKit is not available, holds None.

For examples of what can be done with RDKit, see their website.

property rho
Mass density of the chemical at its current phase and temperature and pressure, in units of [kg/m^3].

Utilizes the object oriented interfaces thermo.volume.VolumeSolid , thermo.volume.
VolumeLiquid , and thermo.volume.VolumeGas to perform the actual calculation of each property.
Note that those interfaces provide output in units of m^3/mol.

Examples

>>> Chemical('decane', T=550, P=2E6).rho
498.67008448640604

property rhog
Gas-phase mass density of the chemical at its current temperature and pressure, in units of [kg/m^3]. For
calculation of this property at other temperatures or pressures, or specifying manually the method used
to calculate it, and more - see the object oriented interface thermo.volume.VolumeGas; each Chemical
instance creates one to actually perform the calculations. Note that that interface provides output in molar
units.
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Examples

Estimate the density of the core of the sun, at 15 million K and 26.5 PetaPascals, assuming pure helium
(actually 68% helium):

>>> Chemical('helium', T=15E6, P=26.5E15).rhog
8329.27226509739

Compared to a result on Wikipedia of 150000 kg/m^3, the fundamental equation of state performs poorly.

>>> He = Chemical('helium', T=15E6, P=26.5E15)
>>> He.VolumeGas.method_P = 'IDEAL'
>>> He.rhog
850477.8

The ideal-gas law performs somewhat better, but vastly overshoots the density prediction.

property rhogm
Molar density of the chemical in the gas phase at the current temperature and pressure, in units of [mol/m^3].

Utilizes the object oriented interface and thermo.volume.VolumeGas to perform the actual calculation
of molar volume.

Examples

>>> Chemical('tungsten hexafluoride').rhogm
42.01349946063116

property rhol
Liquid-phase mass density of the chemical at its current temperature and pressure, in units of [kg/m^3]. For
calculation of this property at other temperatures and pressures, or specifying manually the method used to
calculate it, and more - see the object oriented interface thermo.volume.VolumeLiquid ; each Chemical
instance creates one to actually perform the calculations. Note that that interface provides output in molar
units.

Examples

>>> Chemical('o-xylene', T=297).rhol
876.9946785618097

property rholm
Molar density of the chemical in the liquid phase at the current temperature and pressure, in units of
[mol/m^3].

Utilizes the object oriented interface and thermo.volume.VolumeLiquid to perform the actual calcula-
tion of molar volume.
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Examples

>>> Chemical('nitrogen', T=70).rholm
29937.20179186975

property rhom
Molar density of the chemical at its current phase and temperature and pressure, in units of [mol/m^3].

Utilizes the object oriented interfaces thermo.volume.VolumeSolid , thermo.volume.
VolumeLiquid , and thermo.volume.VolumeGas to perform the actual calculation of each property.
Note that those interfaces provide output in units of m^3/mol.

Examples

>>> Chemical('1-hexanol').rhom
7983.414573003429

property rhos
Solid-phase mass density of the chemical at its current temperature, in units of [kg/m^3]. For calculation
of this property at other temperatures, or specifying manually the method used to calculate it, and more -
see the object oriented interface thermo.volume.VolumeSolid ; each Chemical instance creates one to
actually perform the calculations. Note that that interface provides output in molar units.

Examples

>>> Chemical('iron').rhos
7869.999999999994

property rhosm
Molar density of the chemical in the solid phase at the current temperature and pressure, in units of
[mol/m^3].

Utilizes the object oriented interface and thermo.volume.VolumeSolid to perform the actual calculation
of molar volume.

Examples

>>> Chemical('palladium').rhosm
112760.75925577903

property rings
Number of rings in a chemical, computed with RDKit from a chemical’s SMILES. If RDKit is not available,
holds None.
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Examples

>>> Chemical('Paclitaxel').rings
7

set_TP_sources()

set_constant_sources()

set_constants()

set_eos(T, P, eos=<class 'thermo.eos.PR'>)

set_ref(T_ref=298.15, P_ref=101325, phase_ref='calc', H_ref=0, S_ref=0)

set_thermo()

property sigma
Surface tension of the chemical at its current temperature, in units of [N/m].

For calculation of this property at other temperatures, or specifying manually the method used to calculate
it, and more - see the object oriented interface thermo.interface.SurfaceTension; each Chemical
instance creates one to actually perform the calculations.

Examples

>>> Chemical('water', T=320).sigma
0.06855002575793023
>>> Chemical('water', T=320).SurfaceTension.solve_property(0.05)
416.8307110842183

property solubility_parameter
Solubility parameter of the chemical at its current temperature and pressure, in units of [Pa^0.5].

𝛿 =

√︂
∆𝐻𝑣𝑎𝑝 −𝑅𝑇

𝑉𝑚

Calculated based on enthalpy of vaporization and molar volume. Normally calculated at STP. For uses of
this property, see thermo.solubility.solubility_parameter.

Examples

>>> Chemical('NH3').solubility_parameter
24766.329043856073
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7.4 Chemical Constants and Correlations (thermo.chemical_package)

This module contains classes for storing data and objects which are necessary for doing thermodynamic calculations.
The intention for these classes is to serve as an in-memory storage layer between the disk and methods which do full
thermodynamic calculations.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Chemical Constants Class

• Chemical Correlations Class

• Sample Constants and Correlations
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7.4.1 Chemical Constants Class

class thermo.chemical_package.ChemicalConstantsPackage(CASs=None, names=None, MWs=None,
Tms=None, Tbs=None, Tcs=None,
Pcs=None, Vcs=None, omegas=None,
Zcs=None, rhocs=None, rhocs_mass=None,
Hfus_Tms=None, Hfus_Tms_mass=None,
Hvap_Tbs=None, Hvap_Tbs_mass=None,
Vml_STPs=None, rhol_STPs=None,
rhol_STPs_mass=None, Vml_60Fs=None,
rhol_60Fs=None, rhol_60Fs_mass=None,
Vmg_STPs=None, rhog_STPs=None,
rhog_STPs_mass=None, Hfgs=None,
Hfgs_mass=None, Gfgs=None,
Gfgs_mass=None, Sfgs=None,
Sfgs_mass=None, S0gs=None,
S0gs_mass=None, Hf_STPs=None,
Hf_STPs_mass=None, Tts=None, Pts=None,
Hsub_Tts=None, Hsub_Tts_mass=None,
Hcs=None, Hcs_mass=None,
Hcs_lower=None, Hcs_lower_mass=None,
Tflashs=None, Tautoignitions=None,
LFLs=None, UFLs=None, TWAs=None,
STELs=None, Ceilings=None, Skins=None,
Carcinogens=None, legal_statuses=None,
economic_statuses=None, GWPs=None,
ODPs=None, logPs=None,
Psat_298s=None, Hvap_298s=None,
Hvap_298s_mass=None, Vml_Tms=None,
rhos_Tms=None, Vms_Tms=None,
rhos_Tms_mass=None, sigma_STPs=None,
sigma_Tbs=None, sigma_Tms=None,
RIs=None, RI_Ts=None,
conductivities=None, conductivity_Ts=None,
charges=None, dipoles=None,
Stockmayers=None,
molecular_diameters=None,
Van_der_Waals_volumes=None,
Van_der_Waals_areas=None,
Parachors=None, StielPolars=None,
atomss=None, atom_fractions=None,
similarity_variables=None,
phase_STPs=None,
solubility_parameters=None,
PubChems=None, formulas=None,
smiless=None, InChIs=None,
InChI_Keys=None, UNIFAC_groups=None,
UNIFAC_Dortmund_groups=None,
PSRK_groups=None, UNIFAC_Rs=None,
UNIFAC_Qs=None)

Class for storing efficiently chemical constants for a group of components. This is intended as a base object from
which a set of thermodynamic methods can access miscellaneous for purposes such as phase identification or
initialization.
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Parameters
N [int] Number of components in the package, [-].

cmps [range] Iterator over all components, [-].

rhol_60Fs [list[float]] Liquid molar densities for each component at 60 °F, [mol/m^3].

atom_fractions [list[dict]] Breakdown of each component into its elemental fractions, as a dict,
[-].

atomss [list[dict]] Breakdown of each component into its elements and their counts, as a dict,
[-].

Carcinogens [list[dict]] Status of each component in cancer causing registries, [-].

CASs [list[str]] CAS registration numbers for each component, [-].

Ceilings [list[tuple[(float, str)]]] Ceiling exposure limits to chemicals (and their units; ppm or
mg/m^3), [various].

charges [list[float]] Charge number (valence) for each component, [-].

conductivities [list[float]] Electrical conductivities for each component, [S/m].

conductivity_Ts [list[float]] Temperatures at which the electrical conductivities for each com-
ponent were measured, [K].

dipoles [list[float]] Dipole moments for each component, [debye].

economic_statuses [list[dict]] Status of each component in in relation to import and export from
various regions, [-].

formulas [list[str]] Formulas of each component, [-].

Gfgs [list[float]] Ideal gas standard molar Gibbs free energy of formation for each component,
[J/mol].

Gfgs_mass [list[float]] Ideal gas standard Gibbs free energy of formation for each component,
[J/kg].

GWPs [list[float]] Global Warming Potentials for each component (impact/mass chemi-
cal)/(impact/mass CO2), [-].

Hcs [list[float]] Higher standard molar heats of combustion for each component, [J/mol].

Hcs_mass [list[float]] Higher standard heats of combustion for each component, [J/kg].

Hcs_lower [list[float]] Lower standard molar heats of combustion for each component, [J/mol].

Hcs_lower_mass [list[float]] Lower standard heats of combustion for each component, [J/kg].

Hfgs [list[float]] Ideal gas standard molar enthalpies of formation for each component, [J/mol].

Hfgs_mass [list[float]] Ideal gas standard enthalpies of formation for each component, [J/kg].

Hfus_Tms [list[float]] Molar heats of fusion for each component at their respective melting
points, [J/mol].

Hfus_Tms_mass [list[float]] Heats of fusion for each component at their respective melting
points, [J/kg].

Hsub_Tts [list[float]] Heats of sublimation for each component at their respective triple points,
[J/mol].

Hsub_Tts_mass [list[float]] Heats of sublimation for each component at their respective triple
points, [J/kg].
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Hvap_298s [list[float]] Molar heats of vaporization for each component at 298.15 K, [J/mol].

Hvap_298s_mass [list[float]] Heats of vaporization for each component at 298.15 K, [J/kg].

Hvap_Tbs [list[float]] Molar heats of vaporization for each component at their respective nor-
mal boiling points, [J/mol].

Hvap_Tbs_mass [list[float]] Heats of vaporization for each component at their respective nor-
mal boiling points, [J/kg].

InChI_Keys [list[str]] InChI Keys for each component, [-].

InChIs [list[str]] InChI strings for each component, [-].

legal_statuses [list[dict]] Status of each component in in relation to import and export rules from
various regions, [-].

LFLs [list[float]] Lower flammability limits for each component, [-].

logPs [list[float]] Octanol-water partition coefficients for each component, [-].

molecular_diameters [list[float]] Lennard-Jones molecular diameters for each component,
[angstrom].

MWs [list[float]] Similatiry variables for each component, [g/mol].

names [list[str]] Names for each component, [-].

ODPs [list[float]] Ozone Depletion Potentials for each component (impact/mass chemi-
cal)/(impact/mass CFC-11), [-].

omegas [list[float]] Acentric factors for each component, [-].

Parachors [list[float]] Parachors for each component, [N^0.25*m^2.75/mol].

Pcs [list[float]] Critical pressures for each component, [Pa].

phase_STPs [list[str]] Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].

Psat_298s [list[float]] Vapor pressures for each component at 298.15 K, [Pa].

PSRK_groups [list[dict]] PSRK subgroup: count groups for each component, [-].

Pts [list[float]] Triple point pressures for each component, [Pa].

PubChems [list[int]] Pubchem IDs for each component, [-].

rhocs [list[float]] Molar densities at the critical point for each component, [mol/m^3].

rhocs_mass [list[float]] Densities at the critical point for each component, [kg/m^3].

rhol_STPs [list[float]] Molar liquid densities at STP for each component, [mol/m^3].

rhol_STPs_mass [list[float]] Liquid densities at STP for each component, [kg/m^3].

RIs [list[float]] Refractive indexes for each component, [-].

RI_Ts [list[float]] Temperatures at which the refractive indexes were reported for each compo-
nent, [K].

S0gs [list[float]] Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component,
[J/(mol*K)].

S0gs_mass [list[float]] Ideal gas absolute entropies at 298.15 K at 1 atm for each component,
[J/(kg*K)].

Sfgs [list[float]] Ideal gas standard molar entropies of formation for each component,
[J/(mol*K)].
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Sfgs_mass [list[float]] Ideal gas standard entropies of formation for each component, [J/(kg*K)].

solubility_parameters [list[float]] Solubility parameters for each component at 298.15 K,
[Pa^0.5].

similarity_variables [list[float]] Similarity variables for each component, [mol/g].

Skins [list[bool]] Whether each compound can be absorbed through the skin or not, [-].

smiless [list[str]] SMILES identifiers for each component, [-].

STELs [list[tuple[(float, str)]]] Short term exposure limits to chemicals (and their units; ppm or
mg/m^3), [various].

StielPolars [list[float]] Stiel polar factors for each component, [-].

Stockmayers [list[float]] Lennard-Jones Stockmayer parameters (depth of potential-energy min-
imum over k) for each component, [K].

Tautoignitions [list[float]] Autoignition temperatures for each component, [K].

Tbs [list[float]] Boiling temperatures for each component, [K].

Tcs [list[float]] Critical temperatures for each component, [K].

Tms [list[float]] Melting temperatures for each component, [K].

Tflashs [list[float]] Flash point temperatures for each component, [K].

Tts [list[float]] Triple point temperatures for each component, [K].

TWAs [list[tuple[(float, str)]]] Time-weighted average exposure limits to chemicals (and their
units; ppm or mg/m^3), [various].

UFLs [list[float]] Upper flammability limits for each component, [-].

UNIFAC_Dortmund_groups [list[dict]] UNIFAC_Dortmund_group: count groups for each
component, [-].

UNIFAC_groups [list[dict]] UNIFAC_group: count groups for each component, [-].

UNIFAC_Rs [list[float]] UNIFAC R parameters for each component, [-].

UNIFAC_Qs [list[float]] UNIFAC Q parameters for each component, [-].

Van_der_Waals_areas [list[float]] Unnormalized Van der Waals areas for each component,
[m^2/mol].

Van_der_Waals_volumes [list[float]] Unnormalized Van der Waals volumes for each compo-
nent, [m^3/mol].

Vcs [list[float]] Critical molar volumes for each component, [m^3/mol].

Vml_STPs [list[float]] Liquid molar volumes for each component at STP, [m^3/mol].

Vml_Tms [list[float]] Liquid molar volumes for each component at their respective melting
points, [m^3/mol].

Vms_Tms [list[float]] Solid molar volumes for each component at their respective melting
points, [m^3/mol].

Vml_60Fs [list[float]] Liquid molar volumes for each component at 60 °F, [m^3/mol].

rhos_Tms [list[float]] Solid molar densities for each component at their respective melting
points, [mol/m^3].

rhol_60Fs_mass [list[float]] Liquid mass densities for each component at 60 °F, [kg/m^3].
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rhos_Tms_mass [list[float]] Solid mass densities for each component at their melting point,
[kg/m^3].

Zcs [list[float]] Critical compressibilities for each component, [-].

n_atoms [int] Number of total atoms in a collection of 1 molecule of each species, [-].

water_index [int] Index of water in the package, [-].

Vmg_STPs [list[float]] Gas molar volumes for each component at STP; metastable if normally
another state, [m^3/mol].

rhog_STPs [list[float]] Molar gas densities at STP for each component; metastable if normally
another state, [mol/m^3].

rhog_STPs_mass [list[float]] Gas densities at STP for each component; metastable if normally
another state, [kg/m^3].

sigma_STPs [list[float]] Liquid-air surface tensions at 298.15 K and the higher of 101325 Pa or
the saturation pressure, [N/m].

sigma_Tms [list[float]] Liquid-air surface tensions at the melting point and 101325 Pa, [N/m].

sigma_Tbs [list[float]] Liquid-air surface tensions at the normal boiling point and 101325 Pa,
[N/m].

Hf_STPs [list[float]] Standard state molar enthalpies of formation for each component, [J/mol].

Hf_STPs_mass [list[float]] Standard state mass enthalpies of formation for each component,
[J/kg].

Notes

All parameters are also attributes.

Examples

Create a package with water and the xylenes, suitable for use with equations of state:

>>> ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165], names=[
→˓'water', 'o-xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.324, 0.
→˓331], Pcs=[22048320.0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14, 630.3, 616.
→˓2, 617.0])
ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165], names=['water',
→˓'o-xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.324, 0.331],␣
→˓Pcs=[22048320.0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14, 630.3, 616.2, 617.
→˓0])
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Methods

as_json() Method to create a JSON friendly serialization of the
chemical constants package which can be stored, and
reloaded later.

constants_from_IDs(IDs) Method to construct a new ChemicalConstantsPack-
age with loaded parameters from the chemicals li-
brary, using whatever default methods and values
happen to be in that library.

correlations_from_IDs(IDs)
Method to construct a new PropertyCorrelation-
sPackage with loaded parameters from the chemicals
library, using whatever default methods and values
happen to be in that library.

from_IDs(IDs)
Method to construct a new ChemicalConstantsPack-
age and PropertyCorrelationsPackage with loaded
parameters from the chemicals library, using what-
ever default methods and values happen to be in that
library.

from_json(json_repr) Method to create a ChemicalConstantsPackage from
a JSON serialization of another ChemicalCon-
stantsPackage.

subset([idxs, properties]) Method to construct a new ChemicalConstantsPack-
age that removes all components not specified in the
idxs argument.

with_new_constants(**kwargs) Method to construct a new ChemicalConstantsPack-
age that replaces or adds one or more properties for
all components.

__add__(b)
Method to create a new ChemicalConstantsPackage object from two other
ChemicalConstantsPackage objects.

Returns
new [ChemicalConstantsPackage] New object, [-]

Examples

>>> a = ChemicalConstantsPackage.constants_from_IDs(IDs=['water', 'hexane'])
>>> b = ChemicalConstantsPackage.constants_from_IDs(IDs=['toluene'])
>>> c = a + b

as_json()
Method to create a JSON friendly serialization of the chemical constants package which can be stored, and
reloaded later.

Returns
json_repr [dict] Json friendly representation, [-]
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Examples

>>> import json
>>> constants = ChemicalConstantsPackage(MWs=[18.01528, 106.165], names=['water
→˓', 'm-xylene'])
>>> string = json.dumps(constants.as_json())

static constants_from_IDs(IDs)
Method to construct a new ChemicalConstantsPackage with loaded parameters from the chemicals library,
using whatever default methods and values happen to be in that library. Expect values to change over time.

Parameters
IDs [list[str]] Identifying strings for each compound; most identifiers are accepted and all

inputs are documented in chemicals.identifiers.search_chemical, [-]

Returns
constants [ChemicalConstantsPackage] New ChemicalConstantsPackage with loaded val-

ues, [-]

Notes

Warning: chemicals is a project with a focus on collecting data and correlations from various sources.
In no way is it a project to critically evaluate these and provide recommendations. You are strongly
encouraged to check values from it and modify them if you want different values. If you believe there
is a value which has a typographical error please report it to the chemicals project. If data is missing
or not as accuracte as you would like, and you know of a better method or source, new methods and
sources can be added to chemicals fairly easily once the data entry is complete. It is not feasible to add
individual components, so please submit a complete table of data from the source.

Examples

>>> constants = ChemicalConstantsPackage.constants_from_IDs(IDs=['water',
→˓'hexane'])

static correlations_from_IDs(IDs)
Method to construct a new PropertyCorrelationsPackage with loaded parameters from the chemicals li-
brary, using whatever default methods and values happen to be in that library. Expect values to change over
time.

Parameters
IDs [list[str]] Identifying strings for each compound; most identifiers are accepted and all

inputs are documented in chemicals.identifiers.search_chemical, [-]

Returns
correlations [PropertyCorrelationsPackage] New PropertyCorrelationsPackage with

loaded values, [-]
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Notes

Warning: chemicals is a project with a focus on collecting data and correlations from various sources.
In no way is it a project to critically evaluate these and provide recommendations. You are strongly
encouraged to check values from it and modify them if you want different values. If you believe there
is a value which has a typographical error please report it to the chemicals project. If data is missing
or not as accuracte as you would like, and you know of a better method or source, new methods and
sources can be added to chemicals fairly easily once the data entry is complete. It is not feasible to add
individual components, so please submit a complete table of data from the source.

Examples

>>> correlations = ChemicalConstantsPackage.constants_from_IDs(IDs=['ethanol',
→˓'methanol'])

static from_IDs(IDs)
Method to construct a new ChemicalConstantsPackage and PropertyCorrelationsPackage with loaded pa-
rameters from the chemicals library, using whatever default methods and values happen to be in that library.
Expect values to change over time.

Parameters
IDs [list[str]] Identifying strings for each compound; most identifiers are accepted and all

inputs are documented in chemicals.identifiers.search_chemical, [-]

Returns
constants [PropertyCorrelationsPackage] New PropertyCorrelationsPackage with loaded

values, [-]

correlations [PropertyCorrelationsPackage] New PropertyCorrelationsPackage with
loaded values, [-]

Notes

Warning: chemicals is a project with a focus on collecting data and correlations from various sources.
In no way is it a project to critically evaluate these and provide recommendations. You are strongly
encouraged to check values from it and modify them if you want different values. If you believe there
is a value which has a typographical error please report it to the chemicals project. If data is missing
or not as accuracte as you would like, and you know of a better method or source, new methods and
sources can be added to chemicals fairly easily once the data entry is complete. It is not feasible to add
individual components, so please submit a complete table of data from the source.

Examples

>>> constants, correlations = ChemicalConstantsPackage.from_IDs(IDs=['water',
→˓'decane'])

classmethod from_json(json_repr)
Method to create a ChemicalConstantsPackage from a JSON serialization of another ChemicalCon-
stantsPackage.
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Parameters
json_repr [dict] Json representation, [-]

Returns
constants [ChemicalConstantsPackage] Newly created object from the json serialization, [-]

Notes

It is important that the input be in the same format as that created by ChemicalConstantsPackage.
as_json.

Examples

>>> import json
>>> constants = ChemicalConstantsPackage(MWs=[18.01528, 106.165], names=['water
→˓', 'm-xylene'])
>>> string = json.dumps(constants.as_json())
>>> new_constants = ChemicalConstantsPackage.from_json(json.loads(string))
>>> assert hash(new_constants) == hash(constants)

properties = ('atom_fractions', 'atomss', 'Carcinogens', 'CASs', 'Ceilings',
'charges', 'conductivities', 'dipoles', 'economic_statuses', 'formulas', 'Gfgs',
'Gfgs_mass', 'GWPs', 'Hcs', 'Hcs_lower', 'Hcs_lower_mass', 'Hcs_mass', 'Hfgs',
'Hfgs_mass', 'Hfus_Tms', 'Hfus_Tms_mass', 'Hsub_Tts', 'Hsub_Tts_mass', 'Hvap_298s',
'Hvap_298s_mass', 'Hvap_Tbs', 'Hvap_Tbs_mass', 'InChI_Keys', 'InChIs',
'legal_statuses', 'LFLs', 'logPs', 'molecular_diameters', 'MWs', 'names', 'ODPs',
'omegas', 'Parachors', 'Pcs', 'phase_STPs', 'Psat_298s', 'PSRK_groups', 'Pts',
'PubChems', 'rhocs', 'rhocs_mass', 'rhol_STPs', 'rhol_STPs_mass', 'RIs', 'S0gs',
'S0gs_mass', 'Sfgs', 'Sfgs_mass', 'similarity_variables', 'Skins', 'smiless',
'STELs', 'StielPolars', 'Stockmayers', 'Tautoignitions', 'Tbs', 'Tcs', 'Tflashs',
'Tms', 'Tts', 'TWAs', 'UFLs', 'UNIFAC_Dortmund_groups', 'UNIFAC_groups',
'Van_der_Waals_areas', 'Van_der_Waals_volumes', 'Vcs', 'Vml_STPs', 'Vml_Tms', 'Zcs',
'UNIFAC_Rs', 'UNIFAC_Qs', 'rhos_Tms', 'Vms_Tms', 'rhos_Tms_mass',
'solubility_parameters', 'Vml_60Fs', 'rhol_60Fs', 'rhol_60Fs_mass',
'conductivity_Ts', 'RI_Ts', 'Vmg_STPs', 'rhog_STPs', 'rhog_STPs_mass', 'sigma_STPs',
'sigma_Tms', 'sigma_Tbs', 'Hf_STPs', 'Hf_STPs_mass')

Tuple of all properties that can be held by this object.

subset(idxs=None, properties=None)
Method to construct a new ChemicalConstantsPackage that removes all components not specified in the
idxs argument. Although this class has a great many attributes, it is often sufficient to work with a subset
of those properties; and if a list of properties is provided, only those properties will be added to the new
object as well.

Parameters
idxs [list[int] or Slice or None] Indexes of components that should be included; if None, all

components will be included , [-]

properties [tuple[str] or None] List of properties to be included; all properties will be in-
cluded if this is not specified

Returns
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subset_consts [ChemicalConstantsPackage] Object with reduced properties and or compo-
nents, [-]

Notes

It is not intended for properties to be edited in this object! One optimization is that all entirely empty
properties use the same list-of-Nones.

All properties should have been specified before constructing the first ChemicalConstantsPackage.

Examples

>>> base = ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165],␣
→˓names=['water', 'o-xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.
→˓324, 0.331], Pcs=[22048320.0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14,␣
→˓630.3, 616.2, 617.0])
>>> base.subset([0])
ChemicalConstantsPackage(MWs=[18.01528], names=['water'], omegas=[0.344],␣
→˓Pcs=[22048320.0], Tcs=[647.14])
>>> base.subset(slice(1,4))
ChemicalConstantsPackage(MWs=[106.165, 106.165, 106.165], names=['o-xylene', 'p-
→˓xylene', 'm-xylene'], omegas=[0.3118, 0.324, 0.331], Pcs=[3732000.0, 3511000.
→˓0, 3541000.0], Tcs=[630.3, 616.2, 617.0])
>>> base.subset(idxs=[0, 3], properties=('names', 'MWs'))
ChemicalConstantsPackage(MWs=[18.01528, 106.165], names=['water', 'm-xylene'])

with_new_constants(**kwargs)
Method to construct a new ChemicalConstantsPackage that replaces or adds one or more properties for all
components.

Parameters
kwargs [dict[str: list[float]]] Properties specified by name [various]

Returns
new_constants [ChemicalConstantsPackage] Object with new and/or replaced properties,

[-]

Examples

>>> base = ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165],␣
→˓names=['water', 'o-xylene', 'p-xylene', 'm-xylene'], omegas=[0.344, 0.3118, 0.
→˓324, 0.331], Pcs=[22048320.0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14,␣
→˓630.3, 616.2, 617.0])
>>> base.with_new_constants(Tms=[40.0, 20.0, 10.0, 30.0], omegas=[0.0, 0.1, 0.2,
→˓ 0.3])
ChemicalConstantsPackage(MWs=[18.01528, 106.165, 106.165, 106.165], names=[
→˓'water', 'o-xylene', 'p-xylene', 'm-xylene'], omegas=[0.0, 0.1, 0.2, 0.3],␣
→˓Pcs=[22048320.0, 3732000.0, 3511000.0, 3541000.0], Tcs=[647.14, 630.3, 616.2,␣
→˓617.0], Tms=[40.0, 20.0, 10.0, 30.0])
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7.4.2 Chemical Correlations Class

class thermo.chemical_package.PropertyCorrelationsPackage(constants, VaporPressures=None,
SublimationPressures=None,
VolumeGases=None,
VolumeLiquids=None,
VolumeSolids=None,
HeatCapacityGases=None,
HeatCapacityLiquids=None,
HeatCapacitySolids=None,
ViscosityGases=None,
ViscosityLiquids=None,
ThermalConductivityGases=None,
ThermalConductivityLiquids=None,
EnthalpyVaporizations=None,
EnthalpySublimations=None,
SurfaceTensions=None,
PermittivityLiquids=None,
VolumeGasMixtureObj=None,
VolumeLiquidMixtureObj=None,
VolumeSolidMixtureObj=None,
HeatCapacityGasMixtureObj=None,
HeatCapacityLiquidMixtureObj=None,
HeatCapacitySolidMixtureObj=None,
ViscosityGasMixtureObj=None,
ViscosityLiquidMixtureObj=None, Ther-
malConductivityGasMixtureObj=None,
ThermalConductivityLiquidMixture-
Obj=None,
SurfaceTensionMixtureObj=None,
skip_missing=False)

Class for creating and storing T and P and zs dependent chemical property objects. All parameters are also
attributes.

This object can be used either to hold already-created property objects; or to create new ones and hold them.

Parameters
constants [ChemicalConstantsPackage] Object holding all constant properties, [-]

VaporPressures [list[thermo.vapor_pressure.VaporPressure], optional] Objects hold-
ing vapor pressure data and methods, [-]

SublimationPressures [list[thermo.vapor_pressure.SublimationPressure], optional]
Objects holding sublimation pressure data and methods, [-]

VolumeGases [list[thermo.volume.VolumeGas], optional] Objects holding gas volume data
and methods, [-]

VolumeLiquids [list[thermo.volume.VolumeLiquid], optional] Objects holding liquid vol-
ume data and methods, [-]

VolumeSolids [list[thermo.volume.VolumeSolid], optional] Objects holding solid volume
data and methods, [-]

HeatCapacityGases [list[thermo.heat_capacity.HeatCapacityGas], optional] Objects
holding gas heat capacity data and methods, [-]

122 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

HeatCapacityLiquids [list[thermo.heat_capacity.HeatCapacityLiquid], optional] Ob-
jects holding liquid heat capacity data and methods, [-]

HeatCapacitySolids [list[thermo.heat_capacity.HeatCapacitySolid], optional] Ob-
jects holding solid heat capacity data and methods, [-]

ViscosityGases [list[thermo.viscosity.ViscosityGas], optional] Objects holding gas vis-
cosity data and methods, [-]

ViscosityLiquids [list[thermo.viscosity.ViscosityLiquid], optional] Objects holding
liquid viscosity data and methods, [-]

ThermalConductivityGases [list[thermo.thermal_conductivity.
ThermalConductivityGas], optional] Objects holding gas thermal conductivity data and
methods, [-]

ThermalConductivityLiquids [list[thermo.thermal_conductivity.
ThermalConductivityLiquid], optional] Objects holding liquid thermal conductivity
data and methods, [-]

EnthalpyVaporizations [list[thermo.phase_change.EnthalpyVaporization], optional]
Objects holding enthalpy of vaporization data and methods, [-]

EnthalpySublimations [list[thermo.phase_change.EnthalpySublimation], optional]
Objects holding enthalpy of sublimation data and methods, [-]

SurfaceTensions [list[thermo.interface.SurfaceTension], optional] Objects holding sur-
face tension data and methods, [-]

PermittivityLiquids [list[thermo.permittivity.PermittivityLiquid], optional] Ob-
jects holding permittivity data and methods, [-]

skip_missing [bool, optional] If False, any properties not provided will have objects created; if
True, no extra objects will be created.

VolumeSolidMixture [thermo.volume.VolumeSolidMixture, optional] Predictor object
for the volume of solid mixtures, [-]

VolumeLiquidMixture [thermo.volume.VolumeLiquidMixture, optional] Predictor ob-
ject for the volume of liquid mixtures, [-]

VolumeGasMixture [thermo.volume.VolumeGasMixture, optional] Predictor object for the
volume of gas mixtures, [-]

HeatCapacityLiquidMixture [thermo.heat_capacity.HeatCapacityLiquidMixture,
optional] Predictor object for the heat capacity of liquid mixtures, [-]

HeatCapacityGasMixture [thermo.heat_capacity.HeatCapacityGasMixture, op-
tional] Predictor object for the heat capacity of gas mixtures, [-]

HeatCapacitySolidMixture [thermo.heat_capacity.HeatCapacitySolidMixture, op-
tional] Predictor object for the heat capacity of solid mixtures, [-]

ViscosityLiquidMixture [thermo.viscosity.ViscosityLiquidMixture, optional] Pre-
dictor object for the viscosity of liquid mixtures, [-]

ViscosityGasMixture [thermo.viscosity.ViscosityGasMixture, optional] Predictor ob-
ject for the viscosity of gas mixtures, [-]

ThermalConductivityLiquidMixture [thermo.thermal_conductivity.
ThermalConductivityLiquidMixture, optional] Predictor object for the thermal
conductivity of liquid mixtures, [-]
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ThermalConductivityGasMixture [thermo.thermal_conductivity.
ThermalConductivityGasMixture, optional] Predictor object for the thermal con-
ductivity of gas mixtures, [-]

SurfaceTensionMixture [thermo.interface.SurfaceTensionMixture, optional] Predic-
tor object for the surface tension of liquid mixtures, [-]

Examples

Create a package from CO2 and n-hexane, with ideal-gas heat capacities provided while excluding all other
properties:

>>> constants = ChemicalConstantsPackage(CASs=['124-38-9', '110-54-3'], MWs=[44.
→˓0095, 86.17536], names=['carbon dioxide', 'hexane'], omegas=[0.2252, 0.2975],␣
→˓Pcs=[7376460.0, 3025000.0], Tbs=[194.67, 341.87], Tcs=[304.2, 507.6], Tms=[216.65,
→˓ 178.075])
>>> correlations = PropertyCorrelationsPackage(constants=constants, skip_
→˓missing=True, HeatCapacityGases=[HeatCapacityGas(poly_fit=(50.0, 1000.0, [-3.
→˓1115474168865828e-21, 1.39156078498805e-17, -2.5430881416264243e-14, 2.
→˓4175307893014295e-11, -1.2437314771044867e-08, 3.1251954264658904e-06, -0.
→˓00021220221928610925, 0.000884685506352987, 29.266811602924644])),␣
→˓HeatCapacityGas(poly_fit=(200.0, 1000.0, [1.3740654453881647e-21, -8.
→˓344496203280677e-18, 2.2354782954548568e-14, -3.4659555330048226e-11, 3.
→˓410703030634579e-08, -2.1693611029230923e-05, 0.008373280796376588, -1.
→˓356180511425385, 175.67091124888998]))])

Create a package from various data files, creating all property objects:

>>> correlations = PropertyCorrelationsPackage(constants=constants, skip_
→˓missing=False)

Attributes
pure_correlations [tuple(str)] List of all pure component property objects, [-]

Methods

subset(idxs) Method to construct a new PropertyCorrelation-
sPackage that removes all components not specified
in the idxs argument.

__add__(b)
Method to create a new PropertyCorrelationsPackage object from two other
PropertyCorrelationsPackage objects.

Returns
new [PropertyCorrelationsPackage] New object, [-]
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Examples

>>> a = ChemicalConstantsPackage.correlations_from_IDs(IDs=['water', 'hexane'])
>>> b = ChemicalConstantsPackage.correlations_from_IDs(IDs=['toluene'])
>>> c = a + b

subset(idxs)
Method to construct a new PropertyCorrelationsPackage that removes all components not specified in the
idxs argument.

Parameters
idxs [list[int] or Slice or None] Indexes of components that should be included; if None, all

components will be included , [-]

Returns
subset_correlations [PropertyCorrelationsPackage] Object with components, [-]

7.4.3 Sample Constants and Correlations

thermo.chemical_package.iapws_constants = ChemicalConstantsPackage(CASs=['7732-18-5'],
MWs=[18.015268], omegas=[0.344], Pcs=[22064000.0], Tcs=[647.096])

ChemicalConstantsPackage : Object intended to hold the IAPWS-95 water constants for use with the
thermo.phases.IAPWS95 phase object.

thermo.chemical_package.iapws_correlations =
<thermo.chemical_package.PropertyCorrelationsPackage object>

PropertyCorrelationsPackage: IAPWS correlations and properties, [-]

thermo.chemical_package.lemmon2000_constants =
ChemicalConstantsPackage(CASs=['132259-10-0'], MWs=[28.9586], omegas=[0.0335],
Pcs=[3785020.0], Tcs=[132.6312])

ChemicalConstantsPackage : Object intended to hold the Lemmon (2000) air constants for use with the
thermo.phases.DryAirLemmon phase object.

thermo.chemical_package.lemmon2000_correlations =
<thermo.chemical_package.PropertyCorrelationsPackage object>

PropertyCorrelationsPackage: Lemmon (2000) air correlations and properties, [-]

7.5 Creating Property Datasheets (thermo.datasheet)

thermo.datasheet.tabulate_constants(chemical, full=False, vertical=False)

thermo.datasheet.tabulate_gas(chemical, Tmin=None, Tmax=None, pts=10)

thermo.datasheet.tabulate_liq(chemical, Tmin=None, Tmax=None, pts=10)

thermo.datasheet.tabulate_solid(chemical, Tmin=None, Tmax=None, pts=10)

thermo.datasheet.tabulate_streams(names=None, *args, **kwargs)
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7.6 Electrochemistry (thermo.electrochem)

This module contains models for:

• Pure substance electrical conductivity lookups

• Correlations for aqueous electrolyte heat capacity, density, and viscosity

• Aqueous electrolyte conductivity

• Water equilibrium constants

• Balancing experimental ion analysis results so as to meet the electroneutrality condition

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Aqueous Electrolyte Density

• Aqueous Electrolyte Heat Capacity

• Aqueous Electrolyte Viscosity

• Aqueous Electrolyte Thermal Conductivity

• Aqueous Electrolyte Electrical Conductivity

• Pure Liquid Electrical Conductivity

• Water Dissociation Equilibrium

• Balancing Ions

• Fit Coefficients and Data

7.6.1 Aqueous Electrolyte Density

thermo.electrochem.Laliberte_density(T, ws, CASRNs)
Calculate the density of an aqueous electrolyte mixture using the form proposed by [1]. Parameters are loaded
by the function as needed. Units are Kelvin and Pa*s.

𝜌𝑚 =

(︃
𝑤𝑤

𝜌𝑤
+
∑︁
𝑖

𝑤𝑖

𝜌𝑎𝑝𝑝𝑖

)︃−1

Parameters
T [float] Temperature of fluid [K]

ws [array] Weight fractions of fluid components other than water

CASRNs [array] CAS numbers of the fluid components other than water

Returns
rho [float] Solution density, [kg/m^3]
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Notes

Temperature range check is not used here.

References

[1]

Examples

>>> Laliberte_density(273.15, [0.0037838838], ['7647-14-5'])
1002.62501201

thermo.electrochem.Laliberte_density_mix(T, ws, c0s, c1s, c2s, c3s, c4s)
Calculate the density of an aqueous electrolyte mixture using the form proposed by [1]. All parameters must be
provided to the function. Units are Kelvin and Pa*s.

𝜌𝑚 =

(︃
𝑤𝑤

𝜌𝑤
+
∑︁
𝑖

𝑤𝑖

𝜌𝑎𝑝𝑝𝑖

)︃−1

Parameters
T [float] Temperature of fluid [K]

ws [array] Weight fractions of fluid components other than water

c0s [list[float]] Fit coefficient, [-]

c1s [list[float]] Fit coefficient, [-]

c2s [list[float]] Fit coefficient, [-]

c3s [list[float]] Fit coefficient, [1/degC]

c4s [list[float]] Fit coefficient, [degC]

Returns
rho [float] Solution density, [kg/m^3]

References

[1]

Examples

>>> Laliberte_density_mix(T=278.15, ws=[0.00581, 0.002], c0s=[-0.00324112223655149,␣
→˓0.967814929691928], c1s=[0.0636354335906616, 5.540434135986], c2s=[1.
→˓01371399467365, 1.10374669742622], c3s=[0.0145951015210159, 0.0123340782160061],␣
→˓c4s=[3317.34854426537, 2589.61875022366])
1005.6947727219
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thermo.electrochem.Laliberte_density_i(T, w_w, c0, c1, c2, c3, c4)
Calculate the density of a solute using the form proposed by Laliberte [1]. Parameters are needed, and a temper-
ature, and water fraction. Units are Kelvin and Pa*s.

𝜌𝑎𝑝𝑝,𝑖 =
(𝑐0[1 − 𝑤𝑤] + 𝑐1) exp(10−6[𝑡+ 𝑐4]2)

(1 − 𝑤𝑤) + 𝑐2 + 𝑐3𝑡

Parameters
T [float] Temperature of fluid [K]

w_w [float] Weight fraction of water in the solution, [-]

c0 [float] Fit coefficient, [-]

c1 [float] Fit coefficient, [-]

c2 [float] Fit coefficient, [-]

c3 [float] Fit coefficient, [1/degC]

c4 [float] Fit coefficient, [degC]

Returns
rho_i [float] Solute partial density, [kg/m^3]

Notes

Temperature range check is not used here.

References

[1]

Examples

>>> params = [-0.00324112223655149, 0.0636354335906616, 1.01371399467365, 0.
→˓0145951015210159, 3317.34854426537]
>>> Laliberte_density_i(273.15+0, 1-0.0037838838, *params)
3761.8917585

thermo.electrochem.Laliberte_density_w(T)
Calculate the density of water using the form proposed by [1]. No parameters are needed, just a temperature.
Units are Kelvin and kg/m^3.

𝜌𝑤 =

{︀(︀
[(−2.8054253 × 10−10 · 𝑡+ 1.0556302 × 10−7)𝑡− 4.6170461 × 10−5]𝑡− 0.0079870401

)︀
𝑡+ 16.945176

}︀
𝑡+ 999.83952

1 + 0.01687985 · 𝑡

Parameters
T [float] Temperature of fluid [K]

Returns
rho_w [float] Water density, [kg/m^3]
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Notes

Original source not cited No temperature range is used.

References

[1]

Examples

>>> Laliberte_density_w(298.15)
997.0448954179155
>>> Laliberte_density_w(273.15 + 50)
988.0362916114763

7.6.2 Aqueous Electrolyte Heat Capacity

thermo.electrochem.Laliberte_heat_capacity(T, ws, CASRNs)
Calculate the heat capacity of an aqueous electrolyte mixture using the form proposed by [1]. Parameters are
loaded by the function as needed.

𝐶𝑝𝑚 = 𝑤𝑤𝐶𝑝𝑤 +
∑︁

𝑤𝑖𝐶𝑝𝑖

Parameters
T [float] Temperature of fluid [K]

ws [array] Weight fractions of fluid components other than water

CASRNs [array] CAS numbers of the fluid components other than water

Returns
Cp [float] Solution heat capacity, [J/kg/K]

Notes

A temperature range check is not included in this function. Units are Kelvin and J/kg/K.

References

[1]
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Examples

>>> Laliberte_heat_capacity(273.15+1.5, [0.00398447], ['7647-14-5'])
4186.575407596064

thermo.electrochem.Laliberte_heat_capacity_mix(T, ws, a1s, a2s, a3s, a4s, a5s, a6s)
Calculate the heat capacity of an aqueous electrolyte mixture using the form proposed by [1]. All parameters
must be provided to this function.

𝐶𝑝𝑚 = 𝑤𝑤𝐶𝑝𝑤 +
∑︁

𝑤𝑖𝐶𝑝𝑖

Parameters
T [float] Temperature of fluid [K]

ws [array] Weight fractions of fluid components other than water

CASRNs [array] CAS numbers of the fluid components other than water

Returns
Cp [float] Solution heat capacity, [J/kg/K]

Notes

A temperature range check is not included in this function. Units are Kelvin and J/kg/K.

References

[1]

Examples

>>> Laliberte_heat_capacity_mix(T=278.15, ws=[0.00581, 0.002], a1s=[-0.
→˓0693559668993322, -0.103713247177424], a2s=[-0.0782134167486952, -0.
→˓0647453826944371], a3s=[3.84798479408635, 2.92191453087969], a4s=[-11.
→˓2762109247072, -5.48799065938436], a5s=[8.73187698542672, 2.41768600041476],␣
→˓a6s=[1.81245930472755, 1.32062411084408])
4154.788562680796

thermo.electrochem.Laliberte_heat_capacity_i(T, w_w, a1, a2, a3, a4, a5, a6)
Calculate the heat capacity of a solute using the form proposed by [1] Parameters are needed, and a temperature,
and water fraction.

𝐶𝑝𝑖 = 𝑎1𝑒
𝛼 + 𝑎5(1 − 𝑤𝑤)𝑎6

𝛼 = 𝑎2𝑡+ 𝑎3 exp(0.01𝑡) + 𝑎4(1 − 𝑤𝑤)

Parameters
T [float] Temperature of fluid [K]

w_w [float] Weight fraction of water in the solution

a1-a6 [floats] Function fit parameters

Returns
Cp_i [float] Solute partial heat capacity, [J/kg/K]

130 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Notes

Units are Kelvin and J/kg/K. Temperature range check is not used here.

References

[1]

Examples

>>> params = [-0.0693559668993322, -0.0782134167486952, 3.84798479408635, -11.
→˓2762109247072, 8.73187698542672, 1.81245930472755]
>>> Laliberte_heat_capacity_i(1.5+273.15, 1-0.00398447, *params)
-2930.73539458

thermo.electrochem.Laliberte_heat_capacity_w(T)
Calculate the heat capacity of pure water in a fast but similar way as in [1]. [1] suggested the following inter-
polatative scheme, using points calculated from IAPWS-97 at a pressure of 0.1 MPa up to 95 °C and then at
saturation pressure. The maximum temperature of [1] is 140 °C.

𝐶𝑝𝑤 = 𝐶𝑝1 + (𝐶𝑝2 − 𝐶𝑝1)

(︂
𝑡− 𝑡1
𝑡2 − 𝑡1

)︂
+

(𝐶𝑝3 − 2𝐶𝑝2 + 𝐶𝑝1)

2

(︂
𝑡− 𝑡1
𝑡2 − 𝑡1

)︂(︂
𝑡− 𝑡1
𝑡2 − 𝑡1

− 1

)︂
In this implementation, the heat capacity of water is calculated from a chebyshev approximation of the scheme
of [1] up to ~92 °C and then the heat capacity comes directly from IAPWS-95 at higher temperatures, also at the
saturation pressure. There is no discontinuity between the methods.

Parameters
T [float] Temperature of fluid [K]

Returns
Cp_w [float] Water heat capacity, [J/kg/K]

Notes

Units are Kelvin and J/kg/K.

References

[1]

Examples

>>> Laliberte_heat_capacity_w(273.15+3.56)
4208.878727051538
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7.6.3 Aqueous Electrolyte Viscosity

thermo.electrochem.Laliberte_viscosity(T, ws, CASRNs)
Calculate the viscosity of an aqueous mixture using the form proposed by [1]. Parameters are loaded by the
function as needed. Units are Kelvin and Pa*s.

𝜇𝑚 = 𝜇𝑤𝑤
𝑤 Π𝜇𝑤𝑖

𝑖

Parameters
T [float] Temperature of fluid, [K]

ws [array] Weight fractions of fluid components other than water, [-]

CASRNs [array] CAS numbers of the fluid components other than water, [-]

Returns
mu [float] Viscosity of aqueous mixture, [Pa*s]

Notes

Temperature range check is not used here. Check is performed using NaCl at 5 degC from the first value in [1]’s
spreadsheet.

References

[1]

Examples

>>> Laliberte_viscosity(273.15+5, [0.005810], ['7647-14-5'])
0.0015285828581961414

thermo.electrochem.Laliberte_viscosity_mix(T, ws, v1s, v2s, v3s, v4s, v5s, v6s)
Calculate the viscosity of an aqueous mixture using the form proposed by [1]. All parameters must be provided
in this implementation.

𝜇𝑚 = 𝜇𝑤𝑤
𝑤 Π𝜇𝑤𝑖

𝑖

Parameters
T [float] Temperature of fluid, [K]

ws [array] Weight fractions of fluid components other than water, [-]

v1s [list[float]] Fit parameter, [-]

v2s [list[float]] Fit parameter, [-]

v3s [list[float]] Fit parameter, [-]

v4s [list[float]] Fit parameter, [1/degC]

v5s [list[float]] Fit parameter, [-]

v6s [list[float]] Fit parameter, [-]

Returns
mu [float] Viscosity of aqueous mixture, [Pa*s]
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References

[1]

Examples

>>> Laliberte_viscosity_mix(T=278.15, ws=[0.00581, 0.002], v1s=[16.221788633396, 69.
→˓5769240055845], v2s=[1.32293086770011, 4.17047793905946], v3s=[1.48485985010431,␣
→˓3.57817553622189], v4s=[0.00746912559657377, 0.0116677996754397], v5s=[30.
→˓7802007540575, 13897.6652650556], v6s=[2.05826852322558, 20.8027689840251])
0.0015377348091189648

thermo.electrochem.Laliberte_viscosity_i(T, w_w, v1, v2, v3, v4, v5, v6)
Calculate the viscosity of a solute using the form proposed by [1] Parameters are needed, and a temperature.
Units are Kelvin and Pa*s.

𝜇𝑖 =
exp

(︁
𝑣1(1−𝑤𝑤)𝑣2+𝑣3

𝑣4𝑡+1

)︁
𝑣5(1 − 𝑤𝑤)𝑣6 + 1

Parameters
T [float] Temperature of fluid, [K]

w_w [float] Weight fraction of water in the solution, [-]

v1 [float] Fit parameter, [-]

v2 [float] Fit parameter, [-]

v3 [float] Fit parameter, [-]

v4 [float] Fit parameter, [1/degC]

v5 [float] Fit parameter, [-]

v6 [float] Fit parameter, [-]

Returns
mu_i [float] Solute partial viscosity, [Pa*s]

Notes

Temperature range check is outside of this function. Check is performed using NaCl at 5 degC from the first
value in [1]’s spreadsheet.

References

[1]
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Examples

>>> params = [16.221788633396, 1.32293086770011, 1.48485985010431, 0.
→˓00746912559657377, 30.7802007540575, 2.05826852322558]
>>> Laliberte_viscosity_i(273.15+5, 1-0.005810, *params)
0.004254025533308794

thermo.electrochem.Laliberte_viscosity_w(T)
Calculate the viscosity of a water using the form proposed by [1]. No parameters are needed, just a temperature.
Units are Kelvin and Pa*s. t is temperature in degrees Celcius.

𝜇𝑤 =
𝑡+ 246

(0.05594𝑡+ 5.2842)𝑡+ 137.37

Parameters
T [float] Temperature of fluid, [K]

Returns
mu_w [float] Water viscosity, [Pa*s]

Notes

Original source or pure water viscosity is not cited. No temperature range is given for this equation.

References

[1]

Examples

>>> Laliberte_viscosity_w(298)
0.000893226448703328

7.6.4 Aqueous Electrolyte Thermal Conductivity

thermo.electrochem.thermal_conductivity_Magomedov(T, P, ws, CASRNs, k_w)
Calculate the thermal conductivity of an aqueous mixture of electrolytes using the form proposed by Magomedov
[1]. Parameters are loaded by the function as needed. Function will fail if an electrolyte is not in the database.

𝜆 = 𝜆𝑤

[︃
1 −

𝑛∑︁
𝑖=1

𝐴𝑖(𝑤𝑖 + 2 × 10−4𝑤3
𝑖 )

]︃
− 2 × 10−8𝑃𝑇

𝑛∑︁
𝑖=1

𝑤𝑖

Parameters
T [float] Temperature of liquid [K]

P [float] Pressure of the liquid [Pa]

ws [array] Weight fractions of liquid components other than water

CASRNs [array] CAS numbers of the liquid components other than water

k_w [float] Liquid thermal condiuctivity or pure water at T and P, [W/m/K]
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Returns
kl [float] Liquid thermal condiuctivity, [W/m/K]

Notes

Range from 273 K to 473 K, P from 0.1 MPa to 100 MPa. C from 0 to 25 mass%. Internal untis are MPa for
pressure and weight percent.

An example is sought for this function. It is not possible to reproduce the author’s values consistently.

References

[1]

Examples

>>> thermal_conductivity_Magomedov(293., 1E6, [.25], ['7758-94-3'], k_w=0.59827)
0.548654049375

thermo.electrochem.Magomedov_mix(T, P, ws, Ais, k_w)
Calculate the thermal conductivity of an aqueous mixture of electrolytes using the correlation proposed by
Magomedov [1]. All coefficients and the thermal conductivity of pure water must be provided.

𝜆 = 𝜆𝑤

[︃
1 −

𝑛∑︁
𝑖=1

𝐴𝑖(𝑤𝑖 + 2 × 10−4𝑤3
𝑖 )

]︃
− 2 × 10−8𝑃𝑇

𝑛∑︁
𝑖=1

𝑤𝑖

Parameters
T [float] Temperature of liquid [K]

P [float] Pressure of the liquid [Pa]

ws [list[float]] Weight fractions of liquid components other than water, [-]

Ais [list[float]] Ai coefficients which were regressed, [-]

k_w [float] Liquid thermal condiuctivity or pure water at T and P, [W/m/K]

Returns
kl [float] Liquid thermal condiuctivity, [W/m/K]

Notes

Range from 273 K to 473 K, P from 0.1 MPa to 100 MPa. C from 0 to 25 mass%. Internal untis are MPa for
pressure and weight percent.
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References

[1]

Examples

>>> Magomedov_mix(293., 1E6, [.25], [0.00294], k_w=0.59827)
0.548654049375

7.6.5 Aqueous Electrolyte Electrical Conductivity

thermo.electrochem.dilute_ionic_conductivity(ionic_conductivities, zs, rhom)
This function handles the calculation of the electrical conductivity of a dilute electrolytic aqueous solution. Re-
quires the mole fractions of each ion, the molar density of the whole mixture, and ionic conductivity coefficients
for each ion.

𝜆 =
∑︁
𝑖

𝜆∘𝑖 𝑧𝑖𝜌𝑚

Parameters
ionic_conductivities [list[float]] Ionic conductivity coefficients of each ion in the mixture

[m^2*S/mol]

zs [list[float]] Mole fractions of each ion in the mixture, [-]

rhom [float] Overall molar density of the solution, [mol/m^3]

Returns
kappa [float] Electrical conductivity of the fluid, [S/m]

Notes

The ionic conductivity coefficients should not be equivalent coefficients; for example, 0.0053 m^2*S/mol is the
equivalent conductivity coefficient of Mg+2, but this method expects twice its value - 0.0106. Both are reported
commonly in literature.

Water can be included in this caclulation by specifying a coefficient of 0. The conductivity of any electrolyte
eclipses its own conductivity by many orders of magnitude. Any other solvents present will affect the conductivity
extensively and there are few good methods to predict this effect.

References

[1]
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Examples

Complex mixture of electrolytes [‘Cl-’, ‘HCO3-’, ‘SO4-2’, ‘Na+’, ‘K+’, ‘Ca+2’, ‘Mg+2’]:

>>> ionic_conductivities = [0.00764, 0.00445, 0.016, 0.00501, 0.00735, 0.0119, 0.
→˓01061]
>>> zs = [0.03104, 0.00039, 0.00022, 0.02413, 0.0009, 0.0024, 0.00103]
>>> dilute_ionic_conductivity(ionic_conductivities=ionic_conductivities, zs=zs,␣
→˓rhom=53865.9)
22.05246783663

thermo.electrochem.conductivity_McCleskey(T, M, lambda_coeffs, A_coeffs, B, multiplier, rho=1000.0)
This function handles the calculation of the electrical conductivity of an electrolytic aqueous solution with one
electrolyte in solution. It handles temperature dependency and concentrated solutions. Requires the temperature
of the solution; its molality, and four sets of coefficients lambda_coeffs, A_coeffs, B, and multiplier.

Λ =
𝜅

𝐶

Λ = Λ0(𝑡) −𝐴(𝑡)
𝑚1/2

1 +𝐵𝑚1/2

Λ∘(𝑡) = 𝑐1𝑡
2 + 𝑐2𝑡+ 𝑐3

𝐴(𝑡) = 𝑑1𝑡
2 + 𝑑2𝑡+ 𝑑3

In the above equations, t is temperature in degrees Celcius; m is molality in mol/kg, and C is the concentration
of the elctrolytes in mol/m^3, calculated as the product of density and molality.

Parameters
T [float] Temperature of the solution, [K]

M [float] Molality of the solution with respect to one electrolyte (mol solute / kg solvent),
[mol/kg]

lambda_coeffs [list[float]] List of coefficients for the polynomial used to calculate lambda;
length-3 coefficients provided in [1], [-]

A_coeffs [list[float]] List of coefficients for the polynomial used to calculate A; length-3 coeffi-
cients provided in [1], [-]

B [float] Empirical constant for an electrolyte, [-]

multiplier [float] The multiplier to obtain the absolute conductivity from the equivalent con-
ductivity; ex 2 for CaCl2, [-]

rho [float, optional] The mass density of the aqueous mixture, [kg/m^3]

Returns
kappa [float] Electrical conductivity of the solution at the specified molality and temperature

[S/m]
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Notes

Coefficients provided in [1] result in conductivity being calculated in units of mS/cm; they are converted to S/m
before returned.

References

[1]

Examples

A 0.5 wt% solution of CaCl2, conductivity calculated in mS/cm

>>> conductivity_McCleskey(T=293.15, M=0.045053, A_coeffs=[.03918, 3.905,
... 137.7], lambda_coeffs=[0.01124, 2.224, 72.36], B=3.8, multiplier=2)
0.8482584585108555

thermo.electrochem.ionic_strength(mis, zis)
Calculate the ionic strength of a solution in one of two ways, depending on the inputs only. For Pitzer and
Bromley models, mis should be molalities of each component. For eNRTL models, mis should be mole fractions
of each electrolyte in the solution. This will sum to be much less than 1.

𝐼 =
1

2

∑︁
𝑀𝑖𝑧

2
𝑖

𝐼 =
1

2

∑︁
𝑥𝑖𝑧

2
𝑖

Parameters
mis [list] Molalities of each ion, or mole fractions of each ion [mol/kg or -]

zis [list] Charges of each ion [-]

Returns
I [float] ionic strength, [?]

References

[1], [2]

Examples

>>> ionic_strength([0.1393, 0.1393], [1, -1])
0.1393
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7.6.6 Pure Liquid Electrical Conductivity

thermo.electrochem.conductivity(CASRN, method=None)
This function handles the retrieval of a chemical’s conductivity. Lookup is based on CASRNs. Will automatically
select a data source to use if no method is provided; returns None if the data is not available.

Function has data for approximately 100 chemicals.

Parameters
CASRN [string] CASRN [-]

Returns
kappa [float] Electrical conductivity of the fluid, [S/m]

T [float or None] Temperature at which conductivity measurement was made or None if not
available, [K]

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in con-

ductivity_methods

Notes

Only one source is available in this function. It is:

• ‘LANGE_COND’ which is from Lange’s Handbook, Table 8.34 Electrical Conductivity of Various Pure
Liquids’, a compillation of data in [1]. The individual datapoints in this source are not cited at all.

References

[1]

Examples

>>> conductivity('7732-18-5')
(4e-06, 291.15)

thermo.electrochem.conductivity_methods(CASRN)
Return all methods available to obtain electrical conductivity for the specified chemical.

Parameters
CASRN [str] CASRN, [-]

Returns
methods [list[str]] Methods which can be used to obtain electrical conductivity with the given

inputs.

See also:

conductivity
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thermo.electrochem.conductivity_all_methods = ['LANGE_COND']
Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

7.6.7 Water Dissociation Equilibrium

thermo.electrochem.Kweq_Arcis_Tremaine_Bandura_Lvov(T, rho_w)
Calculates equilibrium constant for OH- and H+ in water, according to [1].

𝑄 = 𝜌 exp(𝛼0 + 𝛼1𝑇
−1 + 𝛼2𝑇

−2𝜌2/3)

− log10𝐾𝑤 = −2𝑛

[︂
log10(1 +𝑄) − 𝑄

𝑄+ 1
𝜌(𝛽0 + 𝛽1𝑇

−1 + 𝛽2𝜌)

]︂
− log10𝐾

𝐺
𝑤 + 2 log10

18.015268

1000

Parameters
T [float] Temperature of water [K]

rho_w [float] Density of water at temperature and pressure [kg/m^3]

Returns
Kweq [float] Ionization constant of water, [-]

Notes

Formulation is in terms of density in g/cm^3; density is converted internally.

n = 6; alpha0 = -0.864671; alpha1 = 8659.19; alpha2 = -22786.2; beta0 = 0.642044; beta1 = -56.8534; beta2 =
-0.375754

References

[1]

Examples

>>> -1*log10(Kweq_Arcis_Tremaine_Bandura_Lvov(600, 700))
11.138236348

thermo.electrochem.Kweq_IAPWS(T, rho_w)
Calculates equilibrium constant for OH- and H+ in water, according to [1]. This is the most recent formulation
available.

𝑄 = 𝜌 exp(𝛼0 + 𝛼1𝑇
−1 + 𝛼2𝑇

−2𝜌2/3)

− log10𝐾𝑤 = −2𝑛

[︂
log10(1 +𝑄) − 𝑄

𝑄+ 1
𝜌(𝛽0 + 𝛽1𝑇

−1 + 𝛽2𝜌)

]︂
− log10𝐾

𝐺
𝑤 + 2 log10

18.015268

1000

Parameters
T [float] Temperature of water [K]

rho_w [float] Density of water at temperature and pressure [kg/m^3]

Returns
Kweq [float] Ionization constant of water, [-]
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Notes

Formulation is in terms of density in g/cm^3; density is converted internally.

n = 6; alpha0 = -0.864671; alpha1 = 8659.19; alpha2 = -22786.2; beta0 = 0.642044; beta1 = -56.8534; beta2 =
-0.375754

References

[1]

Examples

Example from IAPWS check:

>>> -1*log10(Kweq_IAPWS(600, 700))
11.203153057603775

thermo.electrochem.Kweq_IAPWS_gas(T)
Calculates equilibrium constant for OH- and H+ in water vapor, according to [1]. This is the most recent formu-
lation available.

−𝑙𝑜𝑔10𝐾𝐺
𝑤 = 𝛾0 + 𝛾1𝑇

−1 + 𝛾2𝑇
−2 + 𝛾3𝑇

−3

Parameters
T [float] Temperature of H2O [K]

Returns
K_w_G [float]

Notes

gamma0 = 6.141500E-1; gamma1 = 4.825133E4; gamma2 = -6.770793E4; gamma3 = 1.010210E7

References

[1]

Examples

>>> Kweq_IAPWS_gas(800)
1.4379721554798815e-61

thermo.electrochem.Kweq_1981(T, rho_w)
Calculates equilibrium constant for OH- and H+ in water, according to [1]. Second most recent formulation.

log10𝐾𝑤 = 𝐴+𝐵/𝑇 + 𝐶/𝑇 2 +𝐷/𝑇 3 + (𝐸 + 𝐹/𝑇 +𝐺/𝑇 2) log10 𝜌𝑤

Parameters
T [float] Temperature of fluid [K]
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rho_w [float] Density of water, [kg/m^3]

Returns
Kweq [float] Ionization constant of water, [-]

Notes

Density is internally converted to units of g/cm^3.

A = -4.098; B = -3245.2; C = 2.2362E5; D = -3.984E7; E = 13.957; F = -1262.3; G = 8.5641E5

References

[1]

Examples

>>> -1*log10(Kweq_1981(600, 700))
11.274522047

7.6.8 Balancing Ions

thermo.electrochem.balance_ions(anions, cations, anion_zs=None, cation_zs=None, anion_concs=None,
cation_concs=None, rho_w=997.1, method='increase dominant',
selected_ion=None)

Performs an ion balance to adjust measured experimental ion compositions to electroneutrality. Can accept either
the actual mole fractions of the ions, or their concentrations in units of [mg/L] as well for convinience.

The default method will locate the most prevalent ion in the type of ion not in excess - and increase it until the
two ion types balance.

Parameters
anions [list(ChemicalMetadata)] List of all negatively charged ions measured as being in the

solution; ChemicalMetadata instances or simply objects with the attributes MW and charge,
[-]

cations [list(ChemicalMetadata)] List of all positively charged ions measured as being in the
solution; ChemicalMetadata instances or simply objects with the attributes MW and charge,
[-]

anion_zs [list, optional] Mole fractions of each anion as measured in the aqueous solution, [-]

cation_zs [list, optional] Mole fractions of each cation as measured in the aqueous solution, [-]

anion_concs [list, optional] Concentrations of each anion in the aqueous solution in the units
often reported (for convinience only) [mg/L]

cation_concs [list, optional] Concentrations of each cation in the aqueous solution in the units
often reported (for convinience only) [mg/L]

rho_w [float, optional] Density of the aqueous solutionr at the temperature and pressure the
anion and cation concentrations were measured (if specified), [kg/m^3]
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method [str, optional] The method to use to balance the ionimbalance; one of ‘dominant’, ‘de-
crease dominant’, ‘increase dominant’, ‘proportional insufficient ions increase’, ‘proportional
excess ions decrease’, ‘proportional cation adjustment’, ‘proportional anion adjustment’, ‘Na
or Cl increase’, ‘Na or Cl decrease’, ‘adjust’, ‘increase’, ‘decrease’, ‘makeup’].

selected_ion [ChemicalMetadata, optional] Some methods adjust only one user-specified ion;
this is that input. For the case of the ‘makeup’ method, this is a tuple of (anion, cation)
ChemicalMetadata instances and only the ion type not in excess will be used.

Returns
anions [list[ChemicalMetadata]] List of all negatively charged ions measured as being in the so-

lution; ChemicalMetadata instances after potentially adding in an ion which was not present
but specified by the user, [-]

cations [list[ChemicalMetadata]] List of all positively charged ions measured as being in the so-
lution; ChemicalMetadata instances after potentially adding in an ion which was not present
but specified by the user, [-]

anion_zs [list[float],] Mole fractions of each anion in the aqueous solution after the charge bal-
ance, [-]

cation_zs [list[float]] Mole fractions of each cation in the aqueous solution after the charge bal-
ance, [-]

z_water [float[float]] Mole fraction of the water in the solution, [-]

Notes

The methods perform the charge balance as follows:

• ‘dominant’ : The ion with the largest mole fraction in solution has its concentration adjusted up or down
as necessary to balance the solution.

• ‘decrease dominant’ : The ion with the largest mole fraction in the type of ion with excess charge has its
own mole fraction decreased to balance the solution.

• ‘increase dominant’ : The ion with the largest mole fraction in the type of ion with insufficient charge has
its own mole fraction decreased to balance the solution.

• ‘proportional insufficient ions increase’ : The ion charge type which is present insufficiently has each of
the ions mole fractions increased proportionally until the solution is balanced.

• ‘proportional excess ions decrease’ : The ion charge type which is present in excess has each of the ions
mole fractions decreased proportionally until the solution is balanced.

• ‘proportional cation adjustment’ : All cations have their mole fractions increased or decreased proportion-
ally as necessary to balance the solution.

• ‘proportional anion adjustment’ : All anions have their mole fractions increased or decreased proportionally
as necessary to balance the solution.

• ‘Na or Cl increase’ : Either Na+ or Cl- is added to the solution until the solution is balanced; the species
will be added if they were not present initially as well.

• ‘Na or Cl decrease’ : Either Na+ or Cl- is removed from the solution until the solution is balanced; the
species will be added if they were not present initially as well.

• ‘adjust’ : An ion specified with the parameter selected_ion has its mole fraction increased or decreased
as necessary to balance the solution. An exception is raised if the specified ion alone cannot balance the
solution.

7.6. Electrochemistry (thermo.electrochem) 143



thermo Documentation, Release 0.2.20

• ‘increase’ : An ion specified with the parameter selected_ion has its mole fraction increased as necessary
to balance the solution. An exception is raised if the specified ion alone cannot balance the solution.

• ‘decrease’ : An ion specified with the parameter selected_ion has its mole fraction decreased as necessary
to balance the solution. An exception is raised if the specified ion alone cannot balance the solution.

• ‘makeup’ : Two ions ase specified as a tuple with the parameter selected_ion. Whichever ion type is present
in the solution insufficiently is added; i.e. if the ions were Mg+2 and Cl-, and there was too much negative
charge in the solution, Mg+2 would be added until the solution was balanced.

Examples

>>> anions_n = ['Cl-', 'HCO3-', 'SO4-2']
>>> cations_n = ['Na+', 'K+', 'Ca+2', 'Mg+2']
>>> cations = [identifiers.pubchem_db.search_name(i) for i in cations_n]
>>> anions = [identifiers.pubchem_db.search_name(i) for i in anions_n]
>>> an_res, cat_res, an_zs, cat_zs, z_water = balance_ions(anions, cations,
... anion_zs=[0.02557, 0.00039, 0.00026], cation_zs=[0.0233, 0.00075,
... 0.00262, 0.00119], method='proportional excess ions decrease')
>>> an_zs
[0.02557, 0.00039, 0.00026]
>>> cat_zs
[0.01948165456267761, 0.0006270918850647299, 0.0021906409851594564, 0.
→˓0009949857909693717]
>>> z_water
0.9504856267761288

7.6.9 Fit Coefficients and Data

All of these coefficients are lazy-loaded, so they must be accessed as an attribute of this module.

In [1]: from thermo.electrochem import Magomedovk_thermal_cond, cond_data_McCleskey, CRC_
→˓aqueous_thermodynamics, electrolyte_dissociation_reactions, Laliberte_data

In [2]: Magomedovk_thermal_cond
Out[2]:

Formula Chemical Ai
CASRN
497-19-8 Na2CO3 Sodium carbonate -0.00050
584-08-7 K2CO3 Potassium carbonate 0.00160
7447-39-4 CuCl2 Cuprous chloride 0.00360
7488-54-2 Rb2SO4 Rubidium sulfate 0.00134
7601-89-0 NaClO4 Sodium perchlorate 0.00250
7646-79-9 CoCl2 Cobaltous chloride 0.00320
7664-93-9 H2SO4 Acid sulfate 0.00305
7699-45-8 ZnBr2 Zinc bromide 0.00410
7718-54-9 NiCl2 Nickelous chloride 0.00330
7758-94-3 FeCl2 Ferrous chloride 0.00294
7761-88-8 AgNO3 Silver nitrate 0.00190
7775-09-9 NaClO3 Sodium chlorate 0.00240
7778-50-9 K2Cr2O7 Potassium dichromate 0.00188
7786-81-4 NiSO4 Nickelous sulfate 0.00140

(continues on next page)
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(continued from previous page)

7789-00-6 K2CrO4 Potassium chromate 0.00130
7789-23-3 KF Potassium fluoride 0.00180
7789-38-0 NaBrO3 Sodium bromate 0.00170
7789-39-1 RbBr Rubidium bromide 0.00305
7789-42-6 CdBr2 Cadmium bromide 0.00274
7789-46-0 FeBr2 Ferrous bromide 0.00375
7790-29-6 RbI Rubidium iodide 0.00322
7790-80-9 CdI2 Cadmium iodide 0.00302
7791-11-9 RbCl Rubidium chloride 0.00238
10042-76-9 Sr(NO3)2 Strontium nitrate 0.00153
10043-01-3 Al2(SO4)3 Aluminum sulfate 0.00335
10099-74-8 Pb(NO3)2 Lead nitrate 0.00138
10102-68-8 CaI2 Calcium iodide 0.00340
10139-47-6 ZnI2 Zinc iodide 0.00410
10325-94-7 Cd(NO3)2 Cadmium nitrate 0.00155
10377-51-2 LiI Lithium iodide 0.00435
10377-58-9 MgI2 Magnesium iodide 0.00417
10476-81-0 SrBr2 Strontium bromide 0.00290
10476-85-4 SrCl2 Strontium chloride 0.00170
10476-86-5 SrI2 Strontium iodide 0.00311
12027-06-4 NH4I Ammonium iodide 0.00480
13126-12-0 RbNO3 Rubidium nitrate 0.00214
13462-88-9 NiBr2 Nickelous bromide 0.00396
13462-90-3 NiI2 Nickelous iodide 0.00393
15238-00-3 CoI2 Cobaltous iodide 0.00384

In [3]: cond_data_McCleskey
Out[3]:

formula c1 c2 ... d3 B multiplier
CASRN ...
7447-40-7 KCl 0.009385 2.533 ... 44.11 1.70 1
7647-14-5 NaCl 0.008967 2.196 ... 44.55 1.30 1
7647-01-0 HCl -0.006766 6.614 ... 48.53 0.01 1
7447-41-8 LiCl 0.008784 1.996 ... 42.79 1.00 1
7647-17-8 CsCl 0.010080 2.479 ... 41.29 1.40 1
12125-02-9 NH4Cl 0.006575 2.684 ... 30.00 0.70 1
10043-52-4 CaCl2 0.011240 2.224 ... 137.70 3.80 2
7786-30-3 MgCl2 0.009534 2.247 ... 129.80 3.10 2
10361-37-2 BaCl2 0.010380 2.346 ... 111.80 2.40 2
10476-85-4 SrCl2 0.009597 2.279 ... 60.18 0.80 2
7664-93-9 H2SO4 -0.019850 7.421 ... 1869.00 11.50 2
7757-82-6 Na2SO4 0.009501 2.317 ... 135.50 2.20 2
7778-80-5 K2SO4 0.008819 2.872 ... 247.10 5.30 2
10294-54-9 Cs2SO4 0.012730 2.457 ... 187.40 3.30 2
7778-18-9 CaSO4 0.011920 2.564 ... 644.40 9.60 2
7646-93-7 KHSO4 -0.003092 9.759 ... 1776.00 8.20 1
298-14-6 KHCO3 0.007807 2.040 ... 38.58 0.90 1
584-08-7 K2CO3 0.011450 2.726 ... 81.12 2.10 2
144-55-8 NaHCO3 0.012600 1.543 ... 52.94 1.10 1
497-19-8 Na2CO3 0.022960 5.211 ... 455.80 4.80 2
1310-73-2 NaOH 0.006936 3.872 ... 56.76 0.20 1
7681-49-4 NaF 0.007346 2.032 ... 69.99 2.30 1

(continues on next page)
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7789-23-3 KF 0.007451 2.294 ... 39.40 0.90 1
7758-02-3 KBr 0.007076 2.612 ... 29.49 0.60 1
7757-79-1 KNO3 0.009117 2.309 ... 49.12 0.70 1
7779-88-6 Zn(NO3)2 0.015260 4.519 ... 302.90 4.00 2

[26 rows x 9 columns]

In [4]: CRC_aqueous_thermodynamics
Out[4]:

Formula Name ... S(aq) Cp(aq)
CAS ...
57-12-5 CN- Cyanide ion ... 94.1 NaN
71-47-6 CHOO- Formate ion ... 92.0 -87.9
71-50-1 CH3COO- Acetate ion ... 86.6 -6.3
71-52-3 HCO3- Bicarbonate ion ... 91.2 NaN
302-04-5 SCN- Thiocyanate ion ... 144.3 -40.2
... ... ... ... ... ...
117412-24-5 BeO2-2 Beryllium dioxide ion ... -159.0 NaN
127622-32-6 Y(OH)+2 Yttrium hydroxide ion ... NaN NaN
129466-35-9 Te(OH)3+ Tellurium(IV) trihydroxide ion ... 111.7 NaN
186449-38-7 InOH+2 Indium hydroxide ion ... -88.0 NaN
2099995000-00-0 Y2(OH)2+4 Yttrium dihydroxide ion ... NaN NaN

[173 rows x 7 columns]

In [5]: electrolyte_dissociation_reactions
Out[5]:

Electrolyte name Electrolyte CAS ... Cation charge Cation count
0 Diammonium Hydrogen phosphate 7783-28-0 ... 1 2
1 Ammonium Sulfate 7783-20-2 ... 1 2
2 ammonium sulfite 10196-04-0 ... 1 2
3 Ammonium phosphate 10361-65-6 ... 1 3
4 Ammonium siliconhexafluoride 16919-19-0 ... 1 2
.. ... ... ... ... ...
259 Zinc selenite 13597-46-1 ... 2 1
260 Zinc selenate 13597-54-1 ... 2 1
261 Zinc Nitrate 7779-88-6 ... 2 1
262 Zinc Chloride 7646-85-7 ... 2 1
263 Zinc Sulfate 7733-02-0 ... 2 1

[264 rows x 11 columns]

In [6]: Laliberte_data
Out[6]:

Name Formula ... Max w.2 No of points in corr.2
CASRN ...
7783-20-2 Ammonium Sulfate (NH4)2SO4 ... NaN NaN
10043-01-3 Aluminum Sulfate Al2(SO4)3 ... NaN NaN
7446-70-0 Aluminum Chloride AlCl3 ... NaN NaN
10022-31-8 Barium Nitrate Ba(NO3)2 ... 0.047274 96.0
10361-37-2 Barium Chloride BaCl2 ... 0.248237 16.0
... ... ... ... ... ...

(continues on next page)
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57-50-1 Sucrose Sucrose ... NaN NaN
13825-74-6 Titanyl Sulfate TiOSO4 ... NaN NaN
7779-88-6 Zinc Nitrate Zn(NO3)2 ... 0.077132 144.0
7646-85-7 Zinc Chloride ZnCl2 ... NaN NaN
7733-02-0 Zinc Sulfate ZnSO4 ... NaN NaN

[109 rows x 32 columns]

7.7 Cubic Equations of State (thermo.eos)

This module contains implementations of most cubic equations of state for pure components. This includes Peng-
Robinson, SRK, Van der Waals, PRSV, TWU and many other variants.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Base Class

• Standard Peng-Robinson Family EOSs

– Standard Peng Robinson

– Peng Robinson (1978)

– Peng Robinson Stryjek-Vera

– Peng Robinson Stryjek-Vera 2

– Peng Robinson Twu (1995)

– Peng Robinson Polynomial alpha Function

• Volume Translated Peng-Robinson Family EOSs

– Peng Robinson Translated

– Peng Robinson Translated Twu (1991)

– Peng Robinson Translated-Consistent

– Peng Robinson Translated (Pina-Martinez, Privat, and Jaubert Variant)

• Soave-Redlich-Kwong Family EOSs

– Standard SRK

– Twu SRK (1995)

– API SRK

– SRK Translated

– SRK Translated-Consistent

– SRK Translated (Pina-Martinez, Privat, and Jaubert Variant)

– MSRK Translated

• Van der Waals Equations of State

• Redlich-Kwong Equations of State
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• Ideal Gas Equation of State

• Lists of Equations of State

• Demonstrations of Concepts

– Maximum Pressure at Constant Volume

– Debug Plots to Understand EOSs

7.7.1 Base Class

class thermo.eos.GCEOS
Bases: object

Class for solving a generic Pressure-explicit three-parameter cubic equation of state. Does not implement any
parameters itself; must be subclassed by an equation of state class which uses it. Works for mixtures or pure
species for all properties except fugacity. All properties are derived with the CAS SymPy, not relying on any
derivations previously published.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 2 + 𝛿𝑉 + 𝜖

The main methods (in order they are called) are GCEOS.solve, GCEOS.set_from_PT, GCEOS.
volume_solutions, and GCEOS.set_properties_from_solution.

GCEOS.solve calls GCEOS.check_sufficient_inputs, which checks if two of T, P, and V were set. It then
solves for the remaining variable. If T is missing, method GCEOS.solve_T is used; it is parameter specific,
and so must be implemented in each specific EOS. If P is missing, it is directly calculated. If V is missing, it is
calculated with the method GCEOS.volume_solutions. At this point, either three possible volumes or one user
specified volume are known. The value of a_alpha, and its first and second temperature derivative are calculated
with the EOS-specific method GCEOS.a_alpha_and_derivatives.

If V is not provided, GCEOS.volume_solutions calculates the three possible molar volumes which are solutions
to the EOS; in the single-phase region, only one solution is real and correct. In the two-phase region, all volumes
are real, but only the largest and smallest solution are physically meaningful, with the largest being that of the
gas and the smallest that of the liquid.

GCEOS.set_from_PT is called to sort out the possible molar volumes. For the case of a user-specified V,
the possibility of there existing another solution is ignored for speed. If there is only one real volume, the
method GCEOS.set_properties_from_solution is called with it. If there are two real volumes, GCEOS.
set_properties_from_solution is called once with each volume. The phase is returned by GCEOS.
set_properties_from_solution, and the volumes is set to either GCEOS.V_l or GCEOS.V_g as appropriate.

GCEOS.set_properties_from_solution is a large function which calculates all relevant partial derivatives
and properties of the EOS. 17 derivatives and excess enthalpy and entropy are calculated first. Finally, it sets all
these properties as attibutes for either the liquid or gas phase with the convention of adding on _l or _g to the
variable names, respectively.

Attributes
T [float] Temperature of cubic EOS state, [K]

P [float] Pressure of cubic EOS state, [Pa]

a [float] a parameter of cubic EOS; formulas vary with the EOS, [Pa*m^6/mol^2]

b [float] b parameter of cubic EOS; formulas vary with the EOS, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]
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epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of 𝑎𝛼 calculated by EOS-specific method,
[J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of 𝑎𝛼 calculated by EOS-specific
method, [J^2/mol^2/Pa/K**2]

Zc [float] Critical compressibility of cubic EOS state, [-]

phase [str] One of ‘l’, ‘g’, or ‘l/g’ to represent whether or not there is a liquid-like solution,
vapor-like solution, or both available, [-]

raw_volumes [list[(float, complex), 3]] Calculated molar volumes from the volume solver; de-
pending on the state and selected volume solver, imaginary volumes may be represented by
0 or -1j to save the time of actually calculating them, [m^3/mol]

V_l [float] Liquid phase molar volume, [m^3/mol]

V_g [float] Vapor phase molar volume, [m^3/mol]

V [float or None] Molar volume specified as input; otherwise None, [m^3/mol]

Z_l [float] Liquid phase compressibility, [-]

Z_g [float] Vapor phase compressibility, [-]

PIP_l [float] Liquid phase phase identification parameter, [-]

PIP_g [float] Vapor phase phase identification parameter, [-]

dP_dT_l [float] Liquid phase temperature derivative of pressure at constant volume, [Pa/K].(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

=
𝑅

𝑉 − 𝑏
−

𝑎𝑑𝛼(𝑇 )
𝑑𝑇

𝑉 2 + 𝑉 𝛿 + 𝜖

dP_dT_g [float] Vapor phase temperature derivative of pressure at constant volume, [Pa/K].(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

=
𝑅

𝑉 − 𝑏
−

𝑎𝑑𝛼(𝑇 )
𝑑𝑇

𝑉 2 + 𝑉 𝛿 + 𝜖

dP_dV_l [float] Liquid phase volume derivative of pressure at constant temperature,
[Pa*mol/m^3]. (︂

𝜕𝑃

𝜕𝑉

)︂
𝑇

= − 𝑅𝑇

(𝑉 − 𝑏)
2 − 𝑎 (−2𝑉 − 𝛿)𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

dP_dV_g [float] Gas phase volume derivative of pressure at constant temperature,
[Pa*mol/m^3]. (︂

𝜕𝑃

𝜕𝑉

)︂
𝑇

= − 𝑅𝑇

(𝑉 − 𝑏)
2 − 𝑎 (−2𝑉 − 𝛿)𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

dV_dT_l [float] Liquid phase temperature derivative of volume at constant pressure,
[m^3/(mol*K)]. (︂

𝜕𝑉

𝜕𝑇

)︂
𝑃

= −
(︀
𝜕𝑃
𝜕𝑇

)︀
𝑉(︀

𝜕𝑃
𝜕𝑉

)︀
𝑇
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dV_dT_g [float] Gas phase temperature derivative of volume at constant pressure,
[m^3/(mol*K)]. (︂

𝜕𝑉

𝜕𝑇

)︂
𝑃

= −
(︀
𝜕𝑃
𝜕𝑇

)︀
𝑉(︀

𝜕𝑃
𝜕𝑉

)︀
𝑇

dV_dP_l [float] Liquid phase pressure derivative of volume at constant temperature,
[m^3/(mol*Pa)]. (︂

𝜕𝑉

𝜕𝑃

)︂
𝑇

= −
(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

dV_dP_g [float] Gas phase pressure derivative of volume at constant temperature,
[m^3/(mol*Pa)]. (︂

𝜕𝑉

𝜕𝑃

)︂
𝑇

= −
(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

dT_dV_l [float] Liquid phase volume derivative of temperature at constant pressure,
[K*mol/m^3]. (︂

𝜕𝑇

𝜕𝑉

)︂
𝑃

=
1(︀

𝜕𝑉
𝜕𝑇

)︀
𝑃

dT_dV_g [float] Gas phase volume derivative of temperature at constant pressure,
[K*mol/m^3]. See GCEOS.set_properties_from_solution for the formula.

dT_dP_l [float] Liquid phase pressure derivative of temperature at constant volume, [K/Pa].(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

=
1(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

dT_dP_g [float] Gas phase pressure derivative of temperature at constant volume, [K/Pa].(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

=
1(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

d2P_dT2_l [float] Liquid phase second derivative of pressure with respect to temperature at
constant volume, [Pa/K^2]. (︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

= −
𝑎𝑑2𝛼(𝑇 )

𝑑𝑇 2

𝑉 2 + 𝑉 𝛿 + 𝜖

d2P_dT2_g [float] Gas phase second derivative of pressure with respect to temperature at con-
stant volume, [Pa/K^2]. (︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

= −
𝑎𝑑2𝛼(𝑇 )

𝑑𝑇 2

𝑉 2 + 𝑉 𝛿 + 𝜖

d2P_dV2_l [float] Liquid phase second derivative of pressure with respect to volume at constant
temperature, [Pa*mol^2/m^6].(︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

= 2

(︃
𝑅𝑇

(𝑉 − 𝑏)
3 − 𝑎 (2𝑉 + 𝛿)

2
𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
3 +

𝑎𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

)︃
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d2P_dTdV_l [float] Liquid phase second derivative of pressure with respect to volume and then
temperature, [Pa*mol/(K*m^3)].(︂

𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂
= − 𝑅

(𝑉 − 𝑏)
2 +

𝑎 (2𝑉 + 𝛿) 𝑑𝛼(𝑇 )
𝑑𝑇

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

d2P_dTdV_g [float] Gas phase second derivative of pressure with respect to volume and then
temperature, [Pa*mol/(K*m^3)].(︂

𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂
= − 𝑅

(𝑉 − 𝑏)
2 +

𝑎 (2𝑉 + 𝛿) 𝑑𝛼(𝑇 )
𝑑𝑇

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

H_dep_l [float] Liquid phase departure enthalpy, [J/mol]. See GCEOS.
set_properties_from_solution for the formula.

H_dep_g [float] Gas phase departure enthalpy, [J/mol]. See GCEOS.
set_properties_from_solution for the formula.

S_dep_l [float] Liquid phase departure entropy, [J/(mol*K)]. See GCEOS.
set_properties_from_solution for the formula.

S_dep_g [float] Gas phase departure entropy, [J/(mol*K)]. See GCEOS.
set_properties_from_solution for the formula.

G_dep_l [float] Liquid phase departure Gibbs energy, [J/mol].

𝐺𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

G_dep_g [float] Gas phase departure Gibbs energy, [J/mol].

𝐺𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

Cp_dep_l [float] Liquid phase departure heat capacity, [J/(mol*K)]

𝐶𝑝,𝑑𝑒𝑝 = (𝐶𝑝 − 𝐶𝑣)from EOS + 𝐶𝑣,𝑑𝑒𝑝 −𝑅

Cp_dep_g [float] Gas phase departure heat capacity, [J/(mol*K)]

𝐶𝑝,𝑑𝑒𝑝 = (𝐶𝑝 − 𝐶𝑣)from EOS + 𝐶𝑣,𝑑𝑒𝑝 −𝑅

Cv_dep_l [float] Liquid phase departure constant volume heat capacity, [J/(mol*K)]. See
GCEOS.set_properties_from_solution for the formula.

Cv_dep_g [float] Gas phase departure constant volume heat capacity, [J/(mol*K)]. See GCEOS.
set_properties_from_solution for the formula.

c1 [float] Full value of the constant in the a parameter, set in some EOSs, [-]

c2 [float] Full value of the constant in the b parameter, set in some EOSs, [-]

A_dep_g Departure molar Helmholtz energy from ideal gas behavior for the gas phase, [J/mol].

A_dep_l Departure molar Helmholtz energy from ideal gas behavior for the liquid phase,
[J/mol].

beta_g Isobaric (constant-pressure) expansion coefficient for the gas phase, [1/K].

beta_l Isobaric (constant-pressure) expansion coefficient for the liquid phase, [1/K].
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Cp_minus_Cv_g Cp - Cv for the gas phase, [J/mol/K].

Cp_minus_Cv_l Cp - Cv for the liquid phase, [J/mol/K].

d2a_alpha_dTdP_g_V Derivative of the temperature derivative of a_alpha with respect to pres-
sure at constant volume (varying T) for the gas phase, [J^2/mol^2/Pa^2/K].

d2a_alpha_dTdP_l_V Derivative of the temperature derivative of a_alpha with respect to pres-
sure at constant volume (varying T) for the liquid phase, [J^2/mol^2/Pa^2/K].

d2H_dep_dT2_g Second temperature derivative of departure enthalpy with respect to tempera-
ture for the gas phase, [(J/mol)/K^2].

d2H_dep_dT2_g_P Second temperature derivative of departure enthalpy with respect to tem-
perature for the gas phase, [(J/mol)/K^2].

d2H_dep_dT2_g_V Second temperature derivative of departure enthalpy with respect to tem-
perature at constant volume for the gas phase, [(J/mol)/K^2].

d2H_dep_dT2_l Second temperature derivative of departure enthalpy with respect to tempera-
ture for the liquid phase, [(J/mol)/K^2].

d2H_dep_dT2_l_P Second temperature derivative of departure enthalpy with respect to tem-
perature for the liquid phase, [(J/mol)/K^2].

d2H_dep_dT2_l_V Second temperature derivative of departure enthalpy with respect to tem-
perature at constant volume for the liquid phase, [(J/mol)/K^2].

d2H_dep_dTdP_g Temperature and pressure derivative of departure enthalpy at constant pres-
sure then temperature for the gas phase, [(J/mol)/K/Pa].

d2H_dep_dTdP_l Temperature and pressure derivative of departure enthalpy at constant pres-
sure then temperature for the liquid phase, [(J/mol)/K/Pa].

d2P_drho2_g Second derivative of pressure with respect to molar density for the gas phase,
[Pa/(mol/m^3)^2].

d2P_drho2_l Second derivative of pressure with respect to molar density for the liquid phase,
[Pa/(mol/m^3)^2].

d2P_dT2_PV_g Second derivative of pressure with respect to temperature twice, but with pres-
sure held constant the first time and volume held constant the second time for the gas phase,
[Pa/K^2].

d2P_dT2_PV_l Second derivative of pressure with respect to temperature twice, but with pres-
sure held constant the first time and volume held constant the second time for the liquid
phase, [Pa/K^2].

d2P_dTdP_g Second derivative of pressure with respect to temperature and, then pressure; and
with volume held constant at first, then temperature, for the gas phase, [1/K].

d2P_dTdP_l Second derivative of pressure with respect to temperature and, then pressure; and
with volume held constant at first, then temperature, for the liquid phase, [1/K].

d2P_dTdrho_g Derivative of pressure with respect to molar density, and temperature for the
gas phase, [Pa/(K*mol/m^3)].

d2P_dTdrho_l Derivative of pressure with respect to molar density, and temperature for the
liquid phase, [Pa/(K*mol/m^3)].

d2P_dVdP_g Second derivative of pressure with respect to molar volume and then pressure for
the gas phase, [mol/m^3].
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d2P_dVdP_l Second derivative of pressure with respect to molar volume and then pressure for
the liquid phase, [mol/m^3].

d2P_dVdT_g Alias of GCEOS.d2P_dTdV_g

d2P_dVdT_l Alias of GCEOS.d2P_dTdV_l

d2P_dVdT_TP_g Second derivative of pressure with respect to molar volume and then temper-
ature at constant temperature then pressure for the gas phase, [Pa*mol/m^3/K].

d2P_dVdT_TP_l Second derivative of pressure with respect to molar volume and then temper-
ature at constant temperature then pressure for the liquid phase, [Pa*mol/m^3/K].

d2rho_dP2_g Second derivative of molar density with respect to pressure for the gas phase,
[(mol/m^3)/Pa^2].

d2rho_dP2_l Second derivative of molar density with respect to pressure for the liquid phase,
[(mol/m^3)/Pa^2].

d2rho_dPdT_g Second derivative of molar density with respect to pressure and temperature for
the gas phase, [(mol/m^3)/(K*Pa)].

d2rho_dPdT_l Second derivative of molar density with respect to pressure and temperature for
the liquid phase, [(mol/m^3)/(K*Pa)].

d2rho_dT2_g Second derivative of molar density with respect to temperature for the gas phase,
[(mol/m^3)/K^2].

d2rho_dT2_l Second derivative of molar density with respect to temperature for the liquid
phase, [(mol/m^3)/K^2].

d2S_dep_dT2_g Second temperature derivative of departure entropy with respect to tempera-
ture for the gas phase, [(J/mol)/K^3].

d2S_dep_dT2_g_V Second temperature derivative of departure entropy with respect to temper-
ature at constant volume for the gas phase, [(J/mol)/K^3].

d2S_dep_dT2_l Second temperature derivative of departure entropy with respect to tempera-
ture for the liquid phase, [(J/mol)/K^3].

d2S_dep_dT2_l_V Second temperature derivative of departure entropy with respect to temper-
ature at constant volume for the liquid phase, [(J/mol)/K^3].

d2S_dep_dTdP_g Temperature and pressure derivative of departure entropy at constant pressure
then temperature for the gas phase, [(J/mol)/K^2/Pa].

d2S_dep_dTdP_l Temperature and pressure derivative of departure entropy at constant pressure
then temperature for the liquid phase, [(J/mol)/K^2/Pa].

d2T_dP2_g Second partial derivative of temperature with respect to pressure (constant volume)
for the gas phase, [K/Pa^2].

d2T_dP2_l Second partial derivative of temperature with respect to pressure (constant temper-
ature) for the liquid phase, [K/Pa^2].

d2T_dPdrho_g Derivative of temperature with respect to molar density, and pressure for the
gas phase, [K/(Pa*mol/m^3)].

d2T_dPdrho_l Derivative of temperature with respect to molar density, and pressure for the
liquid phase, [K/(Pa*mol/m^3)].

d2T_dPdV_g Second partial derivative of temperature with respect to pressure (constant vol-
ume) and then volume (constant pressure) for the gas phase, [K*mol/(Pa*m^3)].
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d2T_dPdV_l Second partial derivative of temperature with respect to pressure (constant vol-
ume) and then volume (constant pressure) for the liquid phase, [K*mol/(Pa*m^3)].

d2T_drho2_g Second derivative of temperature with respect to molar density for the gas phase,
[K/(mol/m^3)^2].

d2T_drho2_l Second derivative of temperature with respect to molar density for the liquid
phase, [K/(mol/m^3)^2].

d2T_dV2_g Second partial derivative of temperature with respect to volume (constant pressure)
for the gas phase, [K*mol^2/m^6].

d2T_dV2_l Second partial derivative of temperature with respect to volume (constant pressure)
for the liquid phase, [K*mol^2/m^6].

d2T_dVdP_g Second partial derivative of temperature with respect to pressure (constant vol-
ume) and then volume (constant pressure) for the gas phase, [K*mol/(Pa*m^3)].

d2T_dVdP_l Second partial derivative of temperature with respect to pressure (constant vol-
ume) and then volume (constant pressure) for the liquid phase, [K*mol/(Pa*m^3)].

d2V_dP2_g Second partial derivative of volume with respect to pressure (constant temperature)
for the gas phase, [m^3/(Pa^2*mol)].

d2V_dP2_l Second partial derivative of volume with respect to pressure (constant temperature)
for the liquid phase, [m^3/(Pa^2*mol)].

d2V_dPdT_g Second partial derivative of volume with respect to pressure (constant tempera-
ture) and then presssure (constant temperature) for the gas phase, [m^3/(K*Pa*mol)].

d2V_dPdT_l Second partial derivative of volume with respect to pressure (constant tempera-
ture) and then presssure (constant temperature) for the liquid phase, [m^3/(K*Pa*mol)].

d2V_dT2_g Second partial derivative of volume with respect to temperature (constant pressure)
for the gas phase, [m^3/(mol*K^2)].

d2V_dT2_l Second partial derivative of volume with respect to temperature (constant pressure)
for the liquid phase, [m^3/(mol*K^2)].

d2V_dTdP_g Second partial derivative of volume with respect to pressure (constant tempera-
ture) and then presssure (constant temperature) for the gas phase, [m^3/(K*Pa*mol)].

d2V_dTdP_l Second partial derivative of volume with respect to pressure (constant tempera-
ture) and then presssure (constant temperature) for the liquid phase, [m^3/(K*Pa*mol)].

d3a_alpha_dT3 Method to calculate the third temperature derivative of 𝑎𝛼,
[J^2/mol^2/Pa/K^3].

da_alpha_dP_g_V Derivative of the a_alpha with respect to pressure at constant volume (vary-
ing T) for the gas phase, [J^2/mol^2/Pa^2].

da_alpha_dP_l_V Derivative of the a_alpha with respect to pressure at constant volume (vary-
ing T) for the liquid phase, [J^2/mol^2/Pa^2].

dbeta_dP_g Derivative of isobaric expansion coefficient with respect to pressure for the gas
phase, [1/(Pa*K)].

dbeta_dP_l Derivative of isobaric expansion coefficient with respect to pressure for the liquid
phase, [1/(Pa*K)].

dbeta_dT_g Derivative of isobaric expansion coefficient with respect to temperature for the gas
phase, [1/K^2].
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dbeta_dT_l Derivative of isobaric expansion coefficient with respect to temperature for the
liquid phase, [1/K^2].

dfugacity_dP_g Derivative of fugacity with respect to pressure for the gas phase, [-].

dfugacity_dP_l Derivative of fugacity with respect to pressure for the liquid phase, [-].

dfugacity_dT_g Derivative of fugacity with respect to temperature for the gas phase, [Pa/K].

dfugacity_dT_l Derivative of fugacity with respect to temperature for the liquid phase,
[Pa/K].

dH_dep_dP_g Derivative of departure enthalpy with respect to pressure for the gas phase,
[(J/mol)/Pa].

dH_dep_dP_g_V Derivative of departure enthalpy with respect to pressure at constant volume
for the liquid phase, [(J/mol)/Pa].

dH_dep_dP_l Derivative of departure enthalpy with respect to pressure for the liquid phase,
[(J/mol)/Pa].

dH_dep_dP_l_V Derivative of departure enthalpy with respect to pressure at constant volume
for the gas phase, [(J/mol)/Pa].

dH_dep_dT_g Derivative of departure enthalpy with respect to temperature for the gas phase,
[(J/mol)/K].

dH_dep_dT_g_V Derivative of departure enthalpy with respect to temperature at constant vol-
ume for the gas phase, [(J/mol)/K].

dH_dep_dT_l Derivative of departure enthalpy with respect to temperature for the liquid phase,
[(J/mol)/K].

dH_dep_dT_l_V Derivative of departure enthalpy with respect to temperature at constant vol-
ume for the liquid phase, [(J/mol)/K].

dH_dep_dV_g_P Derivative of departure enthalpy with respect to volume at constant pressure
for the gas phase, [J/m^3].

dH_dep_dV_g_T Derivative of departure enthalpy with respect to volume at constant tempera-
ture for the gas phase, [J/m^3].

dH_dep_dV_l_P Derivative of departure enthalpy with respect to volume at constant pressure
for the liquid phase, [J/m^3].

dH_dep_dV_l_T Derivative of departure enthalpy with respect to volume at constant tempera-
ture for the gas phase, [J/m^3].

dP_drho_g Derivative of pressure with respect to molar density for the gas phase,
[Pa/(mol/m^3)].

dP_drho_l Derivative of pressure with respect to molar density for the liquid phase,
[Pa/(mol/m^3)].

dphi_dP_g Derivative of fugacity coefficient with respect to pressure for the gas phase, [1/Pa].

dphi_dP_l Derivative of fugacity coefficient with respect to pressure for the liquid phase,
[1/Pa].

dphi_dT_g Derivative of fugacity coefficient with respect to temperature for the gas phase,
[1/K].

dphi_dT_l Derivative of fugacity coefficient with respect to temperature for the liquid phase,
[1/K].
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drho_dP_g Derivative of molar density with respect to pressure for the gas phase,
[(mol/m^3)/Pa].

drho_dP_l Derivative of molar density with respect to pressure for the liquid phase,
[(mol/m^3)/Pa].

drho_dT_g Derivative of molar density with respect to temperature for the gas phase,
[(mol/m^3)/K].

drho_dT_l Derivative of molar density with respect to temperature for the liquid phase,
[(mol/m^3)/K].

dS_dep_dP_g Derivative of departure entropy with respect to pressure for the gas phase,
[(J/mol)/K/Pa].

dS_dep_dP_g_V Derivative of departure entropy with respect to pressure at constant volume
for the gas phase, [(J/mol)/K/Pa].

dS_dep_dP_l Derivative of departure entropy with respect to pressure for the liquid phase,
[(J/mol)/K/Pa].

dS_dep_dP_l_V Derivative of departure entropy with respect to pressure at constant volume
for the liquid phase, [(J/mol)/K/Pa].

dS_dep_dT_g Derivative of departure entropy with respect to temperature for the gas phase,
[(J/mol)/K^2].

dS_dep_dT_g_V Derivative of departure entropy with respect to temperature at constant volume
for the gas phase, [(J/mol)/K^2].

dS_dep_dT_l Derivative of departure entropy with respect to temperature for the liquid phase,
[(J/mol)/K^2].

dS_dep_dT_l_V Derivative of departure entropy with respect to temperature at constant volume
for the liquid phase, [(J/mol)/K^2].

dS_dep_dV_g_P Derivative of departure entropy with respect to volume at constant pressure
for the gas phase, [J/K/m^3].

dS_dep_dV_g_T Derivative of departure entropy with respect to volume at constant temperature
for the gas phase, [J/K/m^3].

dS_dep_dV_l_P Derivative of departure entropy with respect to volume at constant pressure
for the liquid phase, [J/K/m^3].

dS_dep_dV_l_T Derivative of departure entropy with respect to volume at constant temperature
for the gas phase, [J/K/m^3].

dT_drho_g Derivative of temperature with respect to molar density for the gas phase,
[K/(mol/m^3)].

dT_drho_l Derivative of temperature with respect to molar density for the liquid phase,
[K/(mol/m^3)].

dZ_dP_g Derivative of compressibility factor with respect to pressure for the gas phase, [1/Pa].

dZ_dP_l Derivative of compressibility factor with respect to pressure for the liquid phase,
[1/Pa].

dZ_dT_g Derivative of compressibility factor with respect to temperature for the gas phase,
[1/K].

dZ_dT_l Derivative of compressibility factor with respect to temperature for the liquid phase,
[1/K].
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fugacity_g Fugacity for the gas phase, [Pa].

fugacity_l Fugacity for the liquid phase, [Pa].

kappa_g Isothermal (constant-temperature) expansion coefficient for the gas phase, [1/Pa].

kappa_l Isothermal (constant-temperature) expansion coefficient for the liquid phase, [1/Pa].

lnphi_g The natural logarithm of the fugacity coefficient for the gas phase, [-].

lnphi_l The natural logarithm of the fugacity coefficient for the liquid phase, [-].

more_stable_phase Checks the Gibbs energy of each possible phase, and returns ‘l’ if the
liquid-like phase is more stable, and ‘g’ if the vapor-like phase is more stable.

mpmath_volume_ratios Method to compare, as ratios, the volumes of the implemented cubic
solver versus those calculated using mpmath.

mpmath_volumes Method to calculate to a high precision the exact roots to the cubic equation,
using mpmath.

mpmath_volumes_float Method to calculate real roots of a cubic equation, using mpmath, but
returned as floats.

phi_g Fugacity coefficient for the gas phase, [Pa].

phi_l Fugacity coefficient for the liquid phase, [Pa].

rho_g Gas molar density, [mol/m^3].

rho_l Liquid molar density, [mol/m^3].

sorted_volumes List of lexicographically-sorted molar volumes available from the root find-
ing algorithm used to solve the PT point.

state_specs Convenience method to return the two specified state specs (T, P, or V ) as a
dictionary.

U_dep_g Departure molar internal energy from ideal gas behavior for the gas phase, [J/mol].

U_dep_l Departure molar internal energy from ideal gas behavior for the liquid phase, [J/mol].

Vc Critical volume, [m^3/mol].

V_dep_g Departure molar volume from ideal gas behavior for the gas phase, [m^3/mol].

V_dep_l Departure molar volume from ideal gas behavior for the liquid phase, [m^3/mol].

V_g_mpmath The molar volume of the gas phase calculated with mpmath to a higher precision,
[m^3/mol].

V_l_mpmath The molar volume of the liquid phase calculated with mpmath to a higher preci-
sion, [m^3/mol].

Methods

Hvap(T) Method to calculate enthalpy of vaporization for a
pure fluid from an equation of state, without iteration.

PT_surface_special([Tmin, Tmax, Pmin, Pmax,
...])

Method to create a plot of the special curves of a fluid
- vapor pressure, determinant zeros, pseudo critical
point, and mechanical critical point.

continues on next page
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Table 7 – continued from previous page
P_PIP_transition(T[, low_P_limit]) Method to calculate the pressure which makes the

phase identification parameter exactly 1.
P_discriminant_zero_g() Method to calculate the pressure which zero the dis-

criminant function of the general cubic eos, and is
likely to sit on a boundary between not having a
vapor-like volume; and having a vapor-like volume.

P_discriminant_zero_l() Method to calculate the pressure which zero the dis-
criminant function of the general cubic eos, and is
likely to sit on a boundary between not having a
liquid-like volume; and having a liquid-like volume.

P_discriminant_zeros() Method to calculate the pressures which zero the dis-
criminant function of the general cubic eos, at the cur-
rent temperature.

P_discriminant_zeros_analytical(T, b, delta,
...)

Method to calculate the pressures which zero the dis-
criminant function of the general cubic eos.

P_max_at_V(V) Dummy method.
Psat(T[, polish, guess]) Generic method to calculate vapor pressure for a

specified T.
Psat_errors([Tmin, Tmax, pts, plot, show, ...]) Method to create a plot of vapor pressure and the rel-

ative error of its calculation vs.
T_discriminant_zero_g([T_guess]) Method to calculate the temperature which zeros the

discriminant function of the general cubic eos, and
is likely to sit on a boundary between not having a
vapor-like volume; and having a vapor-like volume.

T_discriminant_zero_l([T_guess]) Method to calculate the temperature which zeros the
discriminant function of the general cubic eos, and
is likely to sit on a boundary between not having a
liquid-like volume; and having a liquid-like volume.

T_max_at_V(V[, Pmax]) Method to calculate the maximum temperature the
EOS can create at a constant volume, if one exists;
returns None otherwise.

T_min_at_V(V[, Pmin]) Returns the minimum temperature for the EOS to
have the volume as specified.

Tsat(P[, polish]) Generic method to calculate the temperature for a
specified vapor pressure of the pure fluid.

V_g_sat(T) Method to calculate molar volume of the vapor phase
along the saturation line.

V_l_sat(T) Method to calculate molar volume of the liquid phase
along the saturation line.

Vs_mpmath () Method to calculate real roots of a cubic equation,
using mpmath.

a_alpha_and_derivatives(T[, full, quick, ...]) Method to calculate 𝑎𝛼 and its first and second
derivatives.

a_alpha_and_derivatives_pure(T) Dummy method to calculate 𝑎𝛼 and its first and sec-
ond derivatives.

a_alpha_for_Psat(T, Psat[, a_alpha_guess]) Method to calculate which value of 𝑎𝛼 is required for
a given T, Psat pair.

a_alpha_for_V(T, P, V) Method to calculate which value of 𝑎𝛼 is required for
a given T, P pair to match a specified V.

a_alpha_plot([Tmin, Tmax, pts, plot, show]) Method to create a plot of the 𝑎𝛼 parameter and its
first two derivatives.

continues on next page
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Table 7 – continued from previous page
as_json() Method to create a JSON-friendly serialization of the

eos which can be stored, and reloaded later.
check_sufficient_inputs() Method to an exception if none of the pairs (T, P), (T,

V), or (P, V) are given.
d2phi_sat_dT2(T[, polish]) Method to calculate the second temperature deriva-

tive of saturation fugacity coefficient of the com-
pound.

dH_dep_dT_sat_g(T[, polish]) Method to calculate and return the temperature
derivative of saturation vapor excess enthalpy.

dH_dep_dT_sat_l(T[, polish]) Method to calculate and return the temperature
derivative of saturation liquid excess enthalpy.

dPsat_dT(T[, polish, also_Psat]) Generic method to calculate the temperature deriva-
tive of vapor pressure for a specified T.

dS_dep_dT_sat_g(T[, polish]) Method to calculate and return the temperature
derivative of saturation vapor excess entropy.

dS_dep_dT_sat_l(T[, polish]) Method to calculate and return the temperature
derivative of saturation liquid excess entropy.

discriminant([T, P]) Method to compute the discriminant of the cubic vol-
ume solution with the current EOS parameters, op-
tionally at the same (assumed) T, and P or at different
ones, if values are specified.

dphi_sat_dT(T[, polish]) Method to calculate the temperature derivative of sat-
uration fugacity coefficient of the compound.

from_json(json_repr) Method to create a eos from a JSON serialization of
another eos.

model_hash () Basic method to calculate a hash of the non-state
parts of the model This is useful for comparing to
models to determine if they are the same, i.e. in a
VLL flash it is important to know if both liquids have
the same model.

phi_sat(T[, polish]) Method to calculate the saturation fugacity coeffi-
cient of the compound.

resolve_full_alphas() Generic method to resolve the eos with fully calcu-
lated alpha derviatives.

saturation_prop_plot(prop[, Tmin, Tmax, ...]) Method to create a plot of a specified property of the
EOS along the (pure component) saturation line.

set_from_PT(Vs[, only_l, only_g]) Counts the number of real volumes in Vs, and deter-
mines what to do.

set_properties_from_solution(T, P, V, b, ...) Sets all interesting properties which can be calculated
from an EOS alone.

solve([pure_a_alphas, only_l, only_g, ...]) First EOS-generic method; should be called by all
specific EOSs.

solve_T(P, V[, solution]) Generic method to calculate T from a specified P and
V.

solve_missing_volumes() Generic method to ensure both volumes, if solutions
are physical, have calculated properties.

state_hash () Basic method to calculate a hash of the state of the
model and its model parameters.

to([T, P, V]) Method to construct a new EOS object at two of T, P
or V.

continues on next page
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Table 7 – continued from previous page
to_PV(P, V) Method to construct a new EOS object at the spcified

P and V.
to_TP(T, P) Method to construct a new EOS object at the spcified

T and P.
to_TV(T, V) Method to construct a new EOS object at the spcified

T and V.
volume_error() Method to calculate the relative absolute error in the

calculated molar volumes.
volume_errors([Tmin, Tmax, Pmin, Pmax, pts,
...])

Method to create a plot of the relative absolute error
in the cubic volume solution as compared to a higher-
precision calculation.

volume_solutions(T, P, b, delta, epsilon, ...) Halley's method based solver for cubic EOS volumes
based on the idea of initializing from a single liquid-
like guess which is solved precisely, deflating the cu-
bic analytically, solving the quadratic equation for the
next two volumes, and then performing two halley
steps on each of them to obtain the final solutions.

volume_solutions_full(T, P, b, delta, ...[, ...]) Newton-Raphson based solver for cubic EOS vol-
umes based on the idea of initializing from an ana-
lytical solver.

volume_solutions_mp(T, P, b, delta, epsilon, ...) Solution of this form of the cubic EOS in terms of vol-
umes, using the mpmath arbitrary precision library.

property A_dep_g
Departure molar Helmholtz energy from ideal gas behavior for the gas phase, [J/mol].

𝐴𝑑𝑒𝑝 = 𝑈𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

property A_dep_l
Departure molar Helmholtz energy from ideal gas behavior for the liquid phase, [J/mol].

𝐴𝑑𝑒𝑝 = 𝑈𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

property Cp_minus_Cv_g
Cp - Cv for the gas phase, [J/mol/K].

𝐶𝑝 − 𝐶𝑣 = −𝑇
(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

property Cp_minus_Cv_l
Cp - Cv for the liquid phase, [J/mol/K].

𝐶𝑝 − 𝐶𝑣 = −𝑇
(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Hvap(T)
Method to calculate enthalpy of vaporization for a pure fluid from an equation of state, without iteration.

𝑑𝑃 𝑠𝑎𝑡

𝑑𝑇
=

∆𝐻𝑣𝑎𝑝

𝑇 (𝑉𝑔 − 𝑉𝑙)

Results above the critical temperature are meaningless. A first-order polynomial is used to extrapolate
under 0.32 Tc; however, there is normally not a volume solution to the EOS which can produce that low of
a pressure.
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Parameters
T [float] Temperature, [K]

Returns
Hvap [float] Increase in enthalpy needed for vaporization of liquid phase along the saturation

line, [J/mol]

Notes

Calculates vapor pressure and its derivative with Psat and dPsat_dT as well as molar volumes of the satu-
ration liquid and vapor phase in the process.

Very near the critical point this provides unrealistic results due to Psat’s polynomials being insufficiently
accurate.

References

[1]

N = 1
The number of components in the EOS

PT_surface_special(Tmin=0.0001, Tmax=10000.0, Pmin=0.01, Pmax=1000000000.0, pts=50,
show=False, color_map=None, mechanical=True, pseudo_critical=True, Psat=True,
determinant_zeros=True, phase_ID_transition=True, base_property='V',
base_min=None, base_max=None, base_selection='Gmin')

Method to create a plot of the special curves of a fluid - vapor pressure, determinant zeros, pseudo critical
point, and mechanical critical point.

The color background is a plot of the molar volume (by default) which has the minimum Gibbs energy (by
default). If shown with a sufficient number of points, the curve between vapor and liquid should be shown
smoothly.

Parameters
Tmin [float, optional] Minimum temperature of calculation, [K]

Tmax [float, optional] Maximum temperature of calculation, [K]

Pmin [float, optional] Minimum pressure of calculation, [Pa]

Pmax [float, optional] Maximum pressure of calculation, [Pa]

pts [int, optional] The number of points to include in both the x and y axis [-]

show [bool, optional] Whether or not the plot should be rendered and shown; a handle to it
is returned if plot is True for other purposes such as saving the plot to a file, [-]

color_map [matplotlib.cm.ListedColormap, optional] Matplotlib colormap object, [-]

mechanical [bool, optional] Whether or not to include the mechanical critical point; this is
the same as the critical point for a pure compound but not for a mixture, [-]

pseudo_critical [bool, optional] Whether or not to include the pseudo critical point; this is
the same as the critical point for a pure compound but not for a mixture, [-]

Psat [bool, optional] Whether or not to include the vapor pressure curve; for mixtures this
is neither the bubble nor dew curve, but rather a hypothetical one which uses the same
equation as the pure components, [-]
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determinant_zeros [bool, optional] Whether or not to include a curve showing when the
EOS’s determinant hits zero, [-]

phase_ID_transition [bool, optional] Whether or not to show a curve of where the PIP hits
1 exactly, [-]

base_property [str, optional] The property which should be plotted; ‘_l’ and ‘_g’ are added
automatically according to the selected phase, [-]

base_min [float, optional] If specified, the base property will values will be limited to this
value at the minimum, [-]

base_max [float, optional] If specified, the base property will values will be limited to this
value at the maximum, [-]

base_selection [str, optional] For the base property, there are often two possible phases and
but only one value can be plotted; use ‘l’ to pefer liquid-like values, ‘g’ to prefer gas-like
values, and ‘Gmin’ to prefer values of the phase with the lowest Gibbs energy, [-]

Returns
fig [matplotlib.figure.Figure] Plotted figure, only returned if plot is True, [-]

P_PIP_transition(T, low_P_limit=0.0)
Method to calculate the pressure which makes the phase identification parameter exactly 1. There are three
regions for this calculation:

• subcritical - PIP = 1 for the gas-like phase at P = 0

• initially supercritical - PIP = 1 on a curve starting at the critical point, increasing for a while, decreasing
for a while, and then curving sharply back to a zero pressure.

• later supercritical - PIP = 1 for the liquid-like phase at P = 0

Parameters
T [float] Temperature for the calculation, [K]

low_P_limit [float] What value to return for the subcritical and later region, [Pa]

Returns
P [float] Pressure which makes the PIP = 1, [Pa]

Notes

The transition between the region where this function returns values and the high temperature region that
doesn’t is the Joule-Thomson inversion point at a pressure of zero and can be directly solved for.

Examples

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=299.,␣
→˓P=1E6)
>>> eos.P_PIP_transition(100)
0.0
>>> low_T = eos.to(T=100.0, P=eos.P_PIP_transition(100, low_P_limit=1e-5))
>>> low_T.PIP_l, low_T.PIP_g
(45.778088191, 0.9999999997903)
>>> initial_super = eos.to(T=600.0, P=eos.P_PIP_transition(600))

(continues on next page)
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>>> initial_super.P, initial_super.PIP_g
(6456282.17132, 0.999999999999)
>>> high_T = eos.to(T=900.0, P=eos.P_PIP_transition(900, low_P_limit=1e-5))
>>> high_T.P, high_T.PIP_g
(12536704.763, 0.9999999999)

P_discriminant_zero_g()
Method to calculate the pressure which zero the discriminant function of the general cubic eos, and is likely
to sit on a boundary between not having a vapor-like volume; and having a vapor-like volume.

Returns
P_discriminant_zero_g [float] Pressure which make the discriminants zero at the right con-

dition, [Pa]

Examples

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=299.,␣
→˓P=1E6)
>>> P_trans = eos.P_discriminant_zero_g()
>>> P_trans
149960391.7

In this case, the discriminant transition does not reveal a transition to two roots being available, only negative
roots becoming negative and imaginary.

>>> eos.to(T=eos.T, P=P_trans*.99999999).mpmath_volumes_float
((-0.0001037013146195082-1.5043987866732543e-08j), (-0.0001037013146195082+1.
→˓5043987866732543e-08j), (0.00011799201928619508+0j))
>>> eos.to(T=eos.T, P=P_trans*1.0000001).mpmath_volumes_float
((-0.00010374888853182635+0j), (-0.00010365374200380354+0j), (0.
→˓00011799201875924273+0j))

P_discriminant_zero_l()
Method to calculate the pressure which zero the discriminant function of the general cubic eos, and is likely
to sit on a boundary between not having a liquid-like volume; and having a liquid-like volume.

Returns
P_discriminant_zero_l [float] Pressure which make the discriminants zero at the right con-

dition, [Pa]

Examples

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=299.,␣
→˓P=1E6)
>>> P_trans = eos.P_discriminant_zero_l()
>>> P_trans
478346.37289

In this case, the discriminant transition shows the change in roots:
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>>> eos.to(T=eos.T, P=P_trans*.99999999).mpmath_volumes_float
((0.00013117994140177062+0j), (0.002479717165903531+0j), (0.
→˓002480236178570793+0j))
>>> eos.to(T=eos.T, P=P_trans*1.0000001).mpmath_volumes_float
((0.0001311799413872173+0j), (0.002479976386402769-8.206310112063695e-07j), (0.
→˓002479976386402769+8.206310112063695e-07j))

P_discriminant_zeros()
Method to calculate the pressures which zero the discriminant function of the general cubic eos, at the
current temperature.

Returns
P_discriminant_zeros [list[float]] Pressures which make the discriminants zero, [Pa]

Examples

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=299.,␣
→˓P=1E6)
>>> eos.P_discriminant_zeros()
[478346.3, 149960391.7]

static P_discriminant_zeros_analytical(T, b, delta, epsilon, a_alpha, valid=False)
Method to calculate the pressures which zero the discriminant function of the general cubic eos. This is a
quartic function solved analytically.

Parameters
T [float] Temperature, [K]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

valid [bool] Whether to filter the calculated pressures so that they are all real, and positive
only, [-]

Returns
P_discriminant_zeros [float] Pressures which make the discriminants zero, [Pa]

Notes

Calculated analytically. Derived as follows.

>>> from sympy import *
>>> P, T, V, R, b, a, delta, epsilon = symbols('P, T, V, R, b, a, delta, epsilon
→˓')
>>> eta = b
>>> B = b*P/(R*T)
>>> deltas = delta*P/(R*T)
>>> thetas = a*P/(R*T)**2
>>> epsilons = epsilon*(P/(R*T))**2

(continues on next page)
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>>> etas = eta*P/(R*T)
>>> a_coeff = 1
>>> b_coeff = (deltas - B - 1)
>>> c = (thetas + epsilons - deltas*(B+1))
>>> d = -(epsilons*(B+1) + thetas*etas)
>>> disc = b_coeff*b_coeff*c*c - 4*a_coeff*c*c*c - 4*b_coeff*b_coeff*b_coeff*d -
→˓ 27*a_coeff*a_coeff*d*d + 18*a_coeff*b_coeff*c*d
>>> base = -(expand(disc/P**2*R**3*T**3))
>>> sln = collect(base, P)

P_max_at_V(V)
Dummy method. The idea behind this method, which is implemented by some subclasses, is to calculate
the maximum pressure the EOS can create at a constant volume, if one exists; returns None otherwise. This
method, as a dummy method, always returns None.

Parameters
V [float] Constant molar volume, [m^3/mol]

Returns
P [float] Maximum possible isochoric pressure, [Pa]

P_zero_g_cheb_limits = (0.0, 0.0)

P_zero_l_cheb_limits = (0.0, 0.0)

Psat(T, polish=False, guess=None)
Generic method to calculate vapor pressure for a specified T.

From Tc to 0.32Tc, uses a 10th order polynomial of the following form:

ln
𝑃𝑟

𝑇𝑟
=

10∑︁
𝑘=0

𝐶𝑘

(︂
𝛼

𝑇𝑟
− 1

)︂𝑘

If polish is True, SciPy’s newton solver is launched with the calculated vapor pressure as an initial guess in
an attempt to get more accuracy. This may not converge however.

Results above the critical temperature are meaningless. A first-order polynomial is used to extrapolate
under 0.32 Tc; however, there is normally not a volume solution to the EOS which can produce that low of
a pressure.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to attempt to use a numerical solver to make the solution
more precise or not

Returns
Psat [float] Vapor pressure, [Pa]
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Notes

EOSs sharing the same b, delta, and epsilon have the same coefficient sets.

Form for the regression is inspired from [1].

No volume solution is needed when polish=False; the only external call is for the value of a_alpha.

References

[1]

Psat_cheb_range = (0.0, 0.0)

Psat_errors(Tmin=None, Tmax=None, pts=50, plot=False, show=False, trunc_err_low=1e-18,
trunc_err_high=1.0, Pmin=1e-100)

Method to create a plot of vapor pressure and the relative error of its calculation vs. the iterative polish
approach.

Parameters
Tmin [float] Minimum temperature of calculation; if this is too low the saturation routines

will stop converging, [K]

Tmax [float] Maximum temperature of calculation; cannot be above the critical temperature,
[K]

pts [int, optional] The number of temperature points to include [-]

plot [bool] If False, the solution is returned without plotting the data, [-]

show [bool] Whether or not the plot should be rendered and shown; a handle to it is returned
if plot is True for other purposes such as saving the plot to a file, [-]

trunc_err_low [float] Minimum plotted error; values under this are rounded to 0, [-]

trunc_err_high [float] Maximum plotted error; values above this are rounded to 1, [-]

Pmin [float] Minimum pressure for the solution to work on, [Pa]

Returns
errors [list[float]] Absolute relative errors, [-]

Psats_num [list[float]] Vapor pressures calculated to full precision, [Pa]

Psats_fit [list[float]] Vapor pressures calculated with the fast solution, [Pa]

fig [matplotlib.figure.Figure] Plotted figure, only returned if plot is True, [-]

T_discriminant_zero_g(T_guess=None)
Method to calculate the temperature which zeros the discriminant function of the general cubic eos, and is
likely to sit on a boundary between not having a vapor-like volume; and having a vapor-like volume.

Parameters
T_guess [float, optional] Temperature guess, [K]

Returns
T_discriminant_zero_g [float] Temperature which make the discriminants zero at the right

condition, [K]
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Notes

Significant numerical issues remain in improving this method.

Examples

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=299.,␣
→˓P=1E6)
>>> T_trans = eos.T_discriminant_zero_g()
>>> T_trans
644.3023307

In this case, the discriminant transition does not reveal a transition to two roots being available, only to
there being a double (imaginary) root.

>>> eos.to(P=eos.P, T=T_trans).mpmath_volumes_float
((9.309597822372529e-05-0.00015876248805149625j), (9.309597822372529e-05+0.
→˓00015876248805149625j), (0.005064847204219234+0j))

T_discriminant_zero_l(T_guess=None)
Method to calculate the temperature which zeros the discriminant function of the general cubic eos, and is
likely to sit on a boundary between not having a liquid-like volume; and having a liquid-like volume.

Parameters
T_guess [float, optional] Temperature guess, [K]

Returns
T_discriminant_zero_l [float] Temperature which make the discriminants zero at the right

condition, [K]

Notes

Significant numerical issues remain in improving this method.

Examples

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=299.,␣
→˓P=1E6)
>>> T_trans = eos.T_discriminant_zero_l()
>>> T_trans
644.3023307

In this case, the discriminant transition does not reveal a transition to two roots being available, only to
there being a double (imaginary) root.

>>> eos.to(P=eos.P, T=T_trans).mpmath_volumes_float
((9.309597822372529e-05-0.00015876248805149625j), (9.309597822372529e-05+0.
→˓00015876248805149625j), (0.005064847204219234+0j))

T_max_at_V(V, Pmax=None)
Method to calculate the maximum temperature the EOS can create at a constant volume, if one exists;
returns None otherwise.
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Parameters
V [float] Constant molar volume, [m^3/mol]

Pmax [float] Maximum possible isochoric pressure, if already known [Pa]

Returns
T [float] Maximum possible temperature, [K]

Examples

>>> e = PR(P=1e5, V=0.0001437, Tc=512.5, Pc=8084000.0, omega=0.559)
>>> e.T_max_at_V(e.V)
431155.5

T_min_at_V(V, Pmin=1e-15)
Returns the minimum temperature for the EOS to have the volume as specified. Under this temperature,
the pressure will go negative (and the EOS will not solve).

Tsat(P, polish=False)
Generic method to calculate the temperature for a specified vapor pressure of the pure fluid. This is simply
a bounded solver running between 0.2Tc and Tc on the Psat method.

Parameters
P [float] Vapor pressure, [Pa]

polish [bool, optional] Whether to attempt to use a numerical solver to make the solution
more precise or not

Returns
Tsat [float] Temperature of saturation, [K]

Notes

It is recommended not to run with polish=True, as that will make the calculation much slower.

property U_dep_g
Departure molar internal energy from ideal gas behavior for the gas phase, [J/mol].

𝑈𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑃𝑉𝑑𝑒𝑝

property U_dep_l
Departure molar internal energy from ideal gas behavior for the liquid phase, [J/mol].

𝑈𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑃𝑉𝑑𝑒𝑝

property V_dep_g
Departure molar volume from ideal gas behavior for the gas phase, [m^3/mol].

𝑉𝑑𝑒𝑝 = 𝑉 − 𝑅𝑇

𝑃
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property V_dep_l
Departure molar volume from ideal gas behavior for the liquid phase, [m^3/mol].

𝑉𝑑𝑒𝑝 = 𝑉 − 𝑅𝑇

𝑃

property V_g_mpmath
The molar volume of the gas phase calculated with mpmath to a higher precision, [m^3/mol]. This is
useful for validating the cubic root solver(s). It is not quite a true arbitrary solution to the EOS, because
the constants b,`epsilon`, delta and a_alpha as well as the input arguments T and P are not calculated with
arbitrary precision. This is a feature when comparing the volume solution algorithms however as they work
with the same finite-precision variables.

V_g_sat(T)
Method to calculate molar volume of the vapor phase along the saturation line.

Parameters
T [float] Temperature, [K]

Returns
V_g_sat [float] Gas molar volume along the saturation line, [m^3/mol]

Notes

Computes Psat, and then uses volume_solutions to obtain the three possible molar volumes. The highest
value is returned.

property V_l_mpmath
The molar volume of the liquid phase calculated with mpmath to a higher precision, [m^3/mol]. This is
useful for validating the cubic root solver(s). It is not quite a true arbitrary solution to the EOS, because
the constants b,`epsilon`, delta and a_alpha as well as the input arguments T and P are not calculated with
arbitrary precision. This is a feature when comparing the volume solution algorithms however as they work
with the same finite-precision variables.

V_l_sat(T)
Method to calculate molar volume of the liquid phase along the saturation line.

Parameters
T [float] Temperature, [K]

Returns
V_l_sat [float] Liquid molar volume along the saturation line, [m^3/mol]

Notes

Computes Psat, and then uses volume_solutions to obtain the three possible molar volumes. The lowest
value is returned.

property Vc
Critical volume, [m^3/mol].

𝑉𝑐 =
𝑍𝑐𝑅𝑇𝑐
𝑃𝑐
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Vs_mpmath()
Method to calculate real roots of a cubic equation, using mpmath.

Returns
Vs [list[mpf]] Either 1 or 3 real volumes as calculated by mpmath, [m^3/mol]

Examples

>>> eos = PRTranslatedTwu(T=300, P=1e5, Tc=512.5, Pc=8084000.0, omega=0.559,␣
→˓alpha_coeffs=(0.694911, 0.9199, 1.7), c=-1e-6)
>>> eos.Vs_mpmath()
[mpf('0.0000489261705320261435106226558966745'), mpf('0.
→˓000541508154451321441068958547812526'), mpf('0.
→˓0243149463942697410611501615357228')]

__repr__()
Create a string representation of the EOS - by default, include all parameters so as to make it easy to
construct new instances from states. Includes the two specified state variables, Tc, Pc, omega and any
kwargs.

Returns
recreation [str] String which is valid Python and recreates the current state of the object if

ran, [-]

Examples

>>> eos = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=400.0, P=1e6)
>>> eos
PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=400.0, P=1000000.0)

a_alpha_and_derivatives(T, full=True, quick=True, pure_a_alphas=True)
Method to calculate 𝑎𝛼 and its first and second derivatives.

Parameters
T [float] Temperature, [K]

full [bool, optional] If False, calculates and returns only a_alpha, [-]

quick [bool, optional] Legary parameter being phased out [-]

pure_a_alphas [bool, optional] Whether or not to recalculate the a_alpha terms of pure com-
ponents (for the case of mixtures only) which stay the same as the composition changes (i.e
in a PT flash); does nothing in the case of pure EOSs [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]
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a_alpha_and_derivatives_pure(T)
Dummy method to calculate 𝑎𝛼 and its first and second derivatives. Should be implemented with the
same function signature in each EOS variant; this only raises a NotImplemented Exception. Should return
‘a_alpha’, ‘da_alpha_dT’, and ‘d2a_alpha_dT2’.

Parameters
T [float] Temperature, [K]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

a_alpha_for_Psat(T, Psat, a_alpha_guess=None)
Method to calculate which value of 𝑎𝛼 is required for a given T, Psat pair. This is a numerical solution,
but not a very complicated one.

Parameters
T [float] Temperature, [K]

Psat [float] Vapor pressure specified, [Pa]

a_alpha_guess [float] Optionally, an initial guess for the solver [J^2/mol^2/Pa]

Returns
a_alpha [float] Value calculated to match specified volume for the current EOS,

[J^2/mol^2/Pa]

Notes

The implementation of this function is a direct calculation of departure gibbs energy, which is equal in both
phases at saturation.

Examples

>>> eos = PR(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6)
>>> eos.a_alpha_for_Psat(T=400, Psat=5e5)
3.1565798926

a_alpha_for_V(T, P, V)
Method to calculate which value of 𝑎𝛼 is required for a given T, P pair to match a specified V. This is a
straightforward analytical equation.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

Returns
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a_alpha [float] Value calculated to match specified volume for the current EOS,
[J^2/mol^2/Pa]

Notes

The derivation of the solution is as follows:

>>> from sympy import *
>>> P, T, V, R, b, a, delta, epsilon = symbols('P, T, V, R, b, a, delta, epsilon
→˓')
>>> a_alpha = symbols('a_alpha')
>>> CUBIC = R*T/(V-b) - a_alpha/(V*V + delta*V + epsilon)
>>> solve(Eq(CUBIC, P), a_alpha)
[(-P*V**3 + P*V**2*b - P*V**2*delta + P*V*b*delta - P*V*epsilon + P*b*epsilon +␣
→˓R*T*V**2 + R*T*V*delta + R*T*epsilon)/(V - b)]

a_alpha_plot(Tmin=0.0001, Tmax=None, pts=1000, plot=True, show=True)
Method to create a plot of the 𝑎𝛼 parameter and its first two derivatives. This easily allows identification
of EOSs which are displaying inconsistent behavior.

Parameters
Tmin [float] Minimum temperature of calculation, [K]

Tmax [float] Maximum temperature of calculation, [K]

pts [int, optional] The number of temperature points to include [-]

plot [bool] If False, the calculated values and temperatures are returned without plotting the
data, [-]

show [bool] Whether or not the plot should be rendered and shown; a handle to it is returned
if plot is True for other purposes such as saving the plot to a file, [-]

Returns
Ts [list[float]] Logarithmically spaced temperatures in specified range, [K]

a_alpha [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [list[float]] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

fig [matplotlib.figure.Figure] Plotted figure, only returned if plot is True, [-]

as_json()
Method to create a JSON-friendly serialization of the eos which can be stored, and reloaded later.

Returns
json_repr [dict] JSON-friendly representation, [-]
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Examples

>>> import json
>>> eos = MSRKTranslated(Tc=507.6, Pc=3025000, omega=0.2975, c=22.0561E-6, M=0.
→˓7446, N=0.2476, T=250., P=1E6)
>>> assert eos == MSRKTranslated.from_json(json.loads(json.dumps(eos.as_
→˓json())))

property beta_g
Isobaric (constant-pressure) expansion coefficient for the gas phase, [1/K].

𝛽 =
1

𝑉

𝜕𝑉

𝜕𝑇

property beta_l
Isobaric (constant-pressure) expansion coefficient for the liquid phase, [1/K].

𝛽 =
1

𝑉

𝜕𝑉

𝜕𝑇

c1 = None
Parameter used by some equations of state in the a calculation

c2 = None
Parameter used by some equations of state in the b calculation

check_sufficient_inputs()
Method to an exception if none of the pairs (T, P), (T, V), or (P, V) are given.

property d2H_dep_dT2_g
Second temperature derivative of departure enthalpy with respect to temperature for the gas phase,
[(J/mol)/K^2].
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property d2H_dep_dT2_g_P
Second temperature derivative of departure enthalpy with respect to temperature for the gas phase,
[(J/mol)/K^2].
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property d2H_dep_dT2_g_V
Second temperature derivative of departure enthalpy with respect to temperature at constant volume for the
gas phase, [(J/mol)/K^2].
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property d2H_dep_dT2_l
Second temperature derivative of departure enthalpy with respect to temperature for the liquid phase,
[(J/mol)/K^2].

𝜕2𝐻𝑑𝑒𝑝,𝑙

𝜕𝑇 2
= 𝑃

𝑑2

𝑑𝑇 2
𝑉 (𝑇 ) −

8𝑇 𝑑
𝑑𝑇 𝑉 (𝑇 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁ +

2𝑇 atanh
(︁

𝛿+2𝑉 (𝑇 )√
𝛿2−4𝜖

)︁
𝑑3

𝑑𝑇 3 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

+
16 (𝛿 + 2𝑉 (𝑇 ))

(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀ (︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2
(𝛿2 − 4𝜖)

2
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁2 −

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝑑2

𝑑𝑇 2𝑉 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁ +

2 atanh
(︁

𝛿+2𝑉 (𝑇 )√
𝛿2−4𝜖

)︁
𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property d2H_dep_dT2_l_P
Second temperature derivative of departure enthalpy with respect to temperature for the liquid phase,
[(J/mol)/K^2].
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property d2H_dep_dT2_l_V
Second temperature derivative of departure enthalpy with respect to temperature at constant volume for the
liquid phase, [(J/mol)/K^2].

(︂
𝜕2𝐻𝑑𝑒𝑝,𝑙

𝜕𝑇 2

)︂
𝑉

=
2𝑇 atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
𝑑3

𝑑𝑇 3 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

+ 𝑉
𝜕2

𝜕𝑇 2
𝑃 (𝑉, 𝑇 ) +

2 atanh
(︁

2𝑉+𝛿√
𝛿2−4𝜖

)︁
𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property d2H_dep_dTdP_g
Temperature and pressure derivative of departure enthalpy at constant pressure then temperature for the gas
phase, [(J/mol)/K/Pa].(︂
𝜕2𝐻𝑑𝑒𝑝,𝑔

𝜕𝑇𝜕𝑃

)︂
𝑇,𝑃

= 𝑃
𝜕2

𝜕𝑇𝜕𝑃
𝑉 (𝑇, 𝑃 ) −

4𝑇 𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁ +

16 (𝛿 + 2𝑉 (𝑇, 𝑃 ))
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕

𝜕𝑇 𝑉 (𝑇, 𝑃 )

(𝛿2 − 4𝜖)
2
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁2 +

𝜕

𝜕𝑇
𝑉 (𝑇, 𝑃 ) −

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁

property d2H_dep_dTdP_l
Temperature and pressure derivative of departure enthalpy at constant pressure then temperature for the
liquid phase, [(J/mol)/K/Pa].(︂
𝜕2𝐻𝑑𝑒𝑝,𝑙

𝜕𝑇𝜕𝑃

)︂
𝑉

= 𝑃
𝜕2

𝜕𝑇𝜕𝑃
𝑉 (𝑇, 𝑃 ) −

4𝑇 𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁ +

16 (𝛿 + 2𝑉 (𝑇, 𝑃 ))
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕

𝜕𝑇 𝑉 (𝑇, 𝑃 )

(𝛿2 − 4𝜖)
2
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁2 +

𝜕

𝜕𝑇
𝑉 (𝑇, 𝑃 ) −

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁

property d2P_dT2_PV_g
Second derivative of pressure with respect to temperature twice, but with pressure held constant the first
time and volume held constant the second time for the gas phase, [Pa/K^2].(︂
𝜕2𝑃

𝜕𝑇𝜕𝑇

)︂
𝑃,𝑉

= −
𝑅 𝑑

𝑑𝑇 𝑉 (𝑇 )

(−𝑏+ 𝑉 (𝑇 ))
2 −

(︀
−𝛿 𝑑

𝑑𝑇 𝑉 (𝑇 ) − 2𝑉 (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀
𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
2 −

𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 )

property d2P_dT2_PV_l
Second derivative of pressure with respect to temperature twice, but with pressure held constant the first
time and volume held constant the second time for the liquid phase, [Pa/K^2].(︂
𝜕2𝑃

𝜕𝑇𝜕𝑇

)︂
𝑃,𝑉

= −
𝑅 𝑑

𝑑𝑇 𝑉 (𝑇 )

(−𝑏+ 𝑉 (𝑇 ))
2 −

(︀
−𝛿 𝑑

𝑑𝑇 𝑉 (𝑇 ) − 2𝑉 (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀
𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
2 −

𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 )
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property d2P_dTdP_g
Second derivative of pressure with respect to temperature and, then pressure; and with volume held constant
at first, then temperature, for the gas phase, [1/K].(︂

𝜕2𝑃

𝜕𝑇𝜕𝑃

)︂
𝑉,𝑇

= −
𝑅 𝑑

𝑑𝑃 𝑉 (𝑃 )

(−𝑏+ 𝑉 (𝑃 ))
2 −

(︀
−𝛿 𝑑

𝑑𝑃 𝑉 (𝑃 ) − 2𝑉 (𝑃 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

)︀
𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿𝑉 (𝑃 ) + 𝜖+ 𝑉 2(𝑃 ))
2

property d2P_dTdP_l
Second derivative of pressure with respect to temperature and, then pressure; and with volume held constant
at first, then temperature, for the liquid phase, [1/K].(︂

𝜕2𝑃

𝜕𝑇𝜕𝑃

)︂
𝑉,𝑇

= −
𝑅 𝑑

𝑑𝑃 𝑉 (𝑃 )

(−𝑏+ 𝑉 (𝑃 ))
2 −

(︀
−𝛿 𝑑

𝑑𝑃 𝑉 (𝑃 ) − 2𝑉 (𝑃 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

)︀
𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿𝑉 (𝑃 ) + 𝜖+ 𝑉 2(𝑃 ))
2

property d2P_dTdrho_g
Derivative of pressure with respect to molar density, and temperature for the gas phase, [Pa/(K*mol/m^3)].

𝜕2𝑃

𝜕𝜌𝜕𝑇
= −𝑉 2 𝜕2𝑃

𝜕𝑇𝜕𝑉

property d2P_dTdrho_l
Derivative of pressure with respect to molar density, and temperature for the liquid phase,
[Pa/(K*mol/m^3)].

𝜕2𝑃

𝜕𝜌𝜕𝑇
= −𝑉 2 𝜕2𝑃

𝜕𝑇𝜕𝑉

property d2P_dVdP_g
Second derivative of pressure with respect to molar volume and then pressure for the gas phase, [mol/m^3].

𝜕2𝑃

𝜕𝑉 𝜕𝑃
=

2𝑅𝑇 𝑑
𝑑𝑃 𝑉 (𝑃 )

(−𝑏+ 𝑉 (𝑃 ))
3 −

(−𝛿 − 2𝑉 (𝑃 ))
(︀
−2𝛿 𝑑

𝑑𝑃 𝑉 (𝑃 ) − 4𝑉 (𝑃 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

)︀
a𝛼 (𝑇 )

(𝛿𝑉 (𝑃 ) + 𝜖+ 𝑉 2(𝑃 ))
3 +

2 a𝛼 (𝑇 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

(𝛿𝑉 (𝑃 ) + 𝜖+ 𝑉 2(𝑃 ))
2

property d2P_dVdP_l
Second derivative of pressure with respect to molar volume and then pressure for the liquid phase,
[mol/m^3].

𝜕2𝑃

𝜕𝑉 𝜕𝑃
=

2𝑅𝑇 𝑑
𝑑𝑃 𝑉 (𝑃 )

(−𝑏+ 𝑉 (𝑃 ))
3 −

(−𝛿 − 2𝑉 (𝑃 ))
(︀
−2𝛿 𝑑

𝑑𝑃 𝑉 (𝑃 ) − 4𝑉 (𝑃 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

)︀
a𝛼 (𝑇 )

(𝛿𝑉 (𝑃 ) + 𝜖+ 𝑉 2(𝑃 ))
3 +

2 a𝛼 (𝑇 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

(𝛿𝑉 (𝑃 ) + 𝜖+ 𝑉 2(𝑃 ))
2

property d2P_dVdT_TP_g
Second derivative of pressure with respect to molar volume and then temperature at constant temperature
then pressure for the gas phase, [Pa*mol/m^3/K].(︂
𝜕2𝑃

𝜕𝑉 𝜕𝑇

)︂
𝑇,𝑃

=
2𝑅𝑇 𝑑

𝑑𝑇 𝑉 (𝑇 )

(−𝑏+ 𝑉 (𝑇 ))
3 − 𝑅

(−𝑏+ 𝑉 (𝑇 ))
2 −

(−𝛿 − 2𝑉 (𝑇 ))
(︀
−2𝛿 𝑑

𝑑𝑇 𝑉 (𝑇 ) − 4𝑉 (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀
a𝛼 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
3 −

(−𝛿 − 2𝑉 (𝑇 )) 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
2 +

2 a𝛼 (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
2

property d2P_dVdT_TP_l
Second derivative of pressure with respect to molar volume and then temperature at constant temperature
then pressure for the liquid phase, [Pa*mol/m^3/K].(︂
𝜕2𝑃

𝜕𝑉 𝜕𝑇

)︂
𝑇,𝑃

=
2𝑅𝑇 𝑑

𝑑𝑇 𝑉 (𝑇 )

(−𝑏+ 𝑉 (𝑇 ))
3 − 𝑅

(−𝑏+ 𝑉 (𝑇 ))
2 −

(−𝛿 − 2𝑉 (𝑇 ))
(︀
−2𝛿 𝑑

𝑑𝑇 𝑉 (𝑇 ) − 4𝑉 (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀
a𝛼 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
3 −

(−𝛿 − 2𝑉 (𝑇 )) 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
2 +

2 a𝛼 (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

(𝛿𝑉 (𝑇 ) + 𝜖+ 𝑉 2(𝑇 ))
2

7.7. Cubic Equations of State (thermo.eos) 175



thermo Documentation, Release 0.2.20

property d2P_dVdT_g
Alias of GCEOS.d2P_dTdV_g

property d2P_dVdT_l
Alias of GCEOS.d2P_dTdV_l

property d2P_drho2_g
Second derivative of pressure with respect to molar density for the gas phase, [Pa/(mol/m^3)^2].

𝜕2𝑃

𝜕𝜌2
= −𝑉 2

(︂
−𝑉 2 𝜕

2𝑃

𝜕𝑉 2
− 2𝑉

𝜕𝑃

𝜕𝑉

)︂
property d2P_drho2_l

Second derivative of pressure with respect to molar density for the liquid phase, [Pa/(mol/m^3)^2].

𝜕2𝑃

𝜕𝜌2
= −𝑉 2

(︂
−𝑉 2 𝜕

2𝑃

𝜕𝑉 2
− 2𝑉

𝜕𝑃

𝜕𝑉

)︂
property d2S_dep_dT2_g

Second temperature derivative of departure entropy with respect to temperature for the gas phase,
[(J/mol)/K^3].

𝜕2𝑆𝑑𝑒𝑝,𝑔

𝜕𝑇 2
= −

𝑅
(︁

𝑑
𝑑𝑇 𝑉 (𝑇 ) − 𝑉 (𝑇 )

𝑇

)︁
𝑑
𝑑𝑇 𝑉 (𝑇 )

𝑉 2(𝑇 )
+
𝑅
(︁

𝑑2

𝑑𝑇 2𝑉 (𝑇 ) − 2 𝑑
𝑑𝑇 𝑉 (𝑇 )

𝑇 + 2𝑉 (𝑇 )
𝑇 2

)︁
𝑉 (𝑇 )

−
𝑅 𝑑2

𝑑𝑇 2𝑉 (𝑇 )

𝑉 (𝑇 )
+
𝑅
(︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2
𝑉 2(𝑇 )

−
𝑅 𝑑2

𝑑𝑇 2𝑉 (𝑇 )

𝑏− 𝑉 (𝑇 )
−
𝑅
(︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2
(𝑏− 𝑉 (𝑇 ))

2 +
𝑅
(︁

𝑑
𝑑𝑇 𝑉 (𝑇 ) − 𝑉 (𝑇 )

𝑇

)︁
𝑇𝑉 (𝑇 )

+
16 (𝛿 + 2𝑉 (𝑇 ))

(︀
𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
2
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁2 −

8 𝑑
𝑑𝑇 𝑉 (𝑇 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁ −

4 𝑑2

𝑑𝑇 2𝑉 (𝑇 ) 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁ +

2 atanh
(︁

𝛿+2𝑉 (𝑇 )√
𝛿2−4𝜖

)︁
𝑑3

𝑑𝑇 3 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property d2S_dep_dT2_g_V
Second temperature derivative of departure entropy with respect to temperature at constant volume for the
gas phase, [(J/mol)/K^3].(︂
𝜕2𝑆𝑑𝑒𝑝,𝑔

𝜕𝑇 2

)︂
𝑉

= −
𝑅
(︁

𝜕
𝜕𝑇 𝑃 (𝑉, 𝑇 ) − 𝑃 (𝑉,𝑇 )

𝑇

)︁
𝜕
𝜕𝑇 𝑃 (𝑉, 𝑇 )

𝑃 2(𝑉, 𝑇 )
+
𝑅
(︁

𝜕2

𝜕𝑇 2𝑃 (𝑉, 𝑇 ) − 2 𝜕
𝜕𝑇 𝑃 (𝑉,𝑇 )

𝑇 + 2𝑃 (𝑉,𝑇 )
𝑇 2

)︁
𝑃 (𝑉, 𝑇 )

+
𝑅
(︁

𝜕
𝜕𝑇 𝑃 (𝑉, 𝑇 ) − 𝑃 (𝑉,𝑇 )

𝑇

)︁
𝑇𝑃 (𝑉, 𝑇 )

+
2 atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
𝑑3

𝑑𝑇 3 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property d2S_dep_dT2_l
Second temperature derivative of departure entropy with respect to temperature for the liquid phase,
[(J/mol)/K^3].

𝜕2𝑆𝑑𝑒𝑝,𝑙

𝜕𝑇 2
= −

𝑅
(︁

𝑑
𝑑𝑇 𝑉 (𝑇 ) − 𝑉 (𝑇 )

𝑇

)︁
𝑑
𝑑𝑇 𝑉 (𝑇 )

𝑉 2(𝑇 )
+
𝑅
(︁

𝑑2

𝑑𝑇 2𝑉 (𝑇 ) − 2 𝑑
𝑑𝑇 𝑉 (𝑇 )

𝑇 + 2𝑉 (𝑇 )
𝑇 2

)︁
𝑉 (𝑇 )

−
𝑅 𝑑2

𝑑𝑇 2𝑉 (𝑇 )

𝑉 (𝑇 )
+
𝑅
(︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2
𝑉 2(𝑇 )

−
𝑅 𝑑2

𝑑𝑇 2𝑉 (𝑇 )

𝑏− 𝑉 (𝑇 )
−
𝑅
(︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2
(𝑏− 𝑉 (𝑇 ))

2 +
𝑅
(︁

𝑑
𝑑𝑇 𝑉 (𝑇 ) − 𝑉 (𝑇 )

𝑇

)︁
𝑇𝑉 (𝑇 )

+
16 (𝛿 + 2𝑉 (𝑇 ))

(︀
𝑑
𝑑𝑇 𝑉 (𝑇 )

)︀2 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
2
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁2 −

8 𝑑
𝑑𝑇 𝑉 (𝑇 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁ −

4 𝑑2

𝑑𝑇 2𝑉 (𝑇 ) 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 − 1
)︁ +

2 atanh
(︁

𝛿+2𝑉 (𝑇 )√
𝛿2−4𝜖

)︁
𝑑3

𝑑𝑇 3 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property d2S_dep_dT2_l_V
Second temperature derivative of departure entropy with respect to temperature at constant volume for the
liquid phase, [(J/mol)/K^3].(︂
𝜕2𝑆𝑑𝑒𝑝,𝑙

𝜕𝑇 2

)︂
𝑉

= −
𝑅
(︁

𝜕
𝜕𝑇 𝑃 (𝑉, 𝑇 ) − 𝑃 (𝑉,𝑇 )

𝑇

)︁
𝜕
𝜕𝑇 𝑃 (𝑉, 𝑇 )

𝑃 2(𝑉, 𝑇 )
+
𝑅
(︁

𝜕2

𝜕𝑇 2𝑃 (𝑉, 𝑇 ) − 2 𝜕
𝜕𝑇 𝑃 (𝑉,𝑇 )

𝑇 + 2𝑃 (𝑉,𝑇 )
𝑇 2

)︁
𝑃 (𝑉, 𝑇 )

+
𝑅
(︁

𝜕
𝜕𝑇 𝑃 (𝑉, 𝑇 ) − 𝑃 (𝑉,𝑇 )

𝑇

)︁
𝑇𝑃 (𝑉, 𝑇 )

+
2 atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
𝑑3

𝑑𝑇 3 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property d2S_dep_dTdP_g
Temperature and pressure derivative of departure entropy at constant pressure then temperature for the gas
phase, [(J/mol)/K^2/Pa].(︂
𝜕2𝑆𝑑𝑒𝑝,𝑔

𝜕𝑇𝜕𝑃

)︂
𝑇,𝑃

= −
𝑅 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

𝑉 (𝑇, 𝑃 )
+
𝑅 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )

𝑉 2(𝑇, 𝑃 )
−
𝑅 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

𝑏− 𝑉 (𝑇, 𝑃 )
−
𝑅 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )

(𝑏− 𝑉 (𝑇, 𝑃 ))
2 +

16 (𝛿 + 2𝑉 (𝑇, 𝑃 )) 𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕

𝜕𝑇 𝑉 (𝑇, 𝑃 ) 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
2
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁2 −

4 𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁ −

4 𝑑
𝑑𝑇 a𝛼 (𝑇 ) 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁ −

𝑅
(︀
𝑃 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) + 𝑉 (𝑇, 𝑃 )
)︀

𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )

𝑃𝑉 2(𝑇, 𝑃 )
+
𝑅
(︁
𝑃 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 ) − 𝑃 𝜕
𝜕𝑃 𝑉 (𝑇,𝑃 )

𝑇 + 𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 ) − 𝑉 (𝑇,𝑃 )

𝑇

)︁
𝑃𝑉 (𝑇, 𝑃 )

+
𝑅
(︀
𝑃 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) + 𝑉 (𝑇, 𝑃 )
)︀

𝑃𝑇𝑉 (𝑇, 𝑃 )
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property d2S_dep_dTdP_l
Temperature and pressure derivative of departure entropy at constant pressure then temperature for the
liquid phase, [(J/mol)/K^2/Pa].

(︂
𝜕2𝑆𝑑𝑒𝑝,𝑙

𝜕𝑇𝜕𝑃

)︂
𝑇,𝑃

= −
𝑅 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

𝑉 (𝑇, 𝑃 )
+
𝑅 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )

𝑉 2(𝑇, 𝑃 )
−
𝑅 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

𝑏− 𝑉 (𝑇, 𝑃 )
−
𝑅 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )

(𝑏− 𝑉 (𝑇, 𝑃 ))
2 +

16 (𝛿 + 2𝑉 (𝑇, 𝑃 )) 𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝜕

𝜕𝑇 𝑉 (𝑇, 𝑃 ) 𝑑
𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
2
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁2 −

4 𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 ) 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁ −

4 𝑑
𝑑𝑇 a𝛼 (𝑇 ) 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )

(𝛿2 − 4𝜖)
(︁

(𝛿+2𝑉 (𝑇,𝑃 ))2

𝛿2−4𝜖 − 1
)︁ −

𝑅
(︀
𝑃 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) + 𝑉 (𝑇, 𝑃 )
)︀

𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )

𝑃𝑉 2(𝑇, 𝑃 )
+
𝑅
(︁
𝑃 𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 ) − 𝑃 𝜕
𝜕𝑃 𝑉 (𝑇,𝑃 )

𝑇 + 𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 ) − 𝑉 (𝑇,𝑃 )

𝑇

)︁
𝑃𝑉 (𝑇, 𝑃 )

+
𝑅
(︀
𝑃 𝜕

𝜕𝑃 𝑉 (𝑇, 𝑃 ) + 𝑉 (𝑇, 𝑃 )
)︀

𝑃𝑇𝑉 (𝑇, 𝑃 )

property d2T_dP2_g
Second partial derivative of temperature with respect to pressure (constant volume) for the gas phase,
[K/Pa^2]. (︂

𝜕2𝑇

𝜕𝑃 2

)︂
𝑉

= −
(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

property d2T_dP2_l
Second partial derivative of temperature with respect to pressure (constant temperature) for the liquid phase,
[K/Pa^2]. (︂

𝜕2𝑇

𝜕𝑃 2

)︂
𝑉

= −
(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

property d2T_dPdV_g
Second partial derivative of temperature with respect to pressure (constant volume) and then volume (con-
stant pressure) for the gas phase, [K*mol/(Pa*m^3)].(︂

𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

property d2T_dPdV_l
Second partial derivative of temperature with respect to pressure (constant volume) and then volume (con-
stant pressure) for the liquid phase, [K*mol/(Pa*m^3)].(︂

𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

property d2T_dPdrho_g
Derivative of temperature with respect to molar density, and pressure for the gas phase, [K/(Pa*mol/m^3)].

𝜕2𝑇

𝜕𝜌𝜕𝑃
= −𝑉 2 𝜕2𝑇

𝜕𝑃𝜕𝑉

property d2T_dPdrho_l
Derivative of temperature with respect to molar density, and pressure for the liquid phase,
[K/(Pa*mol/m^3)].

𝜕2𝑇

𝜕𝜌𝜕𝑃
= −𝑉 2 𝜕2𝑇

𝜕𝑃𝜕𝑉

property d2T_dV2_g
Second partial derivative of temperature with respect to volume (constant pressure) for the gas phase,
[K*mol^2/m^6].(︂
𝜕2𝑇

𝜕𝑉 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑇

)︂−2

𝑉

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇
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property d2T_dV2_l
Second partial derivative of temperature with respect to volume (constant pressure) for the liquid phase,
[K*mol^2/m^6].(︂
𝜕2𝑇

𝜕𝑉 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑇

)︂−2

𝑉

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

property d2T_dVdP_g
Second partial derivative of temperature with respect to pressure (constant volume) and then volume (con-
stant pressure) for the gas phase, [K*mol/(Pa*m^3)].(︂

𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

property d2T_dVdP_l
Second partial derivative of temperature with respect to pressure (constant volume) and then volume (con-
stant pressure) for the liquid phase, [K*mol/(Pa*m^3)].(︂

𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

property d2T_drho2_g
Second derivative of temperature with respect to molar density for the gas phase, [K/(mol/m^3)^2].

𝜕2𝑇

𝜕𝜌2
= −𝑉 2(−𝑉 2 𝜕

2𝑇

𝜕𝑉 2
− 2𝑉

𝜕𝑇

𝜕𝑉
)

property d2T_drho2_l
Second derivative of temperature with respect to molar density for the liquid phase, [K/(mol/m^3)^2].

𝜕2𝑇

𝜕𝜌2
= −𝑉 2(−𝑉 2 𝜕

2𝑇

𝜕𝑉 2
− 2𝑉

𝜕𝑇

𝜕𝑉
)

property d2V_dP2_g
Second partial derivative of volume with respect to pressure (constant temperature) for the gas phase,
[m^3/(Pa^2*mol)]. (︂

𝜕2𝑉

𝜕𝑃 2

)︂
𝑇

= −
(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

property d2V_dP2_l
Second partial derivative of volume with respect to pressure (constant temperature) for the liquid phase,
[m^3/(Pa^2*mol)]. (︂

𝜕2𝑉

𝜕𝑃 2

)︂
𝑇

= −
(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

property d2V_dPdT_g
Second partial derivative of volume with respect to pressure (constant temperature) and then presssure
(constant temperature) for the gas phase, [m^3/(K*Pa*mol)].(︂

𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇
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property d2V_dPdT_l
Second partial derivative of volume with respect to pressure (constant temperature) and then presssure
(constant temperature) for the liquid phase, [m^3/(K*Pa*mol)].(︂

𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

property d2V_dT2_g
Second partial derivative of volume with respect to temperature (constant pressure) for the gas phase,
[m^3/(mol*K^2)].(︂
𝜕2𝑉

𝜕𝑇 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑉

)︂−2

𝑇

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

property d2V_dT2_l
Second partial derivative of volume with respect to temperature (constant pressure) for the liquid phase,
[m^3/(mol*K^2)].(︂
𝜕2𝑉

𝜕𝑇 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑉

)︂−2

𝑇

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

property d2V_dTdP_g
Second partial derivative of volume with respect to pressure (constant temperature) and then presssure
(constant temperature) for the gas phase, [m^3/(K*Pa*mol)].(︂

𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

property d2V_dTdP_l
Second partial derivative of volume with respect to pressure (constant temperature) and then presssure
(constant temperature) for the liquid phase, [m^3/(K*Pa*mol)].(︂

𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

property d2a_alpha_dTdP_g_V
Derivative of the temperature derivative of a_alpha with respect to pressure at constant volume (varying
T) for the gas phase, [J^2/mol^2/Pa^2/K].(︃

𝜕
(︀
𝜕𝑎𝛼
𝜕𝑇

)︀
𝑃

𝜕𝑃

)︃
𝑉

=

(︂
𝜕2𝑎𝛼

𝜕𝑇 2

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

property d2a_alpha_dTdP_l_V
Derivative of the temperature derivative of a_alpha with respect to pressure at constant volume (varying
T) for the liquid phase, [J^2/mol^2/Pa^2/K].(︃

𝜕
(︀
𝜕𝑎𝛼
𝜕𝑇

)︀
𝑃

𝜕𝑃

)︃
𝑉

=

(︂
𝜕2𝑎𝛼

𝜕𝑇 2

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

d2phi_sat_dT2(T, polish=True)
Method to calculate the second temperature derivative of saturation fugacity coefficient of the compound.
This does require solving the EOS itself.

7.7. Cubic Equations of State (thermo.eos) 179



thermo Documentation, Release 0.2.20

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
d2phi_sat_dT2 [float] Second temperature derivative of fugacity coefficient along the

liquid-vapor saturation line, [1/K^2]

Notes

This is presently a numerical calculation.

property d2rho_dP2_g
Second derivative of molar density with respect to pressure for the gas phase, [(mol/m^3)/Pa^2].

𝜕2𝜌

𝜕𝑃 2
= −𝜕

2𝑉

𝜕𝑃 2

1

𝑉 2
+ 2

(︂
𝜕𝑉

𝜕𝑃

)︂2
1

𝑉 3

property d2rho_dP2_l
Second derivative of molar density with respect to pressure for the liquid phase, [(mol/m^3)/Pa^2].

𝜕2𝜌

𝜕𝑃 2
= −𝜕

2𝑉

𝜕𝑃 2

1

𝑉 2
+ 2

(︂
𝜕𝑉

𝜕𝑃

)︂2
1

𝑉 3

property d2rho_dPdT_g
Second derivative of molar density with respect to pressure and temperature for the gas phase,
[(mol/m^3)/(K*Pa)].

𝜕2𝜌

𝜕𝑇𝜕𝑃
= − 𝜕2𝑉

𝜕𝑇𝜕𝑃

1

𝑉 2
+ 2

(︂
𝜕𝑉

𝜕𝑇

)︂(︂
𝜕𝑉

𝜕𝑃

)︂
1

𝑉 3

property d2rho_dPdT_l
Second derivative of molar density with respect to pressure and temperature for the liquid phase,
[(mol/m^3)/(K*Pa)].

𝜕2𝜌

𝜕𝑇𝜕𝑃
= − 𝜕2𝑉

𝜕𝑇𝜕𝑃

1

𝑉 2
+ 2

(︂
𝜕𝑉

𝜕𝑇

)︂(︂
𝜕𝑉

𝜕𝑃

)︂
1

𝑉 3

property d2rho_dT2_g
Second derivative of molar density with respect to temperature for the gas phase, [(mol/m^3)/K^2].

𝜕2𝜌

𝜕𝑇 2
= −𝜕

2𝑉

𝜕𝑇 2

1

𝑉 2
+ 2

(︂
𝜕𝑉

𝜕𝑇

)︂2
1

𝑉 3

property d2rho_dT2_l
Second derivative of molar density with respect to temperature for the liquid phase, [(mol/m^3)/K^2].

𝜕2𝜌

𝜕𝑇 2
= −𝜕

2𝑉

𝜕𝑇 2

1

𝑉 2
+ 2

(︂
𝜕𝑉

𝜕𝑇

)︂2
1

𝑉 3
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property d3a_alpha_dT3
Method to calculate the third temperature derivative of 𝑎𝛼, [J^2/mol^2/Pa/K^3]. This parameter is needed
for some higher derivatives that are needed in some flash calculations.

Returns
d3a_alpha_dT3 [float] Third temperature derivative of coefficient calculated by EOS-

specific method, [J^2/mol^2/Pa/K^3]

property dH_dep_dP_g
Derivative of departure enthalpy with respect to pressure for the gas phase, [(J/mol)/Pa].

𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑃
= 𝑃

𝑑

𝑑𝑃
𝑉 (𝑃 ) + 𝑉 (𝑃 ) +

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝑑
𝑑𝑃 𝑉 (𝑃 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑃 ))2

𝛿2−4𝜖 + 1
)︁

property dH_dep_dP_g_V
Derivative of departure enthalpy with respect to pressure at constant volume for the liquid phase,
[(J/mol)/Pa].

(︂
𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑃

)︂
𝑉

= −𝑅
(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

+ 𝑉 +

2

(︂
𝑇

(︂
𝜕( 𝜕𝑎𝛼

𝜕𝑇 )
𝑃

𝜕𝑃

)︂
𝑉

+
(︀
𝜕𝑎𝛼
𝜕𝑇

)︀
𝑃

(︀
𝜕𝑇
𝜕𝑃

)︀
𝑉
−
(︀
𝜕𝑎𝛼
𝜕𝑃

)︀
𝑉

)︂
atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
√
𝛿2 − 4𝜖

property dH_dep_dP_l
Derivative of departure enthalpy with respect to pressure for the liquid phase, [(J/mol)/Pa].

𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑃
= 𝑃

𝑑

𝑑𝑃
𝑉 (𝑃 ) + 𝑉 (𝑃 ) +

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝑑
𝑑𝑃 𝑉 (𝑃 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑃 ))2

𝛿2−4𝜖 + 1
)︁

property dH_dep_dP_l_V
Derivative of departure enthalpy with respect to pressure at constant volume for the gas phase, [(J/mol)/Pa].

(︂
𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑃

)︂
𝑉

= −𝑅
(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

+ 𝑉 +

2

(︂
𝑇

(︂
𝜕( 𝜕𝑎𝛼

𝜕𝑇 )
𝑃

𝜕𝑃

)︂
𝑉

+
(︀
𝜕𝑎𝛼
𝜕𝑇

)︀
𝑃

(︀
𝜕𝑇
𝜕𝑃

)︀
𝑉
−
(︀
𝜕𝑎𝛼
𝜕𝑃

)︀
𝑉

)︂
atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
√
𝛿2 − 4𝜖

property dH_dep_dT_g
Derivative of departure enthalpy with respect to temperature for the gas phase, [(J/mol)/K].

𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑇
= 𝑃

𝑑

𝑑𝑇
𝑉 (𝑇 ) −𝑅+

2𝑇√
𝛿2 − 4𝜖

atanh

(︂
𝛿 + 2𝑉 (𝑇 )√
𝛿2 − 4𝜖

)︂
𝑑2

𝑑𝑇 2
a𝛼 (𝑇 ) +

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 + 1
)︁

property dH_dep_dT_g_V
Derivative of departure enthalpy with respect to temperature at constant volume for the gas phase,
[(J/mol)/K]. (︂

𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑇

)︂
𝑉

= −𝑅+
2𝑇 atanh

(︁
2𝑉𝑔+𝛿√
𝛿2−4𝜖

)︁
𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

+ 𝑉𝑔
𝜕

𝜕𝑇
𝑃 (𝑇, 𝑉 )

property dH_dep_dT_l
Derivative of departure enthalpy with respect to temperature for the liquid phase, [(J/mol)/K].

𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑇
= 𝑃

𝑑

𝑑𝑇
𝑉 (𝑇 ) −𝑅+

2𝑇√
𝛿2 − 4𝜖

atanh

(︂
𝛿 + 2𝑉 (𝑇 )√
𝛿2 − 4𝜖

)︂
𝑑2

𝑑𝑇 2
a𝛼 (𝑇 ) +

4
(︀
𝑇 𝑑

𝑑𝑇 a𝛼 (𝑇 ) − a𝛼 (𝑇 )
)︀

𝑑
𝑑𝑇 𝑉 (𝑇 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 + 1
)︁
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property dH_dep_dT_l_V
Derivative of departure enthalpy with respect to temperature at constant volume for the liquid phase,
[(J/mol)/K].

(︂
𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑇

)︂
𝑉

= −𝑅+
2𝑇 atanh

(︁
2𝑉𝑙+𝛿√
𝛿2−4𝜖

)︁
𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

+ 𝑉𝑙
𝜕

𝜕𝑇
𝑃 (𝑇, 𝑉 )

dH_dep_dT_sat_g(T, polish=False)
Method to calculate and return the temperature derivative of saturation vapor excess enthalpy.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
dH_dep_dT_sat_g [float] Vapor phase temperature derivative of excess enthalpy along the

liquid-vapor saturation line, [J/mol/K]

dH_dep_dT_sat_l(T, polish=False)
Method to calculate and return the temperature derivative of saturation liquid excess enthalpy.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
dH_dep_dT_sat_l [float] Liquid phase temperature derivative of excess enthalpy along the

liquid-vapor saturation line, [J/mol/K]

property dH_dep_dV_g_P
Derivative of departure enthalpy with respect to volume at constant pressure for the gas phase, [J/m^3].(︂

𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑇

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

property dH_dep_dV_g_T
Derivative of departure enthalpy with respect to volume at constant temperature for the gas phase, [J/m^3].(︂

𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝐻𝑑𝑒𝑝,𝑔

𝜕𝑃

)︂
𝑇

·
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

property dH_dep_dV_l_P
Derivative of departure enthalpy with respect to volume at constant pressure for the liquid phase, [J/m^3].(︂

𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑇

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

property dH_dep_dV_l_T
Derivative of departure enthalpy with respect to volume at constant temperature for the gas phase, [J/m^3].(︂

𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝐻𝑑𝑒𝑝,𝑙

𝜕𝑃

)︂
𝑇

·
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇
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property dP_drho_g
Derivative of pressure with respect to molar density for the gas phase, [Pa/(mol/m^3)].

𝜕𝑃

𝜕𝜌
= −𝑉 2 𝜕𝑃

𝜕𝑉

property dP_drho_l
Derivative of pressure with respect to molar density for the liquid phase, [Pa/(mol/m^3)].

𝜕𝑃

𝜕𝜌
= −𝑉 2 𝜕𝑃

𝜕𝑉

dPsat_dT(T, polish=False, also_Psat=False)
Generic method to calculate the temperature derivative of vapor pressure for a specified T. Implements the
analytical derivative of the three polynomials described in Psat.

As with Psat, results above the critical temperature are meaningless. The first-order polynomial which
is used to calculate it under 0.32 Tc may not be physicall meaningful, due to there normally not being a
volume solution to the EOS which can produce that low of a pressure.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to attempt to use a numerical solver to make the solution
more precise or not

also_Psat [bool, optional] Calculating dPsat_dT necessarily involves calculating Psat; when
this is set to True, a second return value is added, whic is the actual Psat value.

Returns
dPsat_dT [float] Derivative of vapor pressure with respect to temperature, [Pa/K]

Psat [float, returned if also_Psat is True] Vapor pressure, [Pa]

Notes

There is a small step change at 0.32 Tc for all EOS due to the two switch between polynomials at that point.

Useful for calculating enthalpy of vaporization with the Clausius Clapeyron Equation. Derived with
SymPy’s diff and cse.

property dS_dep_dP_g
Derivative of departure entropy with respect to pressure for the gas phase, [(J/mol)/K/Pa].

𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑃
= −

𝑅 𝑑
𝑑𝑃 𝑉 (𝑃 )

𝑉 (𝑃 )
+

𝑅 𝑑
𝑑𝑃 𝑉 (𝑃 )

−𝑏+ 𝑉 (𝑃 )
+

4 𝑑
𝑑𝑃 𝑉 (𝑃 ) 𝑑

𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑃 ))2

𝛿2−4𝜖 + 1
)︁ +

𝑅2𝑇

𝑃𝑉 (𝑃 )

(︂
𝑃

𝑅𝑇

𝑑

𝑑𝑃
𝑉 (𝑃 ) +

𝑉 (𝑃 )

𝑅𝑇

)︂

property dS_dep_dP_g_V
Derivative of departure entropy with respect to pressure at constant volume for the gas phase,
[(J/mol)/K/Pa].

(︂
𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑃

)︂
𝑉

=

2 atanh
(︁

2𝑉+𝛿√
𝛿2−4𝜖

)︁(︂
𝜕( 𝜕𝑎𝛼

𝜕𝑇 )
𝑃

𝜕𝑃

)︂
𝑉√

𝛿2 − 4𝜖
+
𝑅2
(︁
−𝑃𝑉 𝑑

𝑑𝑃 𝑇 (𝑃 )

𝑅𝑇 2(𝑃 ) + 𝑉
𝑅𝑇 (𝑃 )

)︁
𝑇 (𝑃 )

𝑃𝑉
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property dS_dep_dP_l
Derivative of departure entropy with respect to pressure for the liquid phase, [(J/mol)/K/Pa].

𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑃
= −

𝑅 𝑑
𝑑𝑃 𝑉 (𝑃 )

𝑉 (𝑃 )
+

𝑅 𝑑
𝑑𝑃 𝑉 (𝑃 )

−𝑏+ 𝑉 (𝑃 )
+

4 𝑑
𝑑𝑃 𝑉 (𝑃 ) 𝑑

𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑃 ))2

𝛿2−4𝜖 + 1
)︁ +

𝑅2𝑇

𝑃𝑉 (𝑃 )

(︂
𝑃

𝑅𝑇

𝑑

𝑑𝑃
𝑉 (𝑃 ) +

𝑉 (𝑃 )

𝑅𝑇

)︂

property dS_dep_dP_l_V
Derivative of departure entropy with respect to pressure at constant volume for the liquid phase,
[(J/mol)/K/Pa].

(︂
𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑃

)︂
𝑉

=

2 atanh
(︁

2𝑉+𝛿√
𝛿2−4𝜖

)︁(︂
𝜕( 𝜕𝑎𝛼

𝜕𝑇 )
𝑃

𝜕𝑃

)︂
𝑉√

𝛿2 − 4𝜖
+
𝑅2
(︁
−𝑃𝑉 𝑑

𝑑𝑃 𝑇 (𝑃 )

𝑅𝑇 2(𝑃 ) + 𝑉
𝑅𝑇 (𝑃 )

)︁
𝑇 (𝑃 )

𝑃𝑉

property dS_dep_dT_g
Derivative of departure entropy with respect to temperature for the gas phase, [(J/mol)/K^2].

𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑇
= −

𝑅 𝑑
𝑑𝑇 𝑉 (𝑇 )

𝑉 (𝑇 )
+

𝑅 𝑑
𝑑𝑇 𝑉 (𝑇 )

−𝑏+ 𝑉 (𝑇 )
+

4 𝑑
𝑑𝑇 𝑉 (𝑇 ) 𝑑

𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 + 1
)︁ +

2 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

atanh

(︂
𝛿 + 2𝑉 (𝑇 )√
𝛿2 − 4𝜖

)︂
+

𝑅2𝑇

𝑃𝑉 (𝑇 )

(︂
𝑃

𝑅𝑇

𝑑

𝑑𝑇
𝑉 (𝑇 ) − 𝑃

𝑅𝑇 2
𝑉 (𝑇 )

)︂

property dS_dep_dT_g_V
Derivative of departure entropy with respect to temperature at constant volume for the gas phase,
[(J/mol)/K^2].

(︂
𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑇

)︂
𝑉

=
𝑅2𝑇

(︁
𝑉 𝜕

𝜕𝑇 𝑃 (𝑇,𝑉 )

𝑅𝑇 − 𝑉 𝑃 (𝑇,𝑉 )
𝑅𝑇 2

)︁
𝑉 𝑃 (𝑇, 𝑉 )

+
2 atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

property dS_dep_dT_l
Derivative of departure entropy with respect to temperature for the liquid phase, [(J/mol)/K^2].

𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑇
= −

𝑅 𝑑
𝑑𝑇 𝑉 (𝑇 )

𝑉 (𝑇 )
+

𝑅 𝑑
𝑑𝑇 𝑉 (𝑇 )

−𝑏+ 𝑉 (𝑇 )
+

4 𝑑
𝑑𝑇 𝑉 (𝑇 ) 𝑑

𝑑𝑇 a𝛼 (𝑇 )

(𝛿2 − 4𝜖)
(︁
− (𝛿+2𝑉 (𝑇 ))2

𝛿2−4𝜖 + 1
)︁ +

2 𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

atanh

(︂
𝛿 + 2𝑉 (𝑇 )√
𝛿2 − 4𝜖

)︂
+

𝑅2𝑇

𝑃𝑉 (𝑇 )

(︂
𝑃

𝑅𝑇

𝑑

𝑑𝑇
𝑉 (𝑇 ) − 𝑃

𝑅𝑇 2
𝑉 (𝑇 )

)︂

property dS_dep_dT_l_V
Derivative of departure entropy with respect to temperature at constant volume for the liquid phase,
[(J/mol)/K^2].

(︂
𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑇

)︂
𝑉

=
𝑅2𝑇

(︁
𝑉 𝜕

𝜕𝑇 𝑃 (𝑇,𝑉 )

𝑅𝑇 − 𝑉 𝑃 (𝑇,𝑉 )
𝑅𝑇 2

)︁
𝑉 𝑃 (𝑇, 𝑉 )

+
2 atanh

(︁
2𝑉+𝛿√
𝛿2−4𝜖

)︁
𝑑2

𝑑𝑇 2 a𝛼 (𝑇 )
√
𝛿2 − 4𝜖

dS_dep_dT_sat_g(T, polish=False)
Method to calculate and return the temperature derivative of saturation vapor excess entropy.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
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dS_dep_dT_sat_g [float] Vapor phase temperature derivative of excess entropy along the
liquid-vapor saturation line, [J/mol/K^2]

dS_dep_dT_sat_l(T, polish=False)
Method to calculate and return the temperature derivative of saturation liquid excess entropy.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
dS_dep_dT_sat_l [float] Liquid phase temperature derivative of excess entropy along the

liquid-vapor saturation line, [J/mol/K^2]

property dS_dep_dV_g_P
Derivative of departure entropy with respect to volume at constant pressure for the gas phase, [J/K/m^3].(︂

𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑇

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

property dS_dep_dV_g_T
Derivative of departure entropy with respect to volume at constant temperature for the gas phase, [J/K/m^3].(︂

𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝑆𝑑𝑒𝑝,𝑔

𝜕𝑃

)︂
𝑇

·
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

property dS_dep_dV_l_P
Derivative of departure entropy with respect to volume at constant pressure for the liquid phase, [J/K/m^3].(︂

𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑇

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

property dS_dep_dV_l_T
Derivative of departure entropy with respect to volume at constant temperature for the gas phase, [J/K/m^3].(︂

𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝑆𝑑𝑒𝑝,𝑙

𝜕𝑃

)︂
𝑇

·
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

property dT_drho_g
Derivative of temperature with respect to molar density for the gas phase, [K/(mol/m^3)].

𝜕𝑇

𝜕𝜌
= 𝑉 2 𝜕𝑇

𝜕𝑉

property dT_drho_l
Derivative of temperature with respect to molar density for the liquid phase, [K/(mol/m^3)].

𝜕𝑇

𝜕𝜌
= 𝑉 2 𝜕𝑇

𝜕𝑉

property dZ_dP_g
Derivative of compressibility factor with respect to pressure for the gas phase, [1/Pa].

𝜕𝑍

𝜕𝑃
=

1

𝑅𝑇

(︂
𝑉 − 𝜕𝑉

𝜕𝑃

)︂
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property dZ_dP_l
Derivative of compressibility factor with respect to pressure for the liquid phase, [1/Pa].

𝜕𝑍

𝜕𝑃
=

1

𝑅𝑇

(︂
𝑉 − 𝜕𝑉

𝜕𝑃

)︂

property dZ_dT_g
Derivative of compressibility factor with respect to temperature for the gas phase, [1/K].

𝜕𝑍

𝜕𝑇
=

𝑃

𝑅𝑇

(︂
𝜕𝑉

𝜕𝑇
− 𝑉

𝑇

)︂

property dZ_dT_l
Derivative of compressibility factor with respect to temperature for the liquid phase, [1/K].

𝜕𝑍

𝜕𝑇
=

𝑃

𝑅𝑇

(︂
𝜕𝑉

𝜕𝑇
− 𝑉

𝑇

)︂

property da_alpha_dP_g_V
Derivative of the a_alpha with respect to pressure at constant volume (varying T) for the gas phase,
[J^2/mol^2/Pa^2]. (︂

𝜕𝑎𝛼

𝜕𝑃

)︂
𝑉

=

(︂
𝜕𝑎𝛼

𝜕𝑇

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

property da_alpha_dP_l_V
Derivative of the a_alpha with respect to pressure at constant volume (varying T) for the liquid phase,
[J^2/mol^2/Pa^2]. (︂

𝜕𝑎𝛼

𝜕𝑃

)︂
𝑉

=

(︂
𝜕𝑎𝛼

𝜕𝑇

)︂
𝑃

·
(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

property dbeta_dP_g
Derivative of isobaric expansion coefficient with respect to pressure for the gas phase, [1/(Pa*K)].

𝜕𝛽𝑔
𝜕𝑃

=
𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )𝑔
𝑉 (𝑇, 𝑃 )𝑔

−
𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 )𝑔

𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )𝑔

𝑉 2(𝑇, 𝑃 )𝑔

property dbeta_dP_l
Derivative of isobaric expansion coefficient with respect to pressure for the liquid phase, [1/(Pa*K)].

𝜕𝛽𝑔
𝜕𝑃

=
𝜕2

𝜕𝑇𝜕𝑃 𝑉 (𝑇, 𝑃 )𝑙
𝑉 (𝑇, 𝑃 )𝑙

−
𝜕
𝜕𝑃 𝑉 (𝑇, 𝑃 )𝑙

𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )𝑙

𝑉 2(𝑇, 𝑃 )𝑙

property dbeta_dT_g
Derivative of isobaric expansion coefficient with respect to temperature for the gas phase, [1/K^2].

𝜕𝛽𝑔
𝜕𝑇

=
𝜕2

𝜕𝑇 2𝑉 (𝑇, 𝑃 )𝑔
𝑉 (𝑇, 𝑃 )𝑔

−

(︁
𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )𝑔

)︁2
𝑉 2(𝑇, 𝑃 )𝑔
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property dbeta_dT_l
Derivative of isobaric expansion coefficient with respect to temperature for the liquid phase, [1/K^2].

𝜕𝛽𝑙
𝜕𝑇

=
𝜕2

𝜕𝑇 2𝑉 (𝑇, 𝑃 )𝑙
𝑉 (𝑇, 𝑃 )𝑙

−
(︀

𝜕
𝜕𝑇 𝑉 (𝑇, 𝑃 )𝑙

)︀2
𝑉 2(𝑇, 𝑃 )𝑙

property dfugacity_dP_g
Derivative of fugacity with respect to pressure for the gas phase, [-].

𝜕(fugacity)𝑔
𝜕𝑃

=
𝑃

𝑅𝑇

(︂
−𝑇 𝜕

𝜕𝑃
Sdep (𝑇, 𝑃 ) +

𝜕

𝜕𝑃
Hdep (𝑇, 𝑃 )

)︂
𝑒

1
𝑅𝑇 (−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 )) + 𝑒

1
𝑅𝑇 (−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 ))

property dfugacity_dP_l
Derivative of fugacity with respect to pressure for the liquid phase, [-].

𝜕(fugacity)𝑙
𝜕𝑃

=
𝑃

𝑅𝑇

(︂
−𝑇 𝜕

𝜕𝑃
Sdep (𝑇, 𝑃 ) +

𝜕

𝜕𝑃
Hdep (𝑇, 𝑃 )

)︂
𝑒

1
𝑅𝑇 (−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 )) + 𝑒

1
𝑅𝑇 (−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 ))

property dfugacity_dT_g
Derivative of fugacity with respect to temperature for the gas phase, [Pa/K].

𝜕(fugacity)𝑔
𝜕𝑇

= 𝑃

(︂
1

𝑅𝑇

(︂
−𝑇 𝜕

𝜕𝑇
Sdep (𝑇, 𝑃 ) − Sdep (𝑇, 𝑃 ) +

𝜕

𝜕𝑇
Hdep (𝑇, 𝑃 )

)︂
− 1

𝑅𝑇 2
(−𝑇 Sdep (𝑇, 𝑃 ) + Hdep (𝑇, 𝑃 ))

)︂
𝑒

1
𝑅𝑇 (−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 ))

property dfugacity_dT_l
Derivative of fugacity with respect to temperature for the liquid phase, [Pa/K].

𝜕(fugacity)𝑙
𝜕𝑇

= 𝑃

(︂
1

𝑅𝑇

(︂
−𝑇 𝜕

𝜕𝑇
Sdep (𝑇, 𝑃 ) − Sdep (𝑇, 𝑃 ) +

𝜕

𝜕𝑇
Hdep (𝑇, 𝑃 )

)︂
− 1

𝑅𝑇 2
(−𝑇 Sdep (𝑇, 𝑃 ) + Hdep (𝑇, 𝑃 ))

)︂
𝑒

1
𝑅𝑇 (−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 ))

discriminant(T=None, P=None)
Method to compute the discriminant of the cubic volume solution with the current EOS parameters, op-
tionally at the same (assumed) T, and P or at different ones, if values are specified.

Parameters
T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

Returns
discriminant [float] Discriminant, [-]

Notes

This call is quite quick; only 𝑎𝛼 is needed and if T is the same as the current object than it has already been
computed.

The formula is as follows:

discriminant = −

(︃
−

27𝑃 2𝜖
(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅2𝑇 2

− 27𝑃 2𝑏 a𝛼 (𝑇 )

𝑅3𝑇 3

)︃(︃
−
𝑃 2𝜖

(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅2𝑇 2

− 𝑃 2𝑏 a𝛼 (𝑇 )

𝑅3𝑇 3

)︃
+

(︃
−
𝑃 2𝜖

(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅2𝑇 2

− 𝑃 2𝑏 a𝛼 (𝑇 )

𝑅3𝑇 3

)︃(︂
−18𝑃𝑏

𝑅𝑇
+

18𝑃𝛿

𝑅𝑇
− 18

)︂(︃
𝑃 2𝜖

𝑅2𝑇 2
−
𝑃𝛿
(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅𝑇

+
𝑃 a𝛼 (𝑇 )

𝑅2𝑇 2

)︃
−

(︃
−
𝑃 2𝜖

(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅2𝑇 2

− 𝑃 2𝑏 a𝛼 (𝑇 )

𝑅3𝑇 3

)︃(︂
−4𝑃𝑏

𝑅𝑇
+

4𝑃𝛿

𝑅𝑇
− 4

)︂(︂
− 𝑃𝑏

𝑅𝑇
+
𝑃𝛿

𝑅𝑇
− 1

)︂2

+

(︂
− 𝑃𝑏

𝑅𝑇
+
𝑃𝛿

𝑅𝑇
− 1

)︂2
(︃
𝑃 2𝜖

𝑅2𝑇 2
−
𝑃𝛿
(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅𝑇

+
𝑃 a𝛼 (𝑇 )

𝑅2𝑇 2

)︃2

−

(︃
𝑃 2𝜖

𝑅2𝑇 2
−
𝑃𝛿
(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅𝑇

+
𝑃 a𝛼 (𝑇 )

𝑅2𝑇 2

)︃2(︃
4𝑃 2𝜖

𝑅2𝑇 2
−

4𝑃𝛿
(︀
𝑃𝑏
𝑅𝑇 + 1

)︀
𝑅𝑇

+
4𝑃 a𝛼 (𝑇 )

𝑅2𝑇 2

)︃

The formula is derived as follows:
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>>> from sympy import *
>>> P, T, R, b = symbols('P, T, R, b')
>>> a_alpha = symbols(r'a\ \alpha', cls=Function)
>>> delta, epsilon = symbols('delta, epsilon')
>>> eta = b
>>> B = b*P/(R*T)
>>> deltas = delta*P/(R*T)
>>> thetas = a_alpha(T)*P/(R*T)**2
>>> epsilons = epsilon*(P/(R*T))**2
>>> etas = eta*P/(R*T)
>>> a = 1
>>> b = (deltas - B - 1)
>>> c = (thetas + epsilons - deltas*(B+1))
>>> d = -(epsilons*(B+1) + thetas*etas)
>>> disc = b*b*c*c - 4*a*c*c*c - 4*b*b*b*d - 27*a*a*d*d + 18*a*b*c*d

Examples

>>> base = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=500.0, P=1E6)
>>> base.discriminant()
-0.001026390999
>>> base.discriminant(T=400)
0.0010458828
>>> base.discriminant(T=400, P=1e9)
12584660355.4

property dphi_dP_g
Derivative of fugacity coefficient with respect to pressure for the gas phase, [1/Pa].

𝜕𝜑

𝜕𝑃
=

(︀
−𝑇 𝜕

𝜕𝑃 Sdep (𝑇, 𝑃 ) + 𝜕
𝜕𝑃 Hdep (𝑇, 𝑃 )

)︀
𝑒

−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 )

𝑅𝑇

𝑅𝑇

property dphi_dP_l
Derivative of fugacity coefficient with respect to pressure for the liquid phase, [1/Pa].

𝜕𝜑

𝜕𝑃
=

(︀
−𝑇 𝜕

𝜕𝑃 Sdep (𝑇, 𝑃 ) + 𝜕
𝜕𝑃 Hdep (𝑇, 𝑃 )

)︀
𝑒

−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 )

𝑅𝑇

𝑅𝑇

property dphi_dT_g
Derivative of fugacity coefficient with respect to temperature for the gas phase, [1/K].

𝜕𝜑

𝜕𝑇
=

(︃
−𝑇 𝜕

𝜕𝑇 Sdep (𝑇, 𝑃 ) − Sdep (𝑇, 𝑃 ) + 𝜕
𝜕𝑇 Hdep (𝑇, 𝑃 )

𝑅𝑇
− −𝑇 Sdep (𝑇, 𝑃 ) + Hdep (𝑇, 𝑃 )

𝑅𝑇 2

)︃
𝑒

−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 )

𝑅𝑇

property dphi_dT_l
Derivative of fugacity coefficient with respect to temperature for the liquid phase, [1/K].

𝜕𝜑

𝜕𝑇
=

(︃
−𝑇 𝜕

𝜕𝑇 Sdep (𝑇, 𝑃 ) − Sdep (𝑇, 𝑃 ) + 𝜕
𝜕𝑇 Hdep (𝑇, 𝑃 )

𝑅𝑇
− −𝑇 Sdep (𝑇, 𝑃 ) + Hdep (𝑇, 𝑃 )

𝑅𝑇 2

)︃
𝑒

−𝑇 Sdep (𝑇,𝑃 )+Hdep (𝑇,𝑃 )

𝑅𝑇
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dphi_sat_dT(T, polish=True)
Method to calculate the temperature derivative of saturation fugacity coefficient of the compound. This
does require solving the EOS itself.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
dphi_sat_dT [float] First temperature derivative of fugacity coefficient along the liquid-

vapor saturation line, [1/K]

property drho_dP_g
Derivative of molar density with respect to pressure for the gas phase, [(mol/m^3)/Pa].

𝜕𝜌

𝜕𝑃
=

−1

𝑉 2

𝜕𝑉

𝜕𝑃

property drho_dP_l
Derivative of molar density with respect to pressure for the liquid phase, [(mol/m^3)/Pa].

𝜕𝜌

𝜕𝑃
=

−1

𝑉 2

𝜕𝑉

𝜕𝑃

property drho_dT_g
Derivative of molar density with respect to temperature for the gas phase, [(mol/m^3)/K].

𝜕𝜌

𝜕𝑇
= − 1

𝑉 2

𝜕𝑉

𝜕𝑇

property drho_dT_l
Derivative of molar density with respect to temperature for the liquid phase, [(mol/m^3)/K].

𝜕𝜌

𝜕𝑇
= − 1

𝑉 2

𝜕𝑉

𝜕𝑇

classmethod from_json(json_repr)
Method to create a eos from a JSON serialization of another eos.

Parameters
json_repr [dict] JSON-friendly representation, [-]

Returns
eos [GCEOS] Newly created object from the json serialization, [-]

Notes

It is important that the input string be in the same format as that created by GCEOS.as_json.
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Examples

>>> eos = MSRKTranslated(Tc=507.6, Pc=3025000, omega=0.2975, c=22.0561E-6, M=0.
→˓7446, N=0.2476, T=250., P=1E6)
>>> string = eos.as_json()
>>> new_eos = GCEOS.from_json(string)
>>> assert eos.__dict__ == new_eos.__dict__

property fugacity_g
Fugacity for the gas phase, [Pa].

fugacity = 𝑃 exp

(︂
𝐺𝑑𝑒𝑝

𝑅𝑇

)︂

property fugacity_l
Fugacity for the liquid phase, [Pa].

fugacity = 𝑃 exp

(︂
𝐺𝑑𝑒𝑝

𝑅𝑇

)︂

property kappa_g
Isothermal (constant-temperature) expansion coefficient for the gas phase, [1/Pa].

𝜅 =
−1

𝑉

𝜕𝑉

𝜕𝑃

property kappa_l
Isothermal (constant-temperature) expansion coefficient for the liquid phase, [1/Pa].

𝜅 =
−1

𝑉

𝜕𝑉

𝜕𝑃

kwargs = {}
Dictionary which holds input parameters to an EOS which are non-standard; this excludes T, P, V, omega,
Tc, Pc, Vc but includes EOS specific parameters like S1 and alpha_coeffs.

kwargs_keys = ()

property lnphi_g
The natural logarithm of the fugacity coefficient for the gas phase, [-].

property lnphi_l
The natural logarithm of the fugacity coefficient for the liquid phase, [-].

model_hash()
Basic method to calculate a hash of the non-state parts of the model This is useful for comparing to models
to determine if they are the same, i.e. in a VLL flash it is important to know if both liquids have the same
model.

Note that the hashes should only be compared on the same system running in the same process!

Returns
model_hash [int] Hash of the object’s model parameters, [-]

property more_stable_phase
Checks the Gibbs energy of each possible phase, and returns ‘l’ if the liquid-like phase is more stable, and
‘g’ if the vapor-like phase is more stable.
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Examples

>>> PR(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6).more_stable_phase
'l'

property mpmath_volume_ratios
Method to compare, as ratios, the volumes of the implemented cubic solver versus those calculated using
mpmath.

Returns
ratios [list[mpc]] Either 1 or 3 volume ratios as calculated by mpmath, [-]

Examples

>>> eos = PRTranslatedTwu(T=300, P=1e5, Tc=512.5, Pc=8084000.0, omega=0.559,␣
→˓alpha_coeffs=(0.694911, 0.9199, 1.7), c=-1e-6)
>>> eos.mpmath_volume_ratios
(mpc(real='0.99999999999999995', imag='0.0'), mpc(real='0.999999999999999965',␣
→˓imag='0.0'), mpc(real='1.00000000000000005', imag='0.0'))

property mpmath_volumes
Method to calculate to a high precision the exact roots to the cubic equation, using mpmath.

Returns
Vs [tuple[mpf]] 3 Real or not real volumes as calculated by mpmath, [m^3/mol]

Examples

>>> eos = PRTranslatedTwu(T=300, P=1e5, Tc=512.5, Pc=8084000.0, omega=0.559,␣
→˓alpha_coeffs=(0.694911, 0.9199, 1.7), c=-1e-6)
>>> eos.mpmath_volumes
(mpf('0.0000489261705320261435106226558966745'), mpf('0.
→˓000541508154451321441068958547812526'), mpf('0.
→˓0243149463942697410611501615357228'))

property mpmath_volumes_float
Method to calculate real roots of a cubic equation, using mpmath, but returned as floats.

Returns
Vs [list[float]] All volumes calculated by mpmath, [m^3/mol]

Examples

>>> eos = PRTranslatedTwu(T=300, P=1e5, Tc=512.5, Pc=8084000.0, omega=0.559,␣
→˓alpha_coeffs=(0.694911, 0.9199, 1.7), c=-1e-6)
>>> eos.mpmath_volumes_float
((4.892617053202614e-05+0j), (0.0005415081544513214+0j), (0.
→˓024314946394269742+0j))

multicomponent = False
Whether or not the EOS is multicomponent or not
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nonstate_constants = ('Tc', 'Pc', 'omega', 'kwargs', 'a', 'b', 'delta', 'epsilon')

property phi_g
Fugacity coefficient for the gas phase, [Pa].

𝜑 =
fugacity
𝑃

property phi_l
Fugacity coefficient for the liquid phase, [Pa].

𝜑 =
fugacity
𝑃

phi_sat(T, polish=True)
Method to calculate the saturation fugacity coefficient of the compound. This does not require solving the
EOS itself.

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to perform a rigorous calculation or to use a polynomial fit,
[-]

Returns
phi_sat [float] Fugacity coefficient along the liquid-vapor saturation line, [-]

Notes

Accuracy is generally around 1e-7. If Tr is under 0.32, the rigorous method is always used, but a solution
may not exist if both phases cannot coexist. If Tr is above 1, likewise a solution does not exist.

resolve_full_alphas()
Generic method to resolve the eos with fully calculated alpha derviatives. Re-calculates properties with the
new alpha derivatives for any previously solved roots.

property rho_g
Gas molar density, [mol/m^3].

𝜌𝑔 =
1

𝑉𝑔

property rho_l
Liquid molar density, [mol/m^3].

𝜌𝑙 =
1

𝑉𝑙

saturation_prop_plot(prop, Tmin=None, Tmax=None, pts=100, plot=False, show=False, both=False)
Method to create a plot of a specified property of the EOS along the (pure component) saturation line.

Parameters
prop [str] Property to be used; such as ‘H_dep_l’ ( when both is False) or ‘H_dep’ (when

both is True), [-]

Tmin [float] Minimum temperature of calculation; if this is too low the saturation routines
will stop converging, [K]
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Tmax [float] Maximum temperature of calculation; cannot be above the critical temperature,
[K]

pts [int, optional] The number of temperature points to include [-]

plot [bool] If False, the calculated values and temperatures are returned without plotting the
data, [-]

show [bool] Whether or not the plot should be rendered and shown; a handle to it is returned
if plot is True for other purposes such as saving the plot to a file, [-]

both [bool] When true, append ‘_l’ and ‘_g’ and draw both the liquid and vapor property
specified and return two different sets of values.

Returns
Ts [list[float]] Logarithmically spaced temperatures in specified range, [K]

props [list[float]] The property specified if both is False; otherwise, the liquid properties,
[various]

props_g [list[float]] The gas properties, only returned if both is True, [various]

fig [matplotlib.figure.Figure] Plotted figure, only returned if plot is True, [-]

scalar = True

set_from_PT(Vs, only_l=False, only_g=False)
Counts the number of real volumes in Vs, and determines what to do. If there is only one
real volume, the method set_properties_from_solution is called with it. If there are two real vol-
umes, set_properties_from_solution is called once with each volume. The phase is returned by
set_properties_from_solution, and the volumes is set to either V_l or V_g as appropriate.

Parameters
Vs [list[float]] Three possible molar volumes, [m^3/mol]

only_l [bool] When true, if there is a liquid and a vapor root, only the liquid root (and prop-
erties) will be set.

only_g [bool] When true, if there is a liquid and a vapor root, only the vapor root (and prop-
erties) will be set.

Notes

An optimization attempt was made to remove min() and max() from this function; that is indeed possible,
but the check for handling if there are two or three roots makes it not worth it.

set_properties_from_solution(T, P, V, b, delta, epsilon, a_alpha, da_alpha_dT, d2a_alpha_dT2,
quick=True, force_l=False, force_g=False)

Sets all interesting properties which can be calculated from an EOS alone. Determines which phase the
fluid is on its own; for details, see phase_identification_parameter.

The list of properties set is as follows, with all properties suffixed with ‘_l’ or ‘_g’.

dP_dT, dP_dV, dV_dT, dV_dP, dT_dV, dT_dP, d2P_dT2, d2P_dV2, d2V_dT2, d2V_dP2, d2T_dV2,
d2T_dP2, d2V_dPdT, d2P_dTdV, d2T_dPdV, H_dep, S_dep, G_dep and PIP.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]
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V [float] Molar volume, [m^3/mol]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K**2]

quick [bool, optional] Whether to use a SymPy cse-derived expression (3x faster) or indi-
vidual formulas

Returns
phase [str] Either ‘l’ or ‘g’

Notes

The individual formulas for the derivatives and excess properties are as follows. For definitions of beta, see
isobaric_expansion; for kappa, see isothermal_compressibility; for Cp_minus_Cv, see Cp_minus_Cv; for
phase_identification_parameter, see phase_identification_parameter.

First derivatives; in part using the Triple Product Rule [2], [3]:(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

=
𝑅

𝑉 − 𝑏
−

𝑎𝑑𝛼(𝑇 )
𝑑𝑇

𝑉 2 + 𝑉 𝛿 + 𝜖(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

= − 𝑅𝑇

(𝑉 − 𝑏)
2 − 𝑎 (−2𝑉 − 𝛿)𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2(︂

𝜕𝑉

𝜕𝑇

)︂
𝑃

= −
(︀
𝜕𝑃
𝜕𝑇

)︀
𝑉(︀

𝜕𝑃
𝜕𝑉

)︀
𝑇(︂

𝜕𝑉

𝜕𝑃

)︂
𝑇

= −
(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉(︂

𝜕𝑇

𝜕𝑉

)︂
𝑃

=
1(︀

𝜕𝑉
𝜕𝑇

)︀
𝑃(︂

𝜕𝑇

𝜕𝑃

)︂
𝑉

=
1(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

Second derivatives with respect to one variable; those of T and V use identities shown in [1] and verified
numerically: (︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

= −
𝑎𝑑2𝛼(𝑇 )

𝑑𝑇 2

𝑉 2 + 𝑉 𝛿 + 𝜖(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

= 2

(︃
𝑅𝑇

(𝑉 − 𝑏)
3 − 𝑎 (2𝑉 + 𝛿)

2
𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
3 +

𝑎𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

)︃

194 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Second derivatives with respect to the other two variables; those of T and V use identities shown in [1] and
verified numerically: (︂

𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂
= − 𝑅

(𝑉 − 𝑏)
2 +

𝑎 (2𝑉 + 𝛿) 𝑑𝛼(𝑇 )
𝑑𝑇

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

Excess properties

𝐻𝑑𝑒𝑝 =

∫︁ 𝑉

∞

[︂
𝑇
𝜕𝑃

𝜕𝑇 𝑉
− 𝑃

]︂
𝑑𝑉 + 𝑃𝑉 −𝑅𝑇 = 𝑃𝑉 −𝑅𝑇 +

2√
𝛿2 − 4𝜖

(︂
𝑇𝑎

𝑑𝛼(𝑇 )

𝑑𝑇
− 𝑎𝛼(𝑇 )

)︂
atanh

(︂
2𝑉 + 𝛿√
𝛿2 − 4𝜖

)︂

𝑆𝑑𝑒𝑝 =

∫︁ 𝑉

∞

[︂
𝜕𝑃

𝜕𝑇
− 𝑅

𝑉

]︂
𝑑𝑉 +𝑅 ln

𝑃𝑉

𝑅𝑇
= −𝑅 ln (𝑉 ) +𝑅 ln

(︂
𝑃𝑉

𝑅𝑇

)︂
+𝑅 ln (𝑉 − 𝑏) +

2𝑎𝑑𝛼(𝑇 )
𝑑𝑇√

𝛿2 − 4𝜖
atanh

(︂
2𝑉 + 𝛿√
𝛿2 − 4𝜖

)︂
𝐺𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

𝐶𝑣,𝑑𝑒𝑝 = 𝑇

∫︁ 𝑉

∞

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑑𝑉 = −𝑇𝑎

(︃√︂
1

𝛿2 − 4𝜖
ln

(︃
𝑉 − 𝛿2

2

√︂
1

𝛿2 − 4𝜖
+
𝛿

2
+ 2𝜖

√︂
1

𝛿2 − 4𝜖

)︃
−
√︂

1

𝛿2 − 4𝜖
ln

(︃
𝑉 +

𝛿2

2

√︂
1

𝛿2 − 4𝜖
+
𝛿

2
− 2𝜖

√︂
1

𝛿2 − 4𝜖

)︃)︃
𝑑2𝛼(𝑇 )

𝑑𝑇 2

𝐶𝑝,𝑑𝑒𝑝 = (𝐶𝑝 − 𝐶𝑣)from EOS + 𝐶𝑣,𝑑𝑒𝑝 −𝑅

References

[1], [2], [3]

solve(pure_a_alphas=True, only_l=False, only_g=False, full_alphas=True)
First EOS-generic method; should be called by all specific EOSs. For solving for T, the EOS must provide
the method solve_T. For all cases, the EOS must provide a_alpha_and_derivatives. Calls set_from_PT
once done.

solve_T(P, V, solution=None)
Generic method to calculate T from a specified P and V. Provides SciPy’s newton solver, and it-
erates to solve the general equation for P, recalculating a_alpha as a function of temperature using
a_alpha_and_derivatives each iteration.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

solve_missing_volumes()
Generic method to ensure both volumes, if solutions are physical, have calculated properties. This effec-
tively un-does the optimization of the only_l and only_g keywords.

property sorted_volumes
List of lexicographically-sorted molar volumes available from the root finding algorithm used to solve the
PT point. The convention of sorting lexicographically comes from numpy’s handling of complex numbers,
which python does not define. This method was added to facilitate testing, as the volume solution method
changes over time and the ordering does as well.
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Examples

>>> PR(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6).sorted_volumes
((0.000130222125139+0j), (0.00112363131346-0.00129269672343j), (0.
→˓00112363131346+0.00129269672343j))

state_hash()
Basic method to calculate a hash of the state of the model and its model parameters.

Note that the hashes should only be compared on the same system running in the same process!

Returns
state_hash [int] Hash of the object’s model parameters and state, [-]

property state_specs
Convenience method to return the two specified state specs (T, P, or V ) as a dictionary.

Examples

>>> PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=500.0, V=1.0).state_specs
{'T': 500.0, 'V': 1.0}

to(T=None, P=None, V=None)
Method to construct a new EOS object at two of T, P or V. In the event the specs match those of the current
object, it will be returned unchanged.

Parameters
T [float or None, optional] Temperature, [K]

P [float or None, optional] Pressure, [Pa]

V [float or None, optional] Molar volume, [m^3/mol]

Returns
obj [EOS] Pure component EOS at the two specified specs, [-]

Notes

Constructs the object with parameters Tc, Pc, omega, and kwargs.

Examples

>>> base = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=500.0, P=1E6)
>>> base.to(T=300.0, P=1e9).state_specs
{'T': 300.0, 'P': 1000000000.0}
>>> base.to(T=300.0, V=1.0).state_specs
{'T': 300.0, 'V': 1.0}
>>> base.to(P=1e5, V=1.0).state_specs
{'P': 100000.0, 'V': 1.0}

to_PV(P, V)
Method to construct a new EOS object at the spcified P and V. In the event the P and V match the current
object’s P and V, it will be returned unchanged.
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Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

Returns
obj [EOS] Pure component EOS at specified P and V, [-]

Notes

Constructs the object with parameters Tc, Pc, omega, and kwargs.

Examples

>>> base = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=500.0, P=1E6)
>>> new = base.to_PV(P=1000.0, V=1.0)
>>> base.state_specs, new.state_specs
({'T': 500.0, 'P': 1000000.0}, {'P': 1000.0, 'V': 1.0})

to_TP(T, P)
Method to construct a new EOS object at the spcified T and P. In the event the T and P match the current
object’s T and P, it will be returned unchanged.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
obj [EOS] Pure component EOS at specified T and P, [-]

Notes

Constructs the object with parameters Tc, Pc, omega, and kwargs.

Examples

>>> base = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=500.0, P=1E6)
>>> new = base.to_TP(T=1.0, P=2.0)
>>> base.state_specs, new.state_specs
({'T': 500.0, 'P': 1000000.0}, {'T': 1.0, 'P': 2.0})

to_TV(T, V)
Method to construct a new EOS object at the spcified T and V. In the event the T and V match the current
object’s T and V, it will be returned unchanged.

Parameters
T [float] Temperature, [K]

V [float] Molar volume, [m^3/mol]

Returns
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obj [EOS] Pure component EOS at specified T and V, [-]

Notes

Constructs the object with parameters Tc, Pc, omega, and kwargs.

Examples

>>> base = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=500.0, P=1E6)
>>> new = base.to_TV(T=1000000.0, V=1.0)
>>> base.state_specs, new.state_specs
({'T': 500.0, 'P': 1000000.0}, {'T': 1000000.0, 'V': 1.0})

volume_error()
Method to calculate the relative absolute error in the calculated molar volumes. This is computed with
mpmath. If the number of real roots is different between mpmath and the implemented solver, an error of
1 is returned.

Parameters
T [float] Temperature, [K]

Returns
error [float] relative absolute error in molar volumes , [-]

Examples

>>> eos = PRTranslatedTwu(T=300, P=1e5, Tc=512.5, Pc=8084000.0, omega=0.559,␣
→˓alpha_coeffs=(0.694911, 0.9199, 1.7), c=-1e-6)
>>> eos.volume_error()
5.2192e-17

volume_errors(Tmin=0.0001, Tmax=10000.0, Pmin=0.01, Pmax=1000000000.0, pts=50, plot=False,
show=False, trunc_err_low=1e-18, trunc_err_high=1.0, color_map=None, timing=False)

Method to create a plot of the relative absolute error in the cubic volume solution as compared to a higher-
precision calculation. This method is incredible valuable for the development of more reliable floating-point
based cubic solutions.

Parameters
Tmin [float] Minimum temperature of calculation, [K]

Tmax [float] Maximum temperature of calculation, [K]

Pmin [float] Minimum pressure of calculation, [Pa]

Pmax [float] Maximum pressure of calculation, [Pa]

pts [int, optional] The number of points to include in both the x and y axis; the validation
calculation is slow, so increasing this too much is not advisable, [-]

plot [bool] If False, the calculated errors are returned without plotting the data, [-]

show [bool] Whether or not the plot should be rendered and shown; a handle to it is returned
if plot is True for other purposes such as saving the plot to a file, [-]

trunc_err_low [float] Minimum plotted error; values under this are rounded to 0, [-]
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trunc_err_high [float] Maximum plotted error; values above this are rounded to 1, [-]

color_map [matplotlib.cm.ListedColormap] Matplotlib colormap object, [-]

timing [bool] If True, plots the time taken by the volume root calculations themselves; this
can reveal whether the solvers are taking fast or slow paths quickly, [-]

Returns
errors [list[list[float]]] Relative absolute errors in the volume calculation (or timings in sec-

onds if timing is True), [-]

fig [matplotlib.figure.Figure] Plotted figure, only returned if plot is True, [-]

static volume_solutions(T, P, b, delta, epsilon, a_alpha)
Halley’s method based solver for cubic EOS volumes based on the idea of initializing from a single liquid-
like guess which is solved precisely, deflating the cubic analytically, solving the quadratic equation for
the next two volumes, and then performing two halley steps on each of them to obtain the final solutions.
This method does not calculate imaginary roots - they are set to zero on detection. This method has been
rigorously tested over a wide range of conditions.

The method uses the standard combination of bisection to provide high and low boundaries as well, to keep
the iteration always moving forward.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [tuple[float]] Three possible molar volumes, [m^3/mol]

Notes

A sample region where this method works perfectly is shown below:

static volume_solutions_full(T, P, b, delta, epsilon, a_alpha, tries=0)
Newton-Raphson based solver for cubic EOS volumes based on the idea of initializing from an analytical
solver. This algorithm can only be described as a monstrous mess. It is fairly fast for most cases, but about
3x slower than volume_solutions_halley. In the worst case this will fall back to mpmath.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]
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tries [int, optional] Internal parameter as this function will call itself if it needs to; number
of previous solve attempts, [-]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]

Notes

Sample regions where this method works perfectly are shown below:

static volume_solutions_mp(T, P, b, delta, epsilon, a_alpha, dps=50)
Solution of this form of the cubic EOS in terms of volumes, using the mpmath arbitrary precision library.
The number of decimal places returned is controlled by the dps parameter.

This function is the reference implementation which provides exactly correct solutions; other algorithms
are compared against this one.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

dps [int] Number of decimal places in the result by mpmath, [-]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]
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Notes

Although mpmath has a cubic solver, it has been found to fail to solve in some cases. Accordingly, the
algorithm is as follows:

Working precision is dps plus 40 digits; and if P < 1e-10 Pa, it is dps plus 400 digits. The input parameters
are converted exactly to mpf objects on input.

polyroots from mpmath is used with maxsteps=2000, and extra precision of 15 digits. If the solution does
not converge, 20 extra digits are added up to 8 times. If no solution is found, mpmath’s findroot is called
on the pressure error function using three initial guesses from another solver.

Needless to say, this function is quite slow.

References

[1]

Examples

Test case which presented issues for PR EOS (three roots were not being returned):

>>> volume_solutions_mpmath(0.01, 1e-05, 2.5405184201558786e-05, 5.
→˓081036840311757e-05, -6.454233843151321e-10, 0.3872747173781095)
(mpf('0.0000254054613415548712260258773060137'), mpf('4.
→˓66038025602155259976574392093252'), mpf('8309.80218708657190094424659859346'))

7.7.2 Standard Peng-Robinson Family EOSs

Standard Peng Robinson

class thermo.eos.PR(Tc, Pc, omega, T=None, P=None, V=None)
Bases: thermo.eos.GCEOS

Class for solving the Peng-Robinson [1] [2] cubic equation of state for a pure compound. Subclasses GCEOS,
which provides the methods for solving the EOS and calculating its assorted relevant thermodynamic properties.
Solves the EOS on initialization.

The main methods here are PR.a_alpha_and_derivatives_pure, which calculates 𝑎𝛼 and its first and second
derivatives, and PR.solve_T, which from a specified P and V obtains T.

Two of (T, P, V ) are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2

Parameters
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Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

The constants in the expresions for a and b are given to full precision in the actual code, as derived in [3].

The full expression for critical compressibility is:

𝑍𝑐 =
1

32

(︃
3

√︁
16

√
2 − 13 − 7

3
√︀

16
√

2 − 13
+ 11

)︃

References

[1], [2], [3]

Examples

T-P initialization, and exploring each phase’s properties:

>>> eos = PR(Tc=507.6, Pc=3025000.0, omega=0.2975, T=400., P=1E6)
>>> eos.V_l, eos.V_g
(0.000156073184785, 0.0021418768167)
>>> eos.phase
'l/g'
>>> eos.H_dep_l, eos.H_dep_g
(-26111.8775716, -3549.30057795)
>>> eos.S_dep_l, eos.S_dep_g
(-58.098447843, -6.4394518931)
>>> eos.U_dep_l, eos.U_dep_g
(-22942.1657091, -2365.3923474)
>>> eos.G_dep_l, eos.G_dep_g
(-2872.49843435, -973.51982071)
>>> eos.A_dep_l, eos.A_dep_g
(297.21342811, 210.38840980)
>>> eos.beta_l, eos.beta_g
(0.00269337091778, 0.0101232239111)
>>> eos.kappa_l, eos.kappa_g
(9.3357215438e-09, 1.97106698097e-06)
>>> eos.Cp_minus_Cv_l, eos.Cp_minus_Cv_g
(48.510162249, 44.544161128)
>>> eos.Cv_dep_l, eos.Cp_dep_l
(18.8921126734, 59.0878123050)

P-T initialization, liquid phase, and round robin trip:
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>>> eos = PR(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000130222125139, -31134.75084, -72.47561931)

T-V initialization, liquid phase:

>>> eos2 = PR(Tc=507.6, Pc=3025000, omega=0.2975, T=299., V=eos.V_l)
>>> eos2.P, eos2.phase
(1000000.00, 'l')

P-V initialization at same state:

>>> eos3 = PR(Tc=507.6, Pc=3025000, omega=0.2975, V=eos.V_l, P=1E6)
>>> eos3.T, eos3.phase
(299.0000000000, 'l')

Methods

P_max_at_V(V) Method to calculate the maximum pressure the EOS
can create at a constant volume, if one exists; returns
None otherwise.

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for this EOS.
d3a_alpha_dT3_pure(T) Method to calculate the third temperature derivative

of a_alpha.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the PR EOS.

P_max_at_V(V)
Method to calculate the maximum pressure the EOS can create at a constant volume, if one exists; returns
None otherwise.

Parameters
V [float] Constant molar volume, [m^3/mol]

Returns
P [float] Maximum possible isochoric pressure, [Pa]
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Notes

The analytical determination of this formula involved some part of the discriminant, and much black magic.

Examples

>>> e = PR(P=1e5, V=0.0001437, Tc=512.5, Pc=8084000.0, omega=0.559)
>>> e.P_max_at_V(e.V)
2247886208.7

Zc = 0.30740130869870386
Mechanical compressibility of Peng-Robinson EOS

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Uses the set values of Tc, kappa,
and a.

𝑎𝛼 = 𝑎

(︂
𝜅

(︂
− 𝑇 0.5

𝑇𝑐0.5
+ 1

)︂
+ 1

)︂2

𝑑𝑎𝛼

𝑑𝑇
= − 1.0𝑎𝜅

𝑇 0.5𝑇𝑐0.5

(︂
𝜅

(︂
− 𝑇 0.5

𝑇𝑐0.5
+ 1

)︂
+ 1

)︂
𝑑2𝑎𝛼

𝑑𝑇 2
= 0.5𝑎𝜅

(︂
− 1

𝑇 1.5𝑇𝑐0.5

(︂
𝜅

(︂
𝑇 0.5

𝑇𝑐0.5
− 1

)︂
− 1

)︂
+

𝜅

𝑇 1.0𝑇𝑐1.0

)︂
Parameters

T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

Examples

Dodecane at 250 K:

>>> eos = PR(Tc=658.0, Pc=1820000.0, omega=0.562, T=500., P=1e5)
>>> eos.a_alpha_and_derivatives_pure(250.0)
(15.66839156301, -0.03094091246957, 9.243186769880e-05)
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a_alpha_pure(T)
Method to calculate 𝑎𝛼 for this EOS. Uses the set values of Tc, kappa, and a.

𝑎𝛼 = 𝑎

(︂
𝜅

(︂
− 𝑇 0.5

𝑇𝑐0.5
+ 1

)︂
+ 1

)︂2

Parameters
T [float] Temperature at which to calculate the value, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

Examples

Dodecane at 250 K:

>>> eos = PR(Tc=658.0, Pc=1820000.0, omega=0.562, T=500., P=1e5)
>>> eos.a_alpha_pure(250.0)
15.66839156301

c1 = 0.4572355289213822
Full value of the constant in the a parameter

c2 = 0.07779607390388846
Full value of the constant in the b parameter

d3a_alpha_dT3_pure(T)
Method to calculate the third temperature derivative of a_alpha. Uses the set values of Tc, kappa, and a.
This property is not normally needed.

𝑑3𝑎𝛼

𝑑𝑇 3
=

3𝑎𝜅

(︃
− 𝜅

𝑇𝑐
+

√︁
𝑇
𝑇𝑐

(︁
𝜅
(︁√︁

𝑇
𝑇𝑐

−1
)︁
−1
)︁

𝑇

)︃
4𝑇 2

Parameters
T [float] Temperature at which to calculate the derivative, [-]

Returns
d3a_alpha_dT3 [float] Third temperature derivative of coefficient calculated by EOS-

specific method, [J^2/mol^2/Pa/K^3]
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Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

Examples

Dodecane at 500 K:

>>> eos = PR(Tc=658.0, Pc=1820000.0, omega=0.562, T=500., P=1e5)
>>> eos.d3a_alpha_dT3_pure(500.0)
-9.8038800671e-08

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the PR EOS. Uses Tc, a, b, and kappa as well, obtained
from the class’s namespace.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

Notes

The exact solution can be derived as follows, and is excluded for breviety.

>>> from sympy import *
>>> P, T, V = symbols('P, T, V')
>>> Tc, Pc, omega = symbols('Tc, Pc, omega')
>>> R, a, b, kappa = symbols('R, a, b, kappa')
>>> a_alpha = a*(1 + kappa*(1-sqrt(T/Tc)))**2
>>> PR_formula = R*T/(V-b) - a_alpha/(V*(V+b)+b*(V-b)) - P
>>> #solve(PR_formula, T)

After careful evaluation of the results of the analytical formula, it was discovered, that numerical preci-
sion issues required several NR refinement iterations; at at times, when the analytical value is extremely
erroneous, a call to a full numerical solver not using the analytical solution at all is required.
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Examples

>>> eos = PR(Tc=658.0, Pc=1820000.0, omega=0.562, T=500., P=1e5)
>>> eos.solve_T(P=eos.P, V=eos.V_g)
500.0000000

Peng Robinson (1978)

class thermo.eos.PR78(Tc, Pc, omega, T=None, P=None, V=None)
Bases: thermo.eos.PR

Class for solving the Peng-Robinson cubic equation of state for a pure compound according to the 1978 variant
[1] [2]. Subclasses PR , which provides everything except the variable kappa. Solves the EOS on initialization.
See PR for further documentation.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖 if 𝜔𝑖 ≤ 0.491

𝜅𝑖 = 0.379642 + 1.48503𝜔𝑖 − 0.164423𝜔2
𝑖 + 0.016666𝜔3

𝑖 if 𝜔𝑖 > 0.491

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

This variant is recommended over the original.

References

[1], [2]
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Examples

P-T initialization (furfuryl alcohol), liquid phase:

>>> eos = PR78(Tc=632, Pc=5350000, omega=0.734, T=299., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 8.3519628969e-05, -63764.671093, -130.737153225)

high_omega_constants = (0.379642, 1.48503, -0.164423, 0.016666)
Constants for the kappa formula for the high-omega region.

low_omega_constants = (0.37464, 1.54226, -0.26992)
Constants for the kappa formula for the low-omega region.

Peng Robinson Stryjek-Vera

class thermo.eos.PRSV(Tc, Pc, omega, T=None, P=None, V=None, kappa1=None)
Bases: thermo.eos.PR

Class for solving the Peng-Robinson-Stryjek-Vera equations of state for a pure compound as given in [1]. The
same as the Peng-Robinson EOS, except with a different kappa formula and with an optional fit parameter.
Subclasses PR , which provides only several constants. See PR for further documentation and examples.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 𝜅0 + 𝜅1(1 + 𝑇 0.5
𝑟 )(0.7 − 𝑇𝑟)

𝜅0 = 0.378893 + 1.4897153𝜔 − 0.17131848𝜔2 + 0.0196554𝜔3

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

kappa1 [float, optional] Fit parameter; available in [1] for over 90 compounds, [-]
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Notes

[1] recommends that kappa1 be set to 0 for Tr > 0.7. This is not done by default; the class boolean kappa1_Tr_limit
may be set to True and the problem re-solved with that specified if desired. kappa1_Tr_limit is not supported for
P-V inputs.

Solutions for P-V solve for T with SciPy’s newton solver, as there is no analytical solution for T

[2] and [3] are two more resources documenting the PRSV EOS. [4] lists kappa values for 69 additional com-
pounds. See also PRSV2. Note that tabulated kappa values should be used with the critical parameters used in
their fits. Both [1] and [4] only considered vapor pressure in fitting the parameter.

References

[1], [2], [3], [4]

Examples

P-T initialization (hexane, with fit parameter in [1]), liquid phase:

>>> eos = PRSV(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6, kappa1=0.05104)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000130126913554, -31698.926746, -74.16751538)

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for this EOS.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the PRSV EOS.

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Uses the set values of Tc, kappa0,
kappa1, and a.

The a_alpha function is shown below; the first and second derivatives are not shown for brevity.

𝑎𝛼 = 𝑎

(︃(︃
𝜅0 + 𝜅1

(︃√︂
𝑇

𝑇𝑐
+ 1

)︃(︂
− 𝑇

𝑇𝑐
+

7

10

)︂)︃(︃
−
√︂
𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]
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Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

The expressions can be derived as follows:

>>> from sympy import *
>>> P, T, V = symbols('P, T, V')
>>> Tc, Pc, omega = symbols('Tc, Pc, omega')
>>> R, a, b, kappa0, kappa1 = symbols('R, a, b, kappa0, kappa1')
>>> kappa = kappa0 + kappa1*(1 + sqrt(T/Tc))*(Rational(7, 10)-T/Tc)
>>> a_alpha = a*(1 + kappa*(1-sqrt(T/Tc)))**2
>>> # diff(a_alpha, T)
>>> # diff(a_alpha, T, 2)

Examples

>>> eos = PRSV(Tc=507.6, Pc=3025000, omega=0.2975, T=406.08, P=1E6, kappa1=0.
→˓05104)
>>> eos.a_alpha_and_derivatives_pure(185.0)
(4.76865472591, -0.0101408587212, 3.9138298092e-05)

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for this EOS. Uses the set values of Tc, kappa0, kappa1, and a.

𝑎𝛼 = 𝑎

(︃(︃
𝜅0 + 𝜅1

(︃√︂
𝑇

𝑇𝑐
+ 1

)︃(︂
− 𝑇

𝑇𝑐
+

7

10

)︂)︃(︃
−
√︂
𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature at which to calculate the value, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

Examples

>>> eos = PRSV(Tc=507.6, Pc=3025000, omega=0.2975, T=406.08, P=1E6, kappa1=0.
→˓05104)
>>> eos.a_alpha_pure(185.0)
4.7686547259

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the PRSV EOS. Uses Tc, a, b, kappa0 and kappa as
well, obtained from the class’s namespace.
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Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

Notes

Not guaranteed to produce a solution. There are actually two solution, one much higher than normally
desired; it is possible the solver could converge on this.

Peng Robinson Stryjek-Vera 2

class thermo.eos.PRSV2(Tc, Pc, omega, T=None, P=None, V=None, kappa1=0, kappa2=0, kappa3=0)
Bases: thermo.eos.PR

Class for solving the Peng-Robinson-Stryjek-Vera 2 equations of state for a pure compound as given in [1]. The
same as the Peng-Robinson EOS, except with a different kappa formula and with three fit parameters. Subclasses
PR , which provides only several constants. See PR for further documentation and examples.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 𝜅0 + [𝜅1 + 𝜅2(𝜅3 − 𝑇𝑟)(1 − 𝑇 0.5
𝑟 )](1 + 𝑇 0.5

𝑟 )(0.7 − 𝑇𝑟)

𝜅0 = 0.378893 + 1.4897153𝜔 − 0.17131848𝜔2 + 0.0196554𝜔3

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

kappa1 [float, optional] Fit parameter; available in [1] for over 90 compounds, [-]

kappa2 [float, optional] Fit parameter; available in [1] for over 90 compounds, [-]

kappa [float, optional] Fit parameter; available in [1] for over 90 compounds, [-]
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Notes

Note that tabulated kappa values should be used with the critical parameters used in their fits. [1] considered
only vapor pressure in fitting the parameter.

References

[1]

Examples

P-T initialization (hexane, with fit parameter in [1]), liquid phase:

>>> eos = PRSV2(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6, kappa1=0.05104,␣
→˓kappa2=0.8634, kappa3=0.460)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000130188257591, -31496.1841687, -73.615282963)

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for this EOS.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the PRSV2 EOS.

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Uses the set values of Tc, kappa0,
kappa1, kappa2, kappa3, and a.

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 𝜅0 + [𝜅1 + 𝜅2(𝜅3 − 𝑇𝑟)(1 − 𝑇 0.5
𝑟 )](1 + 𝑇 0.5

𝑟 )(0.7 − 𝑇𝑟)

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]
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Notes

The first and second derivatives of a_alpha are available through the following SymPy expression.

>>> from sympy import *
>>> P, T, V = symbols('P, T, V')
>>> Tc, Pc, omega = symbols('Tc, Pc, omega')
>>> R, a, b, kappa0, kappa1, kappa2, kappa3 = symbols('R, a, b, kappa0, kappa1,␣
→˓kappa2, kappa3')
>>> Tr = T/Tc
>>> kappa = kappa0 + (kappa1 + kappa2*(kappa3-Tr)*(1-
→˓sqrt(Tr)))*(1+sqrt(Tr))*(Rational('0.7')-Tr)
>>> a_alpha = a*(1 + kappa*(1-sqrt(T/Tc)))**2
>>> diff(a_alpha, T)
>>> diff(a_alpha, T, 2)

Examples

>>> eos = PRSV2(Tc=507.6, Pc=3025000, omega=0.2975, T=400., P=1E6, kappa1=0.
→˓05104, kappa2=0.8634, kappa3=0.460)
>>> eos.a_alpha_and_derivatives_pure(311.0)
(3.7245418495, -0.0066115440470, 2.05871011677e-05)

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for this EOS. Uses the set values of Tc, kappa0, kappa1, kappa2, kappa3, and a.

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 𝜅0 + [𝜅1 + 𝜅2(𝜅3 − 𝑇𝑟)(1 − 𝑇 0.5
𝑟 )](1 + 𝑇 0.5

𝑟 )(0.7 − 𝑇𝑟)

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Examples

>>> eos = PRSV2(Tc=507.6, Pc=3025000, omega=0.2975, T=400., P=1E6, kappa1=0.
→˓05104, kappa2=0.8634, kappa3=0.460)
>>> eos.a_alpha_pure(1276.0)
33.321674050

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the PRSV2 EOS. Uses Tc, a, b, kappa0, kappa1, kappa2,
and kappa3 as well, obtained from the class’s namespace.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]
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solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

Notes

Not guaranteed to produce a solution. There are actually 8 solutions, six with an imaginary component at
a tested point. The two temperature solutions are quite far apart, with one much higher than the other; it is
possible the solver could converge on the higher solution, so use T inputs with care. This extra solution is
a perfectly valid one however. The secant method is implemented at present.

Examples

>>> eos = PRSV2(Tc=507.6, Pc=3025000, omega=0.2975, T=400., P=1E6, kappa1=0.
→˓05104, kappa2=0.8634, kappa3=0.460)
>>> eos.solve_T(P=eos.P, V=eos.V_g)
400.0

Peng Robinson Twu (1995)

class thermo.eos.TWUPR(Tc, Pc, omega, T=None, P=None, V=None)
Bases: thermo.eos_alpha_functions.TwuPR95_a_alpha, thermo.eos.PR

Class for solving the Twu (1995) [1] variant of the Peng-Robinson cubic equation of state for a pure compound.
Subclasses PR , which provides the methods for solving the EOS and calculating its assorted relevant thermody-
namic properties. Solves the EOS on initialization.

The main implemented method here is a_alpha_and_derivatives_pure, which sets 𝑎𝛼 and its first and
second derivatives.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.
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Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

Claimed to be more accurate than the PR, PR78 and PRSV equations.

There is no analytical solution for T. There are multiple possible solutions for T under certain conditions; no
guaranteed are provided regarding which solution is obtained.

References

[1]

Examples

>>> eos = TWUPR(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6)
>>> eos.V_l, eos.H_dep_l, eos.S_dep_l
(0.00013017554170, -31652.73712, -74.112850429)

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for the Twu alpha function.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for the Twu alpha function.

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for the Twu alpha function. Uses the set values
of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.
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Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

The derivatives are somewhat long and are not described here for brevity; they are obtainable from the
following SymPy expression.

>>> from sympy import *
>>> T, Tc, omega, N1, N0, M1, M0, L1, L0 = symbols('T, Tc, omega, N1, N0, M1,␣
→˓M0, L1, L0')
>>> Tr = T/Tc
>>> alpha0 = Tr**(N0*(M0-1))*exp(L0*(1-Tr**(N0*M0)))
>>> alpha1 = Tr**(N1*(M1-1))*exp(L1*(1-Tr**(N1*M1)))
>>> alpha = alpha0 + omega*(alpha1-alpha0)
>>> diff(alpha, T)
>>> diff(alpha, T, T)

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for the Twu alpha function. Uses the set values of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.

Parameters
T [float] Temperature at which to calculate the value, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

7.7. Cubic Equations of State (thermo.eos) 217



thermo Documentation, Release 0.2.20

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

Peng Robinson Polynomial alpha Function

class thermo.eos.PRTranslatedPoly(Tc, Pc, omega, alpha_coeffs=None, c=0.0, T=None, P=None, V=None)
Bases: thermo.eos_alpha_functions.Poly_a_alpha, thermo.eos.PRTranslated

Class for solving the volume translated Peng-Robinson equation of state with a polynomial alpha function. With
the right coefficients, this model can reproduce any property incredibly well. Subclasses PRTranslated . Solves
the EOS on initialization. This is intended as a base class for all translated variants of the Peng-Robinson EOS.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = 𝑓(𝑇 )

𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

alpha_coeffs [tuple or None] Coefficients which may be specified by subclasses; set to None to
use the original Peng-Robinson alpha function, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Examples

Methanol, with alpha functions reproducing CoolProp’s implementation of its vapor pressure (up to 13 coeffi-
cients)

>>> alpha_coeffs_exact = [9.645280470011588e-32, -4.362226651748652e-28, 9.
→˓034194757823037e-25, -1.1343330204981244e-21, 9.632898335494218e-19, -5.
→˓841502902171077e-16, 2.601801729901228e-13, -8.615431349241052e-11, 2.
→˓1202999753932622e-08, -3.829144045293198e-06, 0.0004930777289075716, -0.
→˓04285337965522619, 2.2473964123842705, -51.13852710672087]
>>> kwargs = dict(Tc=512.5, Pc=8084000.0, omega=0.559, alpha_coeffs=alpha_coeffs_
→˓exact, c=1.557458e-05)
>>> eos = PRTranslatedPoly(T=300, P=1e5, **kwargs)

(continues on next page)
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(continued from previous page)

>>> eos.Psat(500)/PropsSI("P", 'T', 500.0, 'Q', 0, 'methanol')
1.0000112765

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives given that there is a polynomial equation
for 𝛼.

a_alpha_pure(T) Method to calculate a_alpha given that there is a
polynomial equation for 𝛼.

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives given that there is a polynomial equation
for 𝛼.

𝑎𝛼 = 𝑎 · poly(𝑇 )

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alpha_pure(T)
Method to calculate a_alpha given that there is a polynomial equation for 𝛼.

𝑎𝛼 = 𝑎 · poly(𝑇 )

Parameters
T [float] Temperature, [K]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

7.7.3 Volume Translated Peng-Robinson Family EOSs

Peng Robinson Translated

class thermo.eos.PRTranslated(Tc, Pc, omega, alpha_coeffs=None, c=0.0, T=None, P=None, V=None)
Bases: thermo.eos.PR

Class for solving the volume translated Peng-Robinson equation of state. Subclasses PR . Solves the EOS on
initialization. This is intended as a base class for all translated variants of the Peng-Robinson EOS.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)
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𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

alpha_coeffs [tuple or None] Coefficients which may be specified by subclasses; set to None to
use the original Peng-Robinson alpha function, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

References

[1]

Examples

P-T initialization:

>>> eos = PRTranslated(T=305, P=1.1e5, Tc=512.5, Pc=8084000.0, omega=0.559, c=-1e-6)
>>> eos.phase, eos.V_l, eos.V_g
('l/g', 4.90798083711e-05, 0.0224350982488)

Peng Robinson Translated Twu (1991)

class thermo.eos.PRTranslatedTwu(Tc, Pc, omega, alpha_coeffs=None, c=0.0, T=None, P=None, V=None)
Bases: thermo.eos_alpha_functions.Twu91_a_alpha, thermo.eos.PRTranslated

Class for solving the volume translated Peng-Robinson equation of state with the Twu (1991) [1] alpha func-
tion. Subclasses thermo.eos_alpha_functions.Twu91_a_alpha and PRTranslated . Solves the EOS on
initialization.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼 =

(︂
𝑇

𝑇𝑐

)︂𝑐3(𝑐2−1)

𝑒𝑐1(−( 𝑇
𝑇𝑐

)
𝑐2𝑐3+1)
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Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

alpha_coeffs [tuple(float[3])] Coefficients L, M, N (also called C1, C2, C3) of TWU 1991 form,
[-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

This variant offers substantial improvements to the PR-type EOSs - likely getting about as accurate as this form
of cubic equation can get.

References

[1]

Examples

P-T initialization:

>>> alpha_coeffs = (0.694911381318495, 0.919907783415812, 1.70412689631515)
>>> kwargs = dict(Tc=512.5, Pc=8084000.0, omega=0.559, alpha_coeffs=alpha_coeffs,␣
→˓c=-1e-6)
>>> eos = PRTranslatedTwu(T=300, P=1e5, **kwargs)
>>> eos.phase, eos.V_l, eos.V_g
('l/g', 4.8918748906e-05, 0.024314406330)

Peng Robinson Translated-Consistent

class thermo.eos.PRTranslatedConsistent(Tc, Pc, omega, alpha_coeffs=None, c=None, T=None, P=None,
V=None)

Bases: thermo.eos.PRTranslatedTwu

Class for solving the volume translated Le Guennec, Privat, and Jaubert revision of the Peng-Robinson equation
of state for a pure compound according to [1]. Subclasses PRTranslatedTwu, which provides everything except
the estimation of c and the alpha coefficients. This model’s alpha is based on the TWU 1991 model; when
estimating, N is set to 2. Solves the EOS on initialization. See PRTranslated for further documentation.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐
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𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼 =

(︂
𝑇

𝑇𝑐

)︂𝑐3(𝑐2−1)

𝑒𝑐1(−( 𝑇
𝑇𝑐

)
𝑐2𝑐3+1)

If c is not provided, it is estimated as:

𝑐 =
𝑅𝑇𝑐
𝑃𝑐

(0.0198𝜔 − 0.0065)

If alpha_coeffs is not provided, the parameters L and M are estimated from the acentric factor as follows:

𝐿 = 0.1290𝜔2 + 0.6039𝜔 + 0.0877

𝑀 = 0.1760𝜔2 − 0.2600𝜔 + 0.8884

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

alpha_coeffs [tuple(float[3]), optional] Coefficients L, M, N (also called C1, C2, C3) of TWU
1991 form, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

This variant offers substantial improvements to the PR-type EOSs - likely getting about as accurate as this form
of cubic equation can get.

References

[1]

Examples

P-T initialization (methanol), liquid phase:

>>> eos = PRTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=250., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000124374813374486, -34155.16119794619, -83.34913258614345)
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Peng Robinson Translated (Pina-Martinez, Privat, and Jaubert Variant)

class thermo.eos.PRTranslatedPPJP(Tc, Pc, omega, c=0.0, T=None, P=None, V=None)
Bases: thermo.eos.PRTranslated

Class for solving the volume translated Pina-Martinez, Privat, Jaubert, and Peng revision of the Peng-Robinson
equation of state for a pure compound according to [1]. Subclasses PRTranslated , which provides everything
except the variable kappa. Solves the EOS on initialization. See PRTranslated for further documentation.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)

𝑎 = 0.45724
𝑅2𝑇 2

𝑐

𝑃𝑐

𝑏 = 0.07780
𝑅𝑇𝑐
𝑃𝑐

𝛼(𝑇 ) = [1 + 𝜅(1 −
√︀
𝑇𝑟)]2

𝜅 = 0.3919 + 1.4996𝜔 − 0.2721𝜔2 + 0.1063𝜔3

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

This variant offers incremental improvements in accuracy only, but those can be fairly substantial for some sub-
stances.

References

[1]

Examples

P-T initialization (methanol), liquid phase:

>>> eos = PRTranslatedPPJP(Tc=507.6, Pc=3025000, omega=0.2975, c=0.6390E-6, T=250.,␣
→˓P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.0001229231238092, -33466.2428296, -80.75610242427)
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7.7.4 Soave-Redlich-Kwong Family EOSs

Standard SRK

class thermo.eos.SRK(Tc, Pc, omega, T=None, P=None, V=None)
Bases: thermo.eos.GCEOS

Class for solving the Soave-Redlich-Kwong [1] [2] [3] cubic equation of state for a pure compound. Subclasses
GCEOS, which provides the methods for solving the EOS and calculating its assorted relevant thermodynamic
properties. Solves the EOS on initialization.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼(𝑇 ) =

[︃
1 +𝑚

(︃
1 −

√︂
𝑇

𝑇𝑐

)︃]︃2
𝑚 = 0.480 + 1.574𝜔 − 0.176𝜔2

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

References

[1], [2], [3]

Examples

>>> eos = SRK(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000146821077354, -31754.663859, -74.373272044)
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Methods

P_max_at_V(V) Method to calculate the maximum pressure the EOS
can create at a constant volume, if one exists; returns
None otherwise.

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for this EOS.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the SRK EOS.

P_max_at_V(V)
Method to calculate the maximum pressure the EOS can create at a constant volume, if one exists; returns
None otherwise.

Parameters
V [float] Constant molar volume, [m^3/mol]

Returns
P [float] Maximum possible isochoric pressure, [Pa]

Notes

The analytical determination of this formula involved some part of the discriminant, and much black magic.

Examples

>>> e = SRK(P=1e5, V=0.0001437, Tc=512.5, Pc=8084000.0, omega=0.559)
>>> e.P_max_at_V(e.V)
490523786.2

Zc = 0.3333333333333333
Mechanical compressibility of SRK EOS

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Uses the set values of Tc, m, and
a.

𝑎𝛼 = 𝑎

(︃
𝑚

(︃
−
√︂
𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

𝑑𝑎𝛼

𝑑𝑇
=
𝑎𝑚

𝑇

√︂
𝑇

𝑇𝑐

(︃
𝑚

(︃√︂
𝑇

𝑇𝑐
− 1

)︃
− 1

)︃

𝑑2𝑎𝛼

𝑑𝑇 2
=
𝑎𝑚
√︁

𝑇
𝑇𝑐

2𝑇 2
(𝑚+ 1)

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
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a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for this EOS. Uses the set values of Tc, m, and a.

𝑎𝛼 = 𝑎

(︃
𝑚

(︃
−
√︂
𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

c1 = 0.4274802335403414
Full value of the constant in the a parameter

c2 = 0.08664034996495772
Full value of the constant in the b parameter

epsilon = 0.0
epsilon is always zero for the SRK EOS

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the SRK EOS. Uses a, b, and Tc obtained from the
class’s namespace.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

Notes

The exact solution can be derived as follows; it is excluded for breviety.

>>> from sympy import *
>>> P, T, V, R, a, b, m = symbols('P, T, V, R, a, b, m')
>>> Tc, Pc, omega = symbols('Tc, Pc, omega')
>>> a_alpha = a*(1 + m*(1-sqrt(T/Tc)))**2
>>> SRK = R*T/(V-b) - a_alpha/(V*(V+b)) - P
>>> solve(SRK, T)
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Twu SRK (1995)

class thermo.eos.TWUSRK(Tc, Pc, omega, T=None, P=None, V=None)
Bases: thermo.eos_alpha_functions.TwuSRK95_a_alpha, thermo.eos.SRK

Class for solving the Soave-Redlich-Kwong cubic equation of state for a pure compound. Subclasses GCEOS,
which provides the methods for solving the EOS and calculating its assorted relevant thermodynamic properties.
Solves the EOS on initialization.

The main implemented method here is a_alpha_and_derivatives_pure, which sets 𝑎𝛼 and its first and
second derivatives.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

There is no analytical solution for T. There are multiple possible solutions for T under certain conditions; no
guaranteed are provided regarding which solution is obtained.
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References

[1]

Examples

>>> eos = TWUSRK(Tc=507.6, Pc=3025000, omega=0.2975, T=299., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000146892222966, -31612.6025870, -74.022966093)

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for the Twu alpha function.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for the Twu alpha function.

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for the Twu alpha function. Uses the set values
of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]
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Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

The derivatives are somewhat long and are not described here for brevity; they are obtainable from the
following SymPy expression.

>>> from sympy import *
>>> T, Tc, omega, N1, N0, M1, M0, L1, L0 = symbols('T, Tc, omega, N1, N0, M1,␣
→˓M0, L1, L0')
>>> Tr = T/Tc
>>> alpha0 = Tr**(N0*(M0-1))*exp(L0*(1-Tr**(N0*M0)))
>>> alpha1 = Tr**(N1*(M1-1))*exp(L1*(1-Tr**(N1*M1)))
>>> alpha = alpha0 + omega*(alpha1-alpha0)
>>> diff(alpha, T)
>>> diff(alpha, T, T)

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for the Twu alpha function. Uses the set values of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
T [float] Temperature at which to calculate the value, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.
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API SRK

class thermo.eos.APISRK(Tc, Pc, omega=None, T=None, P=None, V=None, S1=None, S2=0)
Bases: thermo.eos.SRK

Class for solving the Refinery Soave-Redlich-Kwong cubic equation of state for a pure compound shown in
the API Databook [1]. Subclasses GCEOS, which provides the methods for solving the EOS and calculating its
assorted relevant thermodynamic properties. Solves the EOS on initialization.

Implemented methods here are a_alpha_and_derivatives, which sets 𝑎𝛼 and its first and second derivatives, and
solve_T, which from a specified P and V obtains T. Two fit constants are used in this expresion, with an estimation
scheme for the first if unavailable and the second may be set to zero.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼(𝑇 ) =

[︂
1 + 𝑆1

(︁
1 −

√︀
𝑇𝑟

)︁
+ 𝑆2

1 −
√
𝑇𝑟√

𝑇𝑟

]︂2
𝑆1 = 0.48508 + 1.55171𝜔 − 0.15613𝜔2 if S1 is not tabulated

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float, optional] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

S1 [float, optional] Fit constant or estimated from acentric factor if not provided [-]

S2 [float, optional] Fit constant or 0 if not provided [-]

References

[1]

Examples

>>> eos = APISRK(Tc=514.0, Pc=6137000.0, S1=1.678665, S2=-0.216396, P=1E6, T=299)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 7.0456950702e-05, -42826.286146, -103.626979037)
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Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for this EOS.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the API SRK EOS.

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Returns a_alpha, da_alpha_dT,
and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Uses the set values
of Tc, a, S1, and S2.

𝑎𝛼(𝑇 ) = 𝑎

[︂
1 + 𝑆1

(︁
1 −

√︀
𝑇𝑟

)︁
+ 𝑆2

1 −
√
𝑇𝑟√

𝑇𝑟

]︂2
𝑑𝑎𝛼

𝑑𝑇
= 𝑎

𝑇𝑐
𝑇 2

(︃
−𝑆2

(︃√︂
𝑇

𝑇𝑐
− 1

)︃
+

√︂
𝑇

𝑇𝑐

(︃
𝑆1

√︂
𝑇

𝑇𝑐
+ 𝑆2

)︃)︃(︃
𝑆2

(︃√︂
𝑇

𝑇𝑐
− 1

)︃
+

√︂
𝑇

𝑇𝑐

(︃
𝑆1

(︃√︂
𝑇

𝑇𝑐
− 1

)︃
− 1

)︃)︃

𝑑2𝑎𝛼

𝑑𝑇 2
= 𝑎

1

2𝑇 3

(︃
𝑆2
1𝑇

√︂
𝑇

𝑇𝑐
− 𝑆1𝑆2𝑇

√︂
𝑇

𝑇𝑐
+ 3𝑆1𝑆2𝑇𝑐

√︂
𝑇

𝑇𝑐
+ 𝑆1𝑇

√︂
𝑇

𝑇𝑐
− 3𝑆2

2𝑇𝑐

√︂
𝑇

𝑇𝑐
+ 4𝑆2

2𝑇𝑐+ 3𝑆2𝑇𝑐

√︂
𝑇

𝑇𝑐

)︃

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for this EOS. Uses the set values of Tc, m, and a.

𝑎𝛼 = 𝑎

(︃
𝑚

(︃
−
√︂
𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the API SRK EOS. Uses a, b, and Tc obtained from the
class’s namespace.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]
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Notes

If S2 is set to 0, the solution is the same as in the SRK EOS, and that is used. Otherwise, newton’s method
must be used to solve for T. There are 8 roots of T in that case, six of them real. No guarantee can be made
regarding which root will be obtained.

SRK Translated

class thermo.eos.SRKTranslated(Tc, Pc, omega, alpha_coeffs=None, c=0.0, T=None, P=None, V=None)
Bases: thermo.eos.SRK

Class for solving the volume translated Peng-Robinson equation of state. Subclasses SRK . Solves the EOS on
initialization. This is intended as a base class for all translated variants of the SRK EOS.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼(𝑇 ) =

[︃
1 +𝑚

(︃
1 −

√︂
𝑇

𝑇𝑐

)︃]︃2
𝑚 = 0.480 + 1.574𝜔 − 0.176𝜔2

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

alpha_coeffs [tuple or None] Coefficients which may be specified by subclasses; set to None to
use the original Peng-Robinson alpha function, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

References

[1]
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Examples

P-T initialization:

>>> eos = SRKTranslated(T=305, P=1.1e5, Tc=512.5, Pc=8084000.0, omega=0.559, c=-1e-
→˓6)
>>> eos.phase, eos.V_l, eos.V_g
('l/g', 5.5131657318e-05, 0.022447661363)

SRK Translated-Consistent

class thermo.eos.SRKTranslatedConsistent(Tc, Pc, omega, alpha_coeffs=None, c=None, T=None,
P=None, V=None)

Bases: thermo.eos_alpha_functions.Twu91_a_alpha, thermo.eos.SRKTranslated

Class for solving the volume translated Le Guennec, Privat, and Jaubert revision of the SRK equation of state
for a pure compound according to [1].

This model’s alpha is based on the TWU 1991 model; when estimating, N is set to 2. Solves the EOS on
initialization. See SRK for further documentation.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼 =

(︂
𝑇

𝑇𝑐

)︂𝑐3(𝑐2−1)

𝑒𝑐1(−( 𝑇
𝑇𝑐

)
𝑐2𝑐3+1)

If c is not provided, it is estimated as:

𝑐 =
𝑅𝑇𝑐
𝑃𝑐

(0.0172𝜔 − 0.0096)

If alpha_coeffs is not provided, the parameters L and M are estimated from the acentric factor as follows:

𝐿 = 0.0947𝜔2 + 0.6871𝜔 + 0.1508

𝑀 = 0.1615𝜔2 − 0.2349𝜔 + 0.8876

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

alpha_coeffs [tuple(float[3]), optional] Coefficients L, M, N (also called C1, C2, C3) of TWU
1991 form, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]
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Notes

This variant offers substantial improvements to the SRK-type EOSs - likely getting about as accurate as this form
of cubic equation can get.

References

[1]

Examples

P-T initialization (methanol), liquid phase:

>>> eos = SRKTranslatedConsistent(Tc=507.6, Pc=3025000, omega=0.2975, T=250., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.00011846802568940222, -34324.05211005662, -83.83861726864234)

SRK Translated (Pina-Martinez, Privat, and Jaubert Variant)

class thermo.eos.SRKTranslatedPPJP(Tc, Pc, omega, c=0.0, T=None, P=None, V=None)
Bases: thermo.eos.SRK

Class for solving the volume translated Pina-Martinez, Privat, Jaubert, and Peng revision of the Soave-Redlich-
Kwong equation of state for a pure compound according to [1]. Subclasses SRK, which provides everything
except the variable kappa. Solves the EOS on initialization. See SRK for further documentation.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼(𝑇 ) =

[︃
1 +𝑚

(︃
1 −

√︂
𝑇

𝑇𝑐

)︃]︃2
𝑚 = 0.4810 + 1.5963𝜔 − 0.2963𝜔2 + 0.1223𝜔3

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]
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Notes

This variant offers incremental improvements in accuracy only, but those can be fairly substantial for some sub-
stances.

References

[1]

Examples

P-T initialization (hexane), liquid phase:

>>> eos = SRKTranslatedPPJP(Tc=507.6, Pc=3025000, omega=0.2975, c=22.3098E-6, T=250.
→˓, P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.00011666322408111662, -34158.934132722185, -83.06507748137201)

MSRK Translated

class thermo.eos.MSRKTranslated(Tc, Pc, omega, M=None, N=None, alpha_coeffs=None, c=0.0, T=None,
P=None, V=None)

Bases: thermo.eos_alpha_functions.Soave_1979_a_alpha, thermo.eos.SRKTranslated

Class for solving the volume translated Soave (1980) alpha function, revision of the Soave-Redlich-Kwong equa-
tion of state for a pure compound according to [1]. Uses two fitting parameters N and M to more accurately fit the
vapor pressure of pure species. Subclasses SRKTranslated. Solves the EOS on initialization. See SRKTranslated
for further documentation.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

𝛼(𝑇 ) = 1 + (1 − 𝑇𝑟)(𝑀 +
𝑁

𝑇𝑟
)

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

alpha_coeffs [tuple(float[3]), optional] Coefficients M, N of this EOS’s alpha function, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]
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Notes

This is an older correlation that offers lower accuracy on many properties which were sacrificed to obtain the
vapor pressure accuracy. The alpha function of this EOS does not meet any of the consistency requriements for
alpha functions.

Coefficients can be found in [2], or estimated with the method in [3]. The estimation method in [3] works as
follows, using the acentric factor and true critical compressibility:

𝑀 = 0.4745 + 2.7349(𝜔𝑍𝑐) + 6.0984(𝜔𝑍𝑐)
2

𝑁 = 0.0674 + 2.1031(𝜔𝑍𝑐) + 3.9512(𝜔𝑍𝑐)
2

An alternate estimation scheme is provided in [1], which provides analytical solutions to calculate the parameters
M and N from two points on the vapor pressure curve, suggested as 10 mmHg and 1 atm. This is used as an
estimation method here if the parameters are not provided, and the two vapor pressure points are obtained from
the original SRK equation of state.

References

[1], [2], [3]

Examples

P-T initialization (hexane), liquid phase:

>>> eos = MSRKTranslated(Tc=507.6, Pc=3025000, omega=0.2975, c=22.0561E-6, M=0.7446,
→˓ N=0.2476, T=250., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.0001169276461322, -34571.6862673, -84.757900348)

Methods

estimate_MN(Tc, Pc, omega[, c]) Calculate the alpha values for the MSRK equation to
match two pressure points, and solve analytically for
the M, N required to match exactly that.

static estimate_MN(Tc, Pc, omega, c=0.0)
Calculate the alpha values for the MSRK equation to match two pressure points, and solve analytically
for the M, N required to match exactly that. Since no experimental data is available, make it up with the
original SRK EOS.

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

omega [float] Acentric factor, [-]

c [float, optional] Volume translation parameter, [m^3/mol]

Returns
M [float] M parameter, [-]
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N [float] N parameter, [-]

Examples

>>> from sympy import *
>>> Tc, m, n = symbols('Tc, m, n')
>>> T0, T1 = symbols('T_10, T_760')
>>> alpha0, alpha1 = symbols('alpha_10, alpha_760')
>>> Eqs = [Eq(alpha0, 1 + (1 - T0/Tc)*(m + n/(T0/Tc))), Eq(alpha1, 1 + (1 - T1/
→˓Tc)*(m + n/(T1/Tc)))]
>>> solve(Eqs, [n, m])

7.7.5 Van der Waals Equations of State

class thermo.eos.VDW(Tc, Pc, T=None, P=None, V=None, omega=None)
Bases: thermo.eos.GCEOS

Class for solving the Van der Waals [1] [2] cubic equation of state for a pure compound. Subclasses GCEOS,
which provides the methods for solving the EOS and calculating its assorted relevant thermodynamic properties.
Solves the EOS on initialization.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎

𝑉 2

𝑎 =
27

64

(𝑅𝑇𝑐)
2

𝑃𝑐

𝑏 =
𝑅𝑇𝑐
8𝑃𝑐

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

omega [float, optional] Acentric factor - not used in equation of state!, [-]

Notes

omega is allowed as an input for compatibility with the other EOS forms, but is not used.
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References

[1], [2]

Examples

>>> eos = VDW(Tc=507.6, Pc=3025000, T=299., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000223329856081, -13385.7273746, -32.65923125)

Attributes
omega

Methods

P_discriminant_zeros_analytical(T, b, delta,
...)

Method to calculate the pressures which zero the dis-
criminant function of the VDW eos.

T_discriminant_zeros_analytical([valid]) Method to calculate the temperatures which zero the
discriminant function of the VDW eos.

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the VDW EOS.

static P_discriminant_zeros_analytical(T, b, delta, epsilon, a_alpha, valid=False)
Method to calculate the pressures which zero the discriminant function of the VDW eos. This is an cubic
function solved analytically.

Parameters
T [float] Temperature, [K]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

valid [bool] Whether to filter the calculated pressures so that they are all real, and positive
only, [-]

Returns
P_discriminant_zeros [tuple[float]] Pressures which make the discriminant zero, [Pa]
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Notes

Calculated analytically. Derived as follows. Has multiple solutions.

>>> from sympy import *
>>> P, T, V, R, b, a = symbols('P, T, V, R, b, a')
>>> P_vdw = R*T/(V-b) - a/(V*V)
>>> delta, epsilon = 0, 0
>>> eta = b
>>> B = b*P/(R*T)
>>> deltas = delta*P/(R*T)
>>> thetas = a*P/(R*T)**2
>>> epsilons = epsilon*(P/(R*T))**2
>>> etas = eta*P/(R*T)
>>> a_coeff = 1
>>> b_coeff = (deltas - B - 1)
>>> c = (thetas + epsilons - deltas*(B+1))
>>> d = -(epsilons*(B+1) + thetas*etas)
>>> disc = b_coeff*b_coeff*c*c - 4*a_coeff*c*c*c - 4*b_coeff*b_coeff*b_coeff*d -
→˓ 27*a_coeff*a_coeff*d*d + 18*a_coeff*b_coeff*c*d
>>> base = -(expand(disc/P**2*R**3*T**3/a))
>>> collect(base, P).args

T_discriminant_zeros_analytical(valid=False)
Method to calculate the temperatures which zero the discriminant function of the VDW eos. This is an
analytical cubic function solved analytically.

Parameters
valid [bool] Whether to filter the calculated temperatures so that they are all real, and positive

only, [-]

Returns
T_discriminant_zeros [list[float]] Temperatures which make the discriminant zero, [K]

Notes

Calculated analytically. Derived as follows. Has multiple solutions.

>>> from sympy import *
>>> P, T, V, R, b, a = symbols('P, T, V, R, b, a')
>>> delta, epsilon = 0, 0
>>> eta = b
>>> B = b*P/(R*T)
>>> deltas = delta*P/(R*T)
>>> thetas = a*P/(R*T)**2
>>> epsilons = epsilon*(P/(R*T))**2
>>> etas = eta*P/(R*T)
>>> a_coeff = 1
>>> b_coeff = (deltas - B - 1)
>>> c = (thetas + epsilons - deltas*(B+1))
>>> d = -(epsilons*(B+1) + thetas*etas)
>>> disc = b_coeff*b_coeff*c*c - 4*a_coeff*c*c*c - 4*b_coeff*b_coeff*b_coeff*d -
→˓ 27*a_coeff*a_coeff*d*d + 18*a_coeff*b_coeff*c*d

(continues on next page)
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(continued from previous page)

>>> base = -(expand(disc/P**2*R**3*T**3/a))
>>> base_T = simplify(base*T**3)
>>> sln = collect(expand(base_T), T).args

Zc = 0.375
Mechanical compressibility of VDW EOS

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Uses the set values of a.

𝑎𝛼 = 𝑎

𝑑𝑎𝛼

𝑑𝑇
= 0

𝑑2𝑎𝛼

𝑑𝑇 2
= 0

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

a_alpha_pure(T)
Method to calculate 𝑎𝛼. Uses the set values of a.

𝑎𝛼 = 𝑎

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

delta = 0.0
delta is always zero for the VDW EOS

epsilon = 0.0
epsilon is always zero for the VDW EOS

omega = None
omega has no impact on the VDW EOS

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the VDW EOS. Uses a, and b, obtained from the class’s
namespace.

𝑇 =
1

𝑅𝑉 2

(︀
𝑃𝑉 2 (𝑉 − 𝑏) + 𝑉 𝑎− 𝑎𝑏

)︀
Parameters
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P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

7.7.6 Redlich-Kwong Equations of State

class thermo.eos.RK(Tc, Pc, T=None, P=None, V=None, omega=None)
Bases: thermo.eos.GCEOS

Class for solving the Redlich-Kwong [1] [2] [3] cubic equation of state for a pure compound. Subclasses GCEOS,
which provides the methods for solving the EOS and calculating its assorted relevant thermodynamic properties.
Solves the EOS on initialization.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎

𝑉
√︁

𝑇
𝑇𝑐

(𝑉 + 𝑏)

𝑎 =

(︂
𝑅2(𝑇𝑐)

2

9( 3
√

2 − 1)𝑃𝑐

)︂
=

0.42748 ·𝑅2(𝑇𝑐)
2.5

𝑃𝑐

𝑏 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐
𝑃𝑐

=
0.08664 ·𝑅𝑇𝑐

𝑃𝑐

Parameters
Tc [float] Critical temperature, [K]

Pc [float] Critical pressure, [Pa]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Notes

omega is allowed as an input for compatibility with the other EOS forms, but is not used.

References

[1], [2], [3]
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Examples

>>> eos = RK(Tc=507.6, Pc=3025000, T=299., P=1E6)
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l', 0.000151893468781, -26160.8424877, -63.013137852)

Attributes
omega

Methods

T_discriminant_zeros_analytical([valid]) Method to calculate the temperatures which zero the
discriminant function of the RK eos.

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for this EOS.
solve_T(P, V[, solution]) Method to calculate T from a specified P and V for

the RK EOS.

T_discriminant_zeros_analytical(valid=False)
Method to calculate the temperatures which zero the discriminant function of the RK eos. This is an
analytical function with an 11-coefficient polynomial which is solved with numpy.

Parameters
valid [bool] Whether to filter the calculated temperatures so that they are all real, and positive

only, [-]

Returns
T_discriminant_zeros [float] Temperatures which make the discriminant zero, [K]

Notes

Calculated analytically. Derived as follows. Has multiple solutions.

>>> from sympy import *
>>> P, T, V, R, b, a, Troot = symbols('P, T, V, R, b, a, Troot')
>>> a_alpha = a/sqrt(T)
>>> delta, epsilon = b, 0
>>> eta = b
>>> B = b*P/(R*T)
>>> deltas = delta*P/(R*T)
>>> thetas = a_alpha*P/(R*T)**2
>>> epsilons = epsilon*(P/(R*T))**2
>>> etas = eta*P/(R*T)
>>> a_coeff = 1
>>> b_coeff = (deltas - B - 1)
>>> c = (thetas + epsilons - deltas*(B+1))
>>> d = -(epsilons*(B+1) + thetas*etas)
>>> disc = b_coeff*b_coeff*c*c - 4*a_coeff*c*c*c - 4*b_coeff*b_coeff*b_coeff*d -
→˓ 27*a_coeff*a_coeff*d*d + 18*a_coeff*b_coeff*c*d

(continues on next page)
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(continued from previous page)

>>> new_disc = disc.subs(sqrt(T), Troot)
>>> new_T_base = expand(expand(new_disc)*Troot**15)
>>> ans = collect(new_T_base, Troot).args

Zc = 0.3333333333333333
Mechanical compressibility of RK EOS

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. Uses the set values of a.

𝑎𝛼 =
𝑎√︁
𝑇
𝑇𝑐

𝑑𝑎𝛼

𝑑𝑇
= − 𝑎

2𝑇
√︁

𝑇
𝑇𝑐

𝑑2𝑎𝛼

𝑑𝑇 2
=

3𝑎

4𝑇 2
√︁

𝑇
𝑇𝑐

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for this EOS. Uses the set values of a.

𝑎𝛼 =
𝑎√︁
𝑇
𝑇𝑐

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

c1 = 0.4274802335403414
Full value of the constant in the a parameter

c2 = 0.08664034996495772
Full value of the constant in the b parameter

epsilon = 0.0
epsilon is always zero for the RK EOS

omega = None
omega has no impact on the RK EOS
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solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the RK EOS. Uses a, and b, obtained from the class’s
namespace.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

Notes

The exact solution can be derived as follows; it is excluded for breviety.

>>> from sympy import *
>>> P, T, V, R = symbols('P, T, V, R')
>>> Tc, Pc = symbols('Tc, Pc')
>>> a, b = symbols('a, b')
>>> RK = Eq(P, R*T/(V-b) - a/sqrt(T)/(V*V + b*V))
>>> solve(RK, T)

7.7.7 Ideal Gas Equation of State

class thermo.eos.IG(Tc=None, Pc=None, omega=None, T=None, P=None, V=None)
Bases: thermo.eos.GCEOS

Class for solving the ideal gas equation in the GCEOS framework. This provides access to a number of derivatives
and properties easily. It also keeps a common interface for all gas models. However, it is somewhat slow.

Subclasses GCEOS, which provides the methods for solving the EOS and calculating its assorted relevant ther-
modynamic properties. Solves the EOS on initialization.

Two of T, P, and V are needed to solve the EOS; values for Tc and Pc and omega, which are not used in the
calculates, are set to those of methane by default to allow use without specifying them.

𝑃 =
𝑅𝑇

𝑉

Parameters
Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

omega [float, optional] Acentric factor, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]
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References

[1]

Examples

T-P initialization, and exploring each phase’s properties:

>>> eos = IG(T=400., P=1E6)
>>> eos.V_g, eos.phase
(0.003325785047261296, 'g')
>>> eos.H_dep_g, eos.S_dep_g, eos.U_dep_g, eos.G_dep_g, eos.A_dep_g
(0.0, 0.0, 0.0, 0.0, 0.0)
>>> eos.beta_g, eos.kappa_g, eos.Cp_dep_g, eos.Cv_dep_g
(0.0025, 1e-06, 0.0, 0.0)
>>> eos.fugacity_g, eos.PIP_g, eos.Z_g, eos.dP_dT_g
(1000000.0, 0.9999999999999999, 1.0, 2500.0)

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for this EOS.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for the ideal gas law, which
is zero.

solve_T(P, V[, solution]) Method to calculate T from a specified P and V for
the ideal gas equation of state.

volume_solutions(T, P[, b, delta, epsilon, ...]) Calculate the ideal-gas molar volume in a format
compatible with the other cubic EOS solvers.

Zc = 1.0
float: Critical compressibility for an ideal gas is 1

a = 0.0
float: a parameter for an ideal gas is 0

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for this EOS. All values are zero.

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for the ideal gas law, which is zero.

Parameters
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T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

b = 0.0
float: b parameter for an ideal gas is 0

delta = 0.0
float: delta parameter for an ideal gas is 0

epsilon = 0.0
float: epsilon parameter for an ideal gas is 0

solve_T(P, V, solution=None)
Method to calculate T from a specified P and V for the ideal gas equation of state.

𝑇 =
𝑃𝑉

𝑅

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

solution [str or None, optional] Not used, [-]

Returns
T [float] Temperature, [K]

static volume_solutions(T, P, b=0.0, delta=0.0, epsilon=0.0, a_alpha=0.0)
Calculate the ideal-gas molar volume in a format compatible with the other cubic EOS solvers. The ideal
gas volume is the first element; and the secodn and third elements are zero. This is implemented to allow
the ideal-gas model to be compatible with the cubic models, whose equations do not work with parameters
of zero.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float, optional] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float, optional] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float, optional] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float, optional] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [list[float]] Three possible molar volumes, [m^3/mol]
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Examples

>>> volume_solutions_ideal(T=300, P=1e7)
(0.0002494338785445972, 0.0, 0.0)

7.7.8 Lists of Equations of State

thermo.eos.eos_list = [<class 'thermo.eos.IG'>, <class 'thermo.eos.PR'>, <class
'thermo.eos.PR78'>, <class 'thermo.eos.PRSV'>, <class 'thermo.eos.PRSV2'>, <class
'thermo.eos.VDW'>, <class 'thermo.eos.RK'>, <class 'thermo.eos.SRK'>, <class
'thermo.eos.APISRK'>, <class 'thermo.eos.TWUPR'>, <class 'thermo.eos.TWUSRK'>, <class
'thermo.eos.PRTranslatedPPJP'>, <class 'thermo.eos.SRKTranslatedPPJP'>, <class
'thermo.eos.MSRKTranslated'>, <class 'thermo.eos.PRTranslatedConsistent'>, <class
'thermo.eos.SRKTranslatedConsistent'>]

list : List of all cubic equation of state classes.

thermo.eos.eos_2P_list = [<class 'thermo.eos.PR'>, <class 'thermo.eos.PR78'>, <class
'thermo.eos.PRSV'>, <class 'thermo.eos.PRSV2'>, <class 'thermo.eos.VDW'>, <class
'thermo.eos.RK'>, <class 'thermo.eos.SRK'>, <class 'thermo.eos.APISRK'>, <class
'thermo.eos.TWUPR'>, <class 'thermo.eos.TWUSRK'>, <class 'thermo.eos.PRTranslatedPPJP'>,
<class 'thermo.eos.SRKTranslatedPPJP'>, <class 'thermo.eos.MSRKTranslated'>, <class
'thermo.eos.PRTranslatedConsistent'>, <class 'thermo.eos.SRKTranslatedConsistent'>]

list : List of all cubic equation of state classes that can represent multiple phases.

7.7.9 Demonstrations of Concepts

Maximum Pressure at Constant Volume

Some equations of state show this behavior. At a liquid volume, if the temperature is increased, the pressure should
increase as well to create that same volume. However in some cases this is not the case as can be demonstrated for this
hypothetical dodecane-like fluid:

Through experience, it is observed that this behavior is only shown for some sets of critical constants. It was found
that if the expression for 𝜕𝑃

𝜕𝑇 𝑉
is set to zero, an analytical expression can be determined for exactly what that maxi-

mum pressure is. Some EOSs implement this function as P_max_at_V ; those that don’t, and fluids where there is no
maximum pressure, will have that method but it will return None.

Debug Plots to Understand EOSs

The GCEOS.volume_errors method shows the relative error in the volume solution. mpmath is requried for this
functionality. It is not likely there is an error here but many problems have been found in the past.

The GCEOS.PT_surface_special method shows some of the special curves of the EOS.

The GCEOS.a_alpha_plot method shows the alpha function curve. The following sample shows the SRK’s default
alpha function for methane.

If this doesn’t look healthy, that is because it is not. There are strict thermodynamic consistency requirements that we
know of today:

• The alpha function must be positive and continuous

• The first derivative must be negative and continuous

• The second derivative must be positive and continuous
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• The third derivative must be negative

The first criterial and second criteria fail here.

There are two methods to review the saturation properties solution. The more general way is to review saturation
properties as a plot:

0 100 200 300 400 500
Temperature [K]

50000

40000

30000

20000

10000

0

H_
de

p

Saturation H_dep curve

Liquid
Gas

The second plot is more detailed, and is focused on the direct calculation of vapor pressure without using an iterative
solution. It shows the relative error of the fit, which normally way below where it would present any issue - only
10-100x more error than it is possible to get with floating point numbers at all.

7.8 Cubic Equations of State for Mixtures (thermo.eos_mix)

This module contains implementations of most cubic equations of state for mixtures. This includes Peng-Robinson,
SRK, Van der Waals, PRSV, TWU and many other variants.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Base Class

• Peng-Robinson Family EOSs

– Standard Peng Robinson

– Peng Robinson (1978)
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– Peng Robinson Stryjek-Vera

– Peng Robinson Stryjek-Vera 2

– Peng Robinson Twu (1995)

– Peng Robinson Translated

– Peng Robinson Translated-Consistent

– Peng Robinson Translated (Pina-Martinez, Privat, and Jaubert Variant)

• SRK Family EOSs

– Standard SRK

– Twu SRK (1995)

– API SRK

– SRK Translated

– SRK Translated-Consistent

– MSRK Translated

• Cubic Equation of State with Activity Coefficients

• Van der Waals Equation of State

• Redlich-Kwong Equation of State

• Ideal Gas Equation of State

• Different Mixing Rules

• Lists of Equations of State

7.8.1 Base Class

class thermo.eos_mix.GCEOSMIX
Bases: thermo.eos.GCEOS

Class for solving a generic pressure-explicit three-parameter cubic equation of state for a mixture. Does not
implement any parameters itself; must be subclassed by a mixture equation of state class which subclasses it.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 2 + 𝛿𝑉 + 𝜖

Attributes
A_dep_g Departure molar Helmholtz energy from ideal gas behavior for the gas phase, [J/mol].

A_dep_l Departure molar Helmholtz energy from ideal gas behavior for the liquid phase,
[J/mol].

Cp_minus_Cv_g Cp - Cv for the gas phase, [J/mol/K].

Cp_minus_Cv_l Cp - Cv for the liquid phase, [J/mol/K].

U_dep_g Departure molar internal energy from ideal gas behavior for the gas phase, [J/mol].

U_dep_l Departure molar internal energy from ideal gas behavior for the liquid phase, [J/mol].

V_dep_g Departure molar volume from ideal gas behavior for the gas phase, [m^3/mol].
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V_dep_l Departure molar volume from ideal gas behavior for the liquid phase, [m^3/mol].

V_g_mpmath The molar volume of the gas phase calculated with mpmath to a higher precision,
[m^3/mol].

V_l_mpmath The molar volume of the liquid phase calculated with mpmath to a higher precision,
[m^3/mol].

Vc Critical volume, [m^3/mol].

a_alpha_ijs Calculate and return the matrix (𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︀

(𝑎𝛼)𝑖(𝑎𝛼)𝑗 .

beta_g Isobaric (constant-pressure) expansion coefficient for the gas phase, [1/K].

beta_l Isobaric (constant-pressure) expansion coefficient for the liquid phase, [1/K].

c1
c2
d2H_dep_dT2_g Second temperature derivative of departure enthalpy with respect to tempera-

ture for the gas phase, [(J/mol)/K^2].

d2H_dep_dT2_g_P Second temperature derivative of departure enthalpy with respect to tem-
perature for the gas phase, [(J/mol)/K^2].

d2H_dep_dT2_g_V Second temperature derivative of departure enthalpy with respect to tem-
perature at constant volume for the gas phase, [(J/mol)/K^2].

d2H_dep_dT2_l Second temperature derivative of departure enthalpy with respect to tempera-
ture for the liquid phase, [(J/mol)/K^2].

d2H_dep_dT2_l_P Second temperature derivative of departure enthalpy with respect to tem-
perature for the liquid phase, [(J/mol)/K^2].

d2H_dep_dT2_l_V Second temperature derivative of departure enthalpy with respect to tem-
perature at constant volume for the liquid phase, [(J/mol)/K^2].

d2H_dep_dTdP_g Temperature and pressure derivative of departure enthalpy at constant pres-
sure then temperature for the gas phase, [(J/mol)/K/Pa].

d2H_dep_dTdP_l Temperature and pressure derivative of departure enthalpy at constant pres-
sure then temperature for the liquid phase, [(J/mol)/K/Pa].

d2P_dT2_PV_g Second derivative of pressure with respect to temperature twice, but with pres-
sure held constant the first time and volume held constant the second time for the gas phase,
[Pa/K^2].

d2P_dT2_PV_l Second derivative of pressure with respect to temperature twice, but with pres-
sure held constant the first time and volume held constant the second time for the liquid
phase, [Pa/K^2].

d2P_dTdP_g Second derivative of pressure with respect to temperature and, then pressure; and
with volume held constant at first, then temperature, for the gas phase, [1/K].

d2P_dTdP_l Second derivative of pressure with respect to temperature and, then pressure; and
with volume held constant at first, then temperature, for the liquid phase, [1/K].

d2P_dTdrho_g Derivative of pressure with respect to molar density, and temperature for the gas
phase, [Pa/(K*mol/m^3)].

d2P_dTdrho_l Derivative of pressure with respect to molar density, and temperature for the
liquid phase, [Pa/(K*mol/m^3)].
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d2P_dVdP_g Second derivative of pressure with respect to molar volume and then pressure for
the gas phase, [mol/m^3].

d2P_dVdP_l Second derivative of pressure with respect to molar volume and then pressure for
the liquid phase, [mol/m^3].

d2P_dVdT_TP_g Second derivative of pressure with respect to molar volume and then temper-
ature at constant temperature then pressure for the gas phase, [Pa*mol/m^3/K].

d2P_dVdT_TP_l Second derivative of pressure with respect to molar volume and then temper-
ature at constant temperature then pressure for the liquid phase, [Pa*mol/m^3/K].

d2P_dVdT_g Alias of GCEOS.d2P_dTdV_g

d2P_dVdT_l Alias of GCEOS.d2P_dTdV_l

d2P_drho2_g Second derivative of pressure with respect to molar density for the gas phase,
[Pa/(mol/m^3)^2].

d2P_drho2_l Second derivative of pressure with respect to molar density for the liquid phase,
[Pa/(mol/m^3)^2].

d2S_dep_dT2_g Second temperature derivative of departure entropy with respect to tempera-
ture for the gas phase, [(J/mol)/K^3].

d2S_dep_dT2_g_V Second temperature derivative of departure entropy with respect to temper-
ature at constant volume for the gas phase, [(J/mol)/K^3].

d2S_dep_dT2_l Second temperature derivative of departure entropy with respect to tempera-
ture for the liquid phase, [(J/mol)/K^3].

d2S_dep_dT2_l_V Second temperature derivative of departure entropy with respect to temper-
ature at constant volume for the liquid phase, [(J/mol)/K^3].

d2S_dep_dTdP_g Temperature and pressure derivative of departure entropy at constant pressure
then temperature for the gas phase, [(J/mol)/K^2/Pa].

d2S_dep_dTdP_l Temperature and pressure derivative of departure entropy at constant pressure
then temperature for the liquid phase, [(J/mol)/K^2/Pa].

d2T_dP2_g Second partial derivative of temperature with respect to pressure (constant volume)
for the gas phase, [K/Pa^2].

d2T_dP2_l Second partial derivative of temperature with respect to pressure (constant temper-
ature) for the liquid phase, [K/Pa^2].

d2T_dPdV_g Second partial derivative of temperature with respect to pressure (constant volume)
and then volume (constant pressure) for the gas phase, [K*mol/(Pa*m^3)].

d2T_dPdV_l Second partial derivative of temperature with respect to pressure (constant volume)
and then volume (constant pressure) for the liquid phase, [K*mol/(Pa*m^3)].

d2T_dPdrho_g Derivative of temperature with respect to molar density, and pressure for the gas
phase, [K/(Pa*mol/m^3)].

d2T_dPdrho_l Derivative of temperature with respect to molar density, and pressure for the
liquid phase, [K/(Pa*mol/m^3)].

d2T_dV2_g Second partial derivative of temperature with respect to volume (constant pressure)
for the gas phase, [K*mol^2/m^6].

d2T_dV2_l Second partial derivative of temperature with respect to volume (constant pressure)
for the liquid phase, [K*mol^2/m^6].
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d2T_dVdP_g Second partial derivative of temperature with respect to pressure (constant volume)
and then volume (constant pressure) for the gas phase, [K*mol/(Pa*m^3)].

d2T_dVdP_l Second partial derivative of temperature with respect to pressure (constant volume)
and then volume (constant pressure) for the liquid phase, [K*mol/(Pa*m^3)].

d2T_drho2_g Second derivative of temperature with respect to molar density for the gas phase,
[K/(mol/m^3)^2].

d2T_drho2_l Second derivative of temperature with respect to molar density for the liquid
phase, [K/(mol/m^3)^2].

d2V_dP2_g Second partial derivative of volume with respect to pressure (constant temperature)
for the gas phase, [m^3/(Pa^2*mol)].

d2V_dP2_l Second partial derivative of volume with respect to pressure (constant temperature)
for the liquid phase, [m^3/(Pa^2*mol)].

d2V_dPdT_g Second partial derivative of volume with respect to pressure (constant temperature)
and then presssure (constant temperature) for the gas phase, [m^3/(K*Pa*mol)].

d2V_dPdT_l Second partial derivative of volume with respect to pressure (constant temperature)
and then presssure (constant temperature) for the liquid phase, [m^3/(K*Pa*mol)].

d2V_dT2_g Second partial derivative of volume with respect to temperature (constant pressure)
for the gas phase, [m^3/(mol*K^2)].

d2V_dT2_l Second partial derivative of volume with respect to temperature (constant pressure)
for the liquid phase, [m^3/(mol*K^2)].

d2V_dTdP_g Second partial derivative of volume with respect to pressure (constant temperature)
and then presssure (constant temperature) for the gas phase, [m^3/(K*Pa*mol)].

d2V_dTdP_l Second partial derivative of volume with respect to pressure (constant temperature)
and then presssure (constant temperature) for the liquid phase, [m^3/(K*Pa*mol)].

d2a_alpha_dT2_dns Helper method for calculating the mole number derivatives of
d2a_alpha_dT2.

d2a_alpha_dT2_dzs Helper method for calculating the mole number derivatives of
d2a_alpha_dT2.

d2a_alpha_dT2_ijs Calculate and return the matrix of the second temperature derivatives of
the alpha terms.

d2a_alpha_dTdP_g_V Derivative of the temperature derivative of a_alpha with respect to pres-
sure at constant volume (varying T) for the gas phase, [J^2/mol^2/Pa^2/K].

d2a_alpha_dTdP_l_V Derivative of the temperature derivative of a_alpha with respect to pres-
sure at constant volume (varying T) for the liquid phase, [J^2/mol^2/Pa^2/K].

d2a_alpha_dninjs Helper method for calculating the second partial molar derivatives of
a_alpha (hessian).

d2a_alpha_dzizjs Helper method for calculating the second composition derivatives of
a_alpha (hessian).

d2b_dninjs Helper method for calculating the second partial mole number derivatives of b.

d2b_dzizjs Helper method for calculating the second partial mole fraction derivatives of b.

d2rho_dP2_g Second derivative of molar density with respect to pressure for the gas phase,
[(mol/m^3)/Pa^2].
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d2rho_dP2_l Second derivative of molar density with respect to pressure for the liquid phase,
[(mol/m^3)/Pa^2].

d2rho_dPdT_g Second derivative of molar density with respect to pressure and temperature for
the gas phase, [(mol/m^3)/(K*Pa)].

d2rho_dPdT_l Second derivative of molar density with respect to pressure and temperature for
the liquid phase, [(mol/m^3)/(K*Pa)].

d2rho_dT2_g Second derivative of molar density with respect to temperature for the gas phase,
[(mol/m^3)/K^2].

d2rho_dT2_l Second derivative of molar density with respect to temperature for the liquid
phase, [(mol/m^3)/K^2].

d3a_alpha_dT3 Method to calculate the third temperature derivative of 𝑎𝛼,
[J^2/mol^2/Pa/K^3].

d3a_alpha_dninjnks Helper method for calculating the third mole number derivatives of
a_alpha.

d3a_alpha_dzizjzks Helper method for calculating the third composition derivatives of
a_alpha.

d3b_dninjnks Helper method for calculating the third partial mole number derivatives of b.

d3b_dzizjzks Helper method for calculating the third partial mole fraction derivatives of b.

d3delta_dzizjzks Helper method for calculating the third composition derivatives of delta.

d3epsilon_dzizjzks Helper method for calculating the third composition derivatives of ep-
silon.

dH_dep_dP_g Derivative of departure enthalpy with respect to pressure for the gas phase,
[(J/mol)/Pa].

dH_dep_dP_g_V Derivative of departure enthalpy with respect to pressure at constant volume
for the liquid phase, [(J/mol)/Pa].

dH_dep_dP_l Derivative of departure enthalpy with respect to pressure for the liquid phase,
[(J/mol)/Pa].

dH_dep_dP_l_V Derivative of departure enthalpy with respect to pressure at constant volume
for the gas phase, [(J/mol)/Pa].

dH_dep_dT_g Derivative of departure enthalpy with respect to temperature for the gas phase,
[(J/mol)/K].

dH_dep_dT_g_V Derivative of departure enthalpy with respect to temperature at constant vol-
ume for the gas phase, [(J/mol)/K].

dH_dep_dT_l Derivative of departure enthalpy with respect to temperature for the liquid phase,
[(J/mol)/K].

dH_dep_dT_l_V Derivative of departure enthalpy with respect to temperature at constant vol-
ume for the liquid phase, [(J/mol)/K].

dH_dep_dV_g_P Derivative of departure enthalpy with respect to volume at constant pressure
for the gas phase, [J/m^3].

dH_dep_dV_g_T Derivative of departure enthalpy with respect to volume at constant tempera-
ture for the gas phase, [J/m^3].

dH_dep_dV_l_P Derivative of departure enthalpy with respect to volume at constant pressure
for the liquid phase, [J/m^3].
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dH_dep_dV_l_T Derivative of departure enthalpy with respect to volume at constant tempera-
ture for the gas phase, [J/m^3].

dP_drho_g Derivative of pressure with respect to molar density for the gas phase,
[Pa/(mol/m^3)].

dP_drho_l Derivative of pressure with respect to molar density for the liquid phase,
[Pa/(mol/m^3)].

dS_dep_dP_g Derivative of departure entropy with respect to pressure for the gas phase,
[(J/mol)/K/Pa].

dS_dep_dP_g_V Derivative of departure entropy with respect to pressure at constant volume for
the gas phase, [(J/mol)/K/Pa].

dS_dep_dP_l Derivative of departure entropy with respect to pressure for the liquid phase,
[(J/mol)/K/Pa].

dS_dep_dP_l_V Derivative of departure entropy with respect to pressure at constant volume for
the liquid phase, [(J/mol)/K/Pa].

dS_dep_dT_g Derivative of departure entropy with respect to temperature for the gas phase,
[(J/mol)/K^2].

dS_dep_dT_g_V Derivative of departure entropy with respect to temperature at constant volume
for the gas phase, [(J/mol)/K^2].

dS_dep_dT_l Derivative of departure entropy with respect to temperature for the liquid phase,
[(J/mol)/K^2].

dS_dep_dT_l_V Derivative of departure entropy with respect to temperature at constant volume
for the liquid phase, [(J/mol)/K^2].

dS_dep_dV_g_P Derivative of departure entropy with respect to volume at constant pressure for
the gas phase, [J/K/m^3].

dS_dep_dV_g_T Derivative of departure entropy with respect to volume at constant temperature
for the gas phase, [J/K/m^3].

dS_dep_dV_l_P Derivative of departure entropy with respect to volume at constant pressure for
the liquid phase, [J/K/m^3].

dS_dep_dV_l_T Derivative of departure entropy with respect to volume at constant temperature
for the gas phase, [J/K/m^3].

dT_drho_g Derivative of temperature with respect to molar density for the gas phase,
[K/(mol/m^3)].

dT_drho_l Derivative of temperature with respect to molar density for the liquid phase,
[K/(mol/m^3)].

dZ_dP_g Derivative of compressibility factor with respect to pressure for the gas phase, [1/Pa].

dZ_dP_l Derivative of compressibility factor with respect to pressure for the liquid phase,
[1/Pa].

dZ_dT_g Derivative of compressibility factor with respect to temperature for the gas phase,
[1/K].

dZ_dT_l Derivative of compressibility factor with respect to temperature for the liquid phase,
[1/K].

da_alpha_dP_g_V Derivative of the a_alpha with respect to pressure at constant volume (vary-
ing T) for the gas phase, [J^2/mol^2/Pa^2].
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da_alpha_dP_l_V Derivative of the a_alpha with respect to pressure at constant volume (vary-
ing T) for the liquid phase, [J^2/mol^2/Pa^2].

da_alpha_dT_dns Helper method for calculating the mole number derivatives of da_alpha_dT.

da_alpha_dT_dzs Helper method for calculating the composition derivatives of da_alpha_dT.

da_alpha_dT_ijs Calculate and return the matrix for the temperature derivatives of the alpha
terms.

da_alpha_dns Helper method for calculating the mole number derivatives of a_alpha.

da_alpha_dzs Helper method for calculating the composition derivatives of a_alpha.

db_dns Helper method for calculating the mole number derivatives of b.

db_dzs Helper method for calculating the composition derivatives of b.

dbeta_dP_g Derivative of isobaric expansion coefficient with respect to pressure for the gas
phase, [1/(Pa*K)].

dbeta_dP_l Derivative of isobaric expansion coefficient with respect to pressure for the liquid
phase, [1/(Pa*K)].

dbeta_dT_g Derivative of isobaric expansion coefficient with respect to temperature for the gas
phase, [1/K^2].

dbeta_dT_l Derivative of isobaric expansion coefficient with respect to temperature for the
liquid phase, [1/K^2].

dfugacity_dP_g Derivative of fugacity with respect to pressure for the gas phase, [-].

dfugacity_dP_l Derivative of fugacity with respect to pressure for the liquid phase, [-].

dfugacity_dT_g Derivative of fugacity with respect to temperature for the gas phase, [Pa/K].

dfugacity_dT_l Derivative of fugacity with respect to temperature for the liquid phase,
[Pa/K].

dna_alpha_dT_dns Helper method for calculating the mole number derivatives of
da_alpha_dT.

dna_alpha_dns Helper method for calculating the partial molar derivatives of a_alpha.

dnb_dns Helper method for calculating the partial molar derivative of b.

dphi_dP_g Derivative of fugacity coefficient with respect to pressure for the gas phase, [1/Pa].

dphi_dP_l Derivative of fugacity coefficient with respect to pressure for the liquid phase,
[1/Pa].

dphi_dT_g Derivative of fugacity coefficient with respect to temperature for the gas phase,
[1/K].

dphi_dT_l Derivative of fugacity coefficient with respect to temperature for the liquid phase,
[1/K].

drho_dP_g Derivative of molar density with respect to pressure for the gas phase,
[(mol/m^3)/Pa].

drho_dP_l Derivative of molar density with respect to pressure for the liquid phase,
[(mol/m^3)/Pa].

drho_dT_g Derivative of molar density with respect to temperature for the gas phase,
[(mol/m^3)/K].
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drho_dT_l Derivative of molar density with respect to temperature for the liquid phase,
[(mol/m^3)/K].

fugacity_g Fugacity for the gas phase, [Pa].

fugacity_l Fugacity for the liquid phase, [Pa].

kappa_g Isothermal (constant-temperature) expansion coefficient for the gas phase, [1/Pa].

kappa_l Isothermal (constant-temperature) expansion coefficient for the liquid phase, [1/Pa].

lnphi_g The natural logarithm of the fugacity coefficient for the gas phase, [-].

lnphi_l The natural logarithm of the fugacity coefficient for the liquid phase, [-].

more_stable_phase Checks the Gibbs energy of each possible phase, and returns ‘l’ if the
liquid-like phase is more stable, and ‘g’ if the vapor-like phase is more stable.

mpmath_volume_ratios Method to compare, as ratios, the volumes of the implemented cubic
solver versus those calculated using mpmath.

mpmath_volumes Method to calculate to a high precision the exact roots to the cubic equation,
using mpmath.

mpmath_volumes_float Method to calculate real roots of a cubic equation, using mpmath, but
returned as floats.

phi_g Fugacity coefficient for the gas phase, [Pa].

phi_l Fugacity coefficient for the liquid phase, [Pa].

pseudo_Pc Apply a linear mole-fraction mixing rule to compute the average critical pressure,
[Pa].

pseudo_Tc Apply a linear mole-fraction mixing rule to compute the average critical tempera-
ture, [K].

pseudo_a Apply a linear mole-fraction mixing rule to compute the average a coefficient, [-].

pseudo_omega Apply a linear mole-fraction mixing rule to compute the average omega, [-].

rho_g Gas molar density, [mol/m^3].

rho_l Liquid molar density, [mol/m^3].

sorted_volumes List of lexicographically-sorted molar volumes available from the root find-
ing algorithm used to solve the PT point.

state_specs Convenience method to return the two specified state specs (T, P, or V ) as a
dictionary.

Methods

Hvap(T) Method to calculate enthalpy of vaporization for a
pure fluid from an equation of state, without iteration.

PT_surface_special([Tmin, Tmax, Pmin, Pmax,
...])

Method to create a plot of the special curves of a fluid
- vapor pressure, determinant zeros, pseudo critical
point, and mechanical critical point.

P_PIP_transition(T[, low_P_limit]) Method to calculate the pressure which makes the
phase identification parameter exactly 1.

continues on next page
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Table 20 – continued from previous page
P_discriminant_zero_g() Method to calculate the pressure which zero the dis-

criminant function of the general cubic eos, and is
likely to sit on a boundary between not having a
vapor-like volume; and having a vapor-like volume.

P_discriminant_zero_l() Method to calculate the pressure which zero the dis-
criminant function of the general cubic eos, and is
likely to sit on a boundary between not having a
liquid-like volume; and having a liquid-like volume.

P_discriminant_zeros() Method to calculate the pressures which zero the dis-
criminant function of the general cubic eos, at the cur-
rent temperature.

P_discriminant_zeros_analytical(T, b, delta,
...)

Method to calculate the pressures which zero the dis-
criminant function of the general cubic eos.

P_max_at_V(V) Dummy method.
Psat(T[, polish]) Generic method to calculate vapor pressure of a pure-

component equation of state for a specified T.
Psat_errors([Tmin, Tmax, pts, plot, show, ...]) Method to create a plot of vapor pressure and the rel-

ative error of its calculation vs.
T_discriminant_zero_g([T_guess]) Method to calculate the temperature which zeros the

discriminant function of the general cubic eos, and
is likely to sit on a boundary between not having a
vapor-like volume; and having a vapor-like volume.

T_discriminant_zero_l([T_guess]) Method to calculate the temperature which zeros the
discriminant function of the general cubic eos, and
is likely to sit on a boundary between not having a
liquid-like volume; and having a liquid-like volume.

T_max_at_V(V[, Pmax]) Method to calculate the maximum temperature the
EOS can create at a constant volume, if one exists;
returns None otherwise.

T_min_at_V(V[, Pmin]) Returns the minimum temperature for the EOS to
have the volume as specified.

Tsat(P[, polish]) Generic method to calculate the temperature for a
specified vapor pressure of the pure fluid.

V_g_sat(T) Method to calculate molar volume of the vapor phase
along the saturation line.

V_l_sat(T) Method to calculate molar volume of the liquid phase
along the saturation line.

Vs_mpmath() Method to calculate real roots of a cubic equation,
using mpmath.

a_alpha_and_derivatives(T[, full, quick, ...]) Method to calculate a_alpha and its first and second
derivatives for an EOS with the Van der Waals mixing
rules.

a_alpha_and_derivatives_pure(T) Dummy method to calculate 𝑎𝛼 and its first and sec-
ond derivatives.

a_alpha_for_Psat(T, Psat[, a_alpha_guess]) Method to calculate which value of 𝑎𝛼 is required for
a given T, Psat pair.

a_alpha_for_V(T, P, V) Method to calculate which value of 𝑎𝛼 is required for
a given T, P pair to match a specified V.

a_alpha_plot([Tmin, Tmax, pts, plot, show]) Method to create a plot of the 𝑎𝛼 parameter and its
first two derivatives.

continues on next page

262 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Table 20 – continued from previous page
as_json() Method to create a JSON-friendly serialization of the

eos which can be stored, and reloaded later.
check_sufficient_inputs() Method to an exception if none of the pairs (T, P), (T,

V), or (P, V) are given.
d2G_dep_dninjs(Z) Calculates the molar departure Gibbs energy mole

number derivatives (where the mole fractions sum to
1).

d2G_dep_dzizjs(Z) Calculates the molar departure Gibbs energy second
composition derivative (where the mole fractions do
not sum to 1).

d2V_dninjs(Z) Calculates the molar volume second mole number
derivatives (where the mole fractions sum to 1).

d2V_dzizjs(Z) Calculates the molar volume second composition
derivative (where the mole fractions do not sum to
1).

d2lnphi_dninjs(Z) Calculates the mixture log fugacity coefficient sec-
ond mole number derivatives (where the mole frac-
tion sum to 1).

d2lnphi_dzizjs(Z) Calculates the mixture log fugacity coefficient second
mole fraction derivatives (where the mole fractions
do not sum to 1).

d2phi_sat_dT2(T[, polish]) Method to calculate the second temperature deriva-
tive of saturation fugacity coefficient of the com-
pound.

dG_dep_dns(Z) Calculates the molar departure Gibbs energy mole
number derivatives (where the mole fractions sum to
1).

dG_dep_dzs(Z) Calculates the molar departure Gibbs energy compo-
sition derivative (where the mole fractions do not sum
to 1).

dH_dep_dT_sat_g(T[, polish]) Method to calculate and return the temperature
derivative of saturation vapor excess enthalpy.

dH_dep_dT_sat_l(T[, polish]) Method to calculate and return the temperature
derivative of saturation liquid excess enthalpy.

dH_dep_dns(Z) Calculates the molar departure enthalpy mole num-
ber derivatives (where the mole fractions sum to 1).

dH_dep_dzs(Z) Calculates the molar departure enthalpy composition
derivative (where the mole fractions do not sum to 1).

dPsat_dT(T[, polish, also_Psat]) Generic method to calculate the temperature deriva-
tive of vapor pressure for a specified T.

dS_dep_dT_sat_g(T[, polish]) Method to calculate and return the temperature
derivative of saturation vapor excess entropy.

dS_dep_dT_sat_l(T[, polish]) Method to calculate and return the temperature
derivative of saturation liquid excess entropy.

dS_dep_dns(Z) Calculates the molar departure entropy mole number
derivatives (where the mole fractions sum to 1).

dS_dep_dzs(Z) Calculates the molar departure entropy composition
derivative (where the mole fractions do not sum to 1).

dV_dns(Z) Calculates the molar volume mole number deriva-
tives (where the mole fractions sum to 1).

continues on next page
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Table 20 – continued from previous page
dV_dzs(Z) Calculates the molar volume composition derivative

(where the mole fractions do not sum to 1).
dZ_dns(Z) Calculates the compressibility mole number deriva-

tives (where the mole fractions sum to 1).
dZ_dzs(Z) Calculates the compressibility composition deriva-

tives (where the mole fractions do not sum to 1).
dfugacities_dns(phase) Generic formula for calculating the mole number

derivaitves of fugacities for each species in a mixture.
discriminant([T, P]) Method to compute the discriminant of the cubic vol-

ume solution with the current EOS parameters, op-
tionally at the same (assumed) T, and P or at different
ones, if values are specified.

dlnfugacities_dns(phase) Generic formula for calculating the mole number
derivaitves of log fugacities for each species in a mix-
ture.

dlnphi_dns(Z) Calculates the mixture log fugacity coefficient mole
number derivatives (where the mole fractions sum to
1).

dlnphi_dzs(Z) Calculates the mixture log fugacity coefficient mole
fraction derivatives (where the mole fractions do not
sum to 1).

dlnphis_dP(phase) Generic formula for calculating the pressure
derivaitve of log fugacity coefficients for each
species in a mixture.

dlnphis_dT(phase) Generic formula for calculating the temperature
derivaitve of log fugacity coefficients for each species
in a mixture.

dlnphis_dns(Z) Generic formula for calculating the mole number
derivaitves of log fugacity coefficients for each
species in a mixture.

dlnphis_dzs(Z) Generic formula for calculating the mole fraction
derivaitves of log fugacity coefficients for each
species in a mixture.

dnG_dep_dns(Z) Calculates the partial molar departure Gibbs energy.
dnH_dep_dns(Z) Calculates the partial molar departure enthalpy.
dnV_dns(Z) Calculates the partial molar volume of the specified

phase No specific formula is implemented for this
property - it is calculated from the molar volume
mole fraction derivative.

dnZ_dns(Z) Calculates the partial compressibility of the specified
phase No specific formula is implemented for this
property - it is calculated from the compressibility
mole fraction derivative.

dphi_sat_dT(T[, polish]) Method to calculate the temperature derivative of sat-
uration fugacity coefficient of the compound.

from_json(json_repr) Method to create a mixture cubic equation of state
from a JSON friendly serialization of another mixture
cubic equation of state.

continues on next page
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Table 20 – continued from previous page
fugacities([only_l, only_g]) Helper method for calculating fugacity coefficients

for any phases present, using either the overall mole
fractions for both phases or using specified mole frac-
tions for each phase.

fugacity_coefficients(Z) Generic formula for calculating log fugacity coeffi-
cients for each species in a mixture.

mechanical_critical_point() Method to calculate the mechanical critical point of
a mixture of defined composition.

model_hash() Basic method to calculate a hash of the non-state
parts of the model This is useful for comparing to
models to determine if they are the same, i.e. in a
VLL flash it is important to know if both liquids have
the same model.

phi_sat(T[, polish]) Method to calculate the saturation fugacity coeffi-
cient of the compound.

pures() Helper method which returns a list of pure EOSs at
the same T and P and base EOS as the mixture.

resolve_full_alphas() Generic method to resolve the eos with fully calcu-
lated alpha derviatives.

saturation_prop_plot(prop[, Tmin, Tmax, ...]) Method to create a plot of a specified property of the
EOS along the (pure component) saturation line.

set_dnzs_derivatives_and_departures([n, x,
...])

Sets a number of mole number and/or composition
partial derivatives of thermodynamic partial deriva-
tives.

set_from_PT(Vs[, only_l, only_g]) Counts the number of real volumes in Vs, and deter-
mines what to do.

set_properties_from_solution(T, P, V, b, ...) Sets all interesting properties which can be calculated
from an EOS alone.

solve([pure_a_alphas, only_l, only_g, ...]) First EOS-generic method; should be called by all
specific EOSs.

solve_T(P, V[, quick, solution]) Generic method to calculate T from a specified P and
V.

solve_missing_volumes() Generic method to ensure both volumes, if solutions
are physical, have calculated properties.

state_hash() Basic method to calculate a hash of the state of the
model and its model parameters.

subset(idxs, **state_specs) Method to construct a new GCEOSMIX that removes
all components not specified in the idxs argument.

to([zs, T, P, V, fugacities]) Method to construct a new GCEOSMIX object at two
of T, P or V with the specified composition.

to_PV(P, V) Method to construct a new GCEOSMIX object at the
spcified P and V with the current composition.

to_PV_zs(P, V, zs[, fugacities, only_l, only_g]) Method to construct a new GCEOSMIX instance at P,
V, and zs with the same parameters as the existing
object.

to_TP(T, P) Method to construct a new GCEOSMIX object at the
spcified T and P with the current composition.

to_TPV_pure(i[, T, P, V]) Helper method which returns a pure EOSs at the
specs (two of T, P and V ) and base EOS as the mix-
ture for a particular index.

continues on next page
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to_TP_zs(T, P, zs[, fugacities, only_l, only_g]) Method to construct a new GCEOSMIX instance at T,

P, and zs with the same parameters as the existing
object.

to_TP_zs_fast(T, P, zs[, only_l, only_g, ...]) Method to construct a new GCEOSMIX instance with
the same parameters as the existing object.

to_TV(T, V) Method to construct a new GCEOSMIX object at the
spcified T and V with the current composition.

to_mechanical_critical_point() Method to construct a new GCEOSMIX object at
the current object's properties and composition, but
which is at the mechanical critical point.

volume_error() Method to calculate the relative absolute error in the
calculated molar volumes.

volume_errors([Tmin, Tmax, Pmin, Pmax, pts,
...])

Method to create a plot of the relative absolute error
in the cubic volume solution as compared to a higher-
precision calculation.

volume_solutions(T, P, b, delta, epsilon, ...) Halley's method based solver for cubic EOS volumes
based on the idea of initializing from a single liquid-
like guess which is solved precisely, deflating the cu-
bic analytically, solving the quadratic equation for the
next two volumes, and then performing two halley
steps on each of them to obtain the final solutions.

volume_solutions_full(T, P, b, delta, ...[, ...]) Newton-Raphson based solver for cubic EOS vol-
umes based on the idea of initializing from an ana-
lytical solver.

volume_solutions_mp(T, P, b, delta, epsilon, ...) Solution of this form of the cubic EOS in terms of vol-
umes, using the mpmath arbitrary precision library.

stabiliy_iteration_Michelsen

Psat(T, polish=False)
Generic method to calculate vapor pressure of a pure-component equation of state for a specified T. An
explicit solution is used unless polish is True.

The result of this function has no physical meaning for multicomponent mixtures, and does not represent
either a dew point or a bubble point!

Parameters
T [float] Temperature, [K]

polish [bool, optional] Whether to attempt to use a numerical solver to make the solution
more precise or not

Returns
Psat [float] Vapor pressure using the pure-component approach, [Pa]
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Notes

For multicomponent mixtures this may serve as a useful guess for the dew and the bubble pressure.

a_alpha_and_derivatives(T, full=True, quick=True, pure_a_alphas=True)
Method to calculate a_alpha and its first and second derivatives for an EOS with the Van der Waals mixing
rules. Uses the parent class’s interface to compute pure component values. Returns a_alpha, da_alpha_dT,
and d2a_alpha_dT2.

For use in solve_T this returns only a_alpha if full is False.

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

Parameters
T [float] Temperature, [K]

full [bool, optional] If False, calculates and returns only a_alpha

quick [bool, optional] Only the quick variant is implemented; it is little faster anyhow

pure_a_alphas [bool, optional] Whether or not to recalculate the a_alpha terms of pure com-
ponents (for the case of mixtures only) which stay the same as the composition changes (i.e
in a PT flash), [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K**2]

Notes

The exact expressions can be obtained with the following SymPy expression below, commented out for
brevity.

>>> from sympy import *
>>> kij, T = symbols('kij, T ')
>>> a_alpha_i, a_alpha_j = symbols('a_alpha_i, a_alpha_j', cls=Function)
>>> a_alpha_ij = (1-kij)*sqrt(a_alpha_i(T)*a_alpha_j(T))
>>> diff(a_alpha_ij, T)
>>> diff(a_alpha_ij, T, T)

property a_alpha_ijs

Calculate and return the matrix (𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︀

(𝑎𝛼)𝑖(𝑎𝛼)𝑗 .

Returns
a_alpha_ijs [list[list[float]]] a_alpha terms for each component with every other component,

[J^2/mol^2/Pa]
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Notes

In an earlier implementation this matrix was stored each EOS solve; however, allocating that much memory
becomes quite expensive for large number of component cases and this is now calculated on-demand only.

d2G_dep_dninjs(Z)
Calculates the molar departure Gibbs energy mole number derivatives (where the mole fractions sum to 1).
No specific formula is implemented for this property - it is calculated from the mole fraction derivative.(︂

𝜕2𝐺𝑑𝑒𝑝

𝜕𝑛𝑗𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛𝑖,𝑗 ̸=𝑘

= 𝑓

(︃(︂
𝜕2𝐺𝑑𝑒𝑝

𝜕𝑥𝑗𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥𝑖,𝑗 ̸=𝑘

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
d2G_dep_dninjs [float] Departure Gibbs energy second mole number derivatives, [J/mol^3]

d2G_dep_dzizjs(Z)
Calculates the molar departure Gibbs energy second composition derivative (where the mole fractions do
not sum to 1). Verified numerically. Useful in solving for gibbs minimization calculations or for solving
for the true critical point. Also forms the basis for the molar departure Gibbs energy mole second number
derivative. (︂

𝜕2𝐺𝑑𝑒𝑝

𝜕𝑥𝑗𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥𝑖,𝑗 ̸=𝑘

= run SymPy code to obtain - very long!

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
d2G_dep_dzizjs [float] Departure Gibbs free energy second composition derivatives,

[J/mol]

Notes

The derivation for the derivative is performed as follows using SymPy. The function source code is an
optimized variant created with the cse SymPy function, and hand optimized further.

>>> from sympy import *
>>> P, T, R, x1, x2 = symbols('P, T, R, x1, x2')
>>> a_alpha, delta, epsilon, V, b = symbols('a\ \\alpha, delta, epsilon, V, b',␣
→˓cls=Function)
>>> da_alpha_dT, d2a_alpha_dT2 = symbols('da_alpha_dT, d2a_alpha_dT2',␣
→˓cls=Function)
>>> S_dep = R*log(P*V(x1, x2)/(R*T)) + R*log(V(x1, x2)-b(x1, x2))+2*da_alpha_
→˓dT(x1, x2)*atanh((2*V(x1, x2)+delta(x1, x2))/sqrt(delta(x1, x2)**2-
→˓4*epsilon(x1, x2)))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2))-R*log(V(x1, x2))
>>> H_dep = P*V(x1, x2) - R*T + 2*atanh((2*V(x1, x2)+delta(x1, x2))/
→˓sqrt(delta(x1, x2)**2-4*epsilon(x1, x2)))*(da_alpha_dT(x1, x2)*T-a_alpha(x1,␣
→˓x2))/sqrt(delta(x1, x2)**2-4*epsilon(x1, x2))
>>> G_dep = simplify(H_dep - T*S_dep)
>>> diff(G_dep, x1, x2)
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d2V_dninjs(Z)
Calculates the molar volume second mole number derivatives (where the mole fractions sum to 1). No
specific formula is implemented for this property - it is calculated from the second mole fraction derivatives.(︂

𝜕2𝑉

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 𝑓

(︃(︂
𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
d2V_dninjs [float] Molar volume second mole number derivatives, [m^3/mol^3]

d2V_dzizjs(Z)
Calculates the molar volume second composition derivative (where the mole fractions do not sum to 1).
Verified numerically. Used in many other derivatives, and for the molar volume second mole number
derivative. (︂

𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= run SymPy code to obtain - very long!

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
d2V_dzizjs [float] Molar volume second composition derivatives, [m^3/mol]

Notes

The derivation for the derivative is performed as follows using SymPy. The function source code is an
optimized variant created with the cse SymPy function, and hand optimized further.

>>> from sympy import *
>>> P, T, R, x1, x2 = symbols('P, T, R, x1, x2')
>>> V, delta, epsilon, a_alpha, b = symbols('V, delta, epsilon, a\ \\alpha, b',␣
→˓cls=Function)
>>> CUBIC = R*T/(V(x1, x2) - b(x1, x2)) - a_alpha(x1, x2)/(V(x1, x2)*V(x1, x2)␣
→˓+ delta(x1, x2)*V(x1, x2) + epsilon(x1, x2)) - P
>>> solve(diff(CUBIC, x1, x2), Derivative(V(x1, x2), x1, x2))

property d2a_alpha_dT2_dns
Helper method for calculating the mole number derivatives of d2a_alpha_dT2. Note this is independent of
the phase. (︂

𝜕3𝑎𝛼

𝜕𝑛𝑖𝜕𝑇 2

)︂
𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕3𝑎𝛼

𝜕𝑧𝑖𝜕𝑇 2

)︂
𝑃,𝑧�̸�=𝑗

)︃

Returns
d2a_alpha_dT2_dns [list[float]] Mole number derivative of d2a_alpha_dT2 of each com-

ponent, [kg*m^5/(mol^3*s^2*K^2)]
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Notes

This derivative is checked numerically.

property d2a_alpha_dT2_dzs
Helper method for calculating the mole number derivatives of d2a_alpha_dT2. Note this is independent of
the phase. (︂

𝜕3𝑎𝛼

𝜕𝑧𝑖𝜕𝑇 2

)︂
𝑃,𝑧�̸�=𝑗

= large expression

Returns
d2a_alpha_dT2_dzs [list[float]] Composition derivative of d2a_alpha_dT2 of each compo-

nent, [kg*m^5/(mol^2*s^2*K^2)]

Notes

This derivative is checked numerically.

property d2a_alpha_dT2_ijs
Calculate and return the matrix of the second temperature derivatives of the alpha terms.

𝜕2(𝑎𝛼)𝑖𝑗
𝜕𝑇 2

= −

√︀
a𝛼i (𝑇 ) a𝛼j (𝑇 ) (𝑘𝑖𝑗 − 1)

(︂
(a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑
𝑑𝑇 a𝛼i (𝑇 ))

2

4 a𝛼i (𝑇 ) a𝛼j (𝑇 ) − (a𝛼i (𝑇 ) 𝑑
𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )) 𝑑
𝑑𝑇 a𝛼j (𝑇 )

2 a𝛼j (𝑇 ) − (a𝛼i (𝑇 ) 𝑑
𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )) 𝑑
𝑑𝑇 a𝛼i (𝑇 )

2 a𝛼i (𝑇 ) +
a𝛼i (𝑇 ) 𝑑2

𝑑𝑇2 a𝛼j (𝑇 )

2 +
a𝛼j (𝑇 ) 𝑑2

𝑑𝑇2 a𝛼i (𝑇 )

2 + 𝑑
𝑑𝑇 a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )

)︂
a𝛼i (𝑇 ) a𝛼j (𝑇 )

Returns
d2a_alpha_dT2_ijs [list[list[float]]] Second temperature derivative of a_alpha terms for

each component with every other component, [J^2/mol^2/Pa/K^2]

Notes

In an earlier implementation this matrix was stored each EOS solve; however, allocating that much memory
becomes quite expensive for large number of component cases and this is now calculated on-demand only.

property d2a_alpha_dninjs
Helper method for calculating the second partial molar derivatives of a_alpha (hessian). Note this is inde-
pendent of the phase. (︂

𝜕2𝑎𝛼

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 2 [3(𝑎𝛼) + (𝑎𝛼)𝑖𝑗 − 2(term𝑖,𝑗)]

term𝑖,𝑗 =
∑︁
𝑘

𝑧𝑘 ((𝑎𝛼)𝑖𝑘 + (𝑎𝛼)𝑗𝑘)

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

Returns
d2a_alpha_dninjs [list[float]] Second partial molar derivative of alpha of each component,

[kg*m^5/(mol^4*s^2)]
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Notes

This derivative is checked numerically.

property d2a_alpha_dzizjs
Helper method for calculating the second composition derivatives of a_alpha (hessian). Note this is inde-
pendent of the phase. (︂

𝜕2𝑎𝛼

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 2(1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

Returns
d2a_alpha_dzizjs [list[float]] Second composition derivative of alpha of each component,

[kg*m^5/(mol^2*s^2)]

Notes

This derivative is checked numerically.

property d2b_dninjs
Helper method for calculating the second partial mole number derivatives of b. Note this is independent of
the phase. (︂

𝜕2𝑏

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑘

= 2𝑏− 𝑏𝑖 − 𝑏𝑗

Returns
d2b_dninjs [list[list[float]]] Second Composition derivative of b of each component,

[m^3/mol^3]

Notes

This derivative is checked numerically.

property d2b_dzizjs
Helper method for calculating the second partial mole fraction derivatives of b. Note this is independent of
the phase. (︂

𝜕2𝑏

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 0

Returns
d2b_dzizjs [list[list[float]]] Second mole fraction derivatives of b of each component,

[m^3/mol]
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Notes

This derivative is checked numerically.

d2lnphi_dninjs(Z)
Calculates the mixture log fugacity coefficient second mole number derivatives (where the mole fraction
sum to 1). No specific formula is implemented for this property - it is calculated from the second mole
fraction derivative of Gibbs free energy.(︂

𝜕2 ln𝜑

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑖,𝑗 ̸=𝑘

𝑓

(︃(︂
𝜕2𝐺𝑑𝑒𝑝

𝜕𝑥𝑗𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥𝑖,𝑗 ̸=𝑘

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
d2lnphi_dninjs [float] Mixture log fugacity coefficient second mole number derivatives, [-]

d2lnphi_dzizjs(Z)
Calculates the mixture log fugacity coefficient second mole fraction derivatives (where the mole fractions
do not sum to 1). No specific formula is implemented for this property - it is calculated from the second
mole fraction derivative of Gibbs free energy.(︂

𝜕2 ln𝜑

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑖,𝑗 ̸=𝑘

=
1

𝑅𝑇

(︃(︂
𝜕2𝐺𝑑𝑒𝑝

𝜕𝑥𝑗𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥𝑖,𝑗 ̸=𝑘

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
d2lnphi_dzizjs [float] Mixture log fugacity coefficient second mole fraction derivatives, [-]

property d3a_alpha_dninjnks
Helper method for calculating the third mole number derivatives of a_alpha. Note this is independent of
the phase.(︂

𝜕3𝑎𝛼

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛�̸�=𝑖,𝑗,𝑘

= 4

(︃
−6(𝑎𝛼) − [(𝑎𝛼)𝑖,𝑗 + (𝑎𝛼)𝑖,𝑘 + (𝑎𝛼)𝑗,𝑘] + 3

∑︁
𝑚

𝑧𝑚[(𝑎𝛼)𝑖,𝑚 + (𝑎𝛼)𝑗,𝑚 + (𝑎𝛼)𝑘,𝑚]

)︃

Returns
d3a_alpha_dninjnks [list[float]] Third mole number derivative of alpha of each component,

[kg*m^5/(mol^5*s^2)]

Notes

This derivative is checked numerically.

property d3a_alpha_dzizjzks
Helper method for calculating the third composition derivatives of a_alpha. Note this is independent of the
phase. (︂

𝜕3𝑎𝛼

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0
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Returns
d3a_alpha_dzizjzks [list[float]] Third composition derivative of alpha of each component,

[kg*m^5/(mol^2*s^2)]

Notes

This derivative is checked numerically.

property d3b_dninjnks
Helper method for calculating the third partial mole number derivatives of b. Note this is independent of
the phase. (︂

𝜕3𝑏

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛�̸�=𝑖,𝑗,𝑘

= 2(−3𝑏+ 𝑏𝑖 + 𝑏𝑗 + 𝑏𝑘)

Returns
d3b_dninjnks [list[list[list[float]]]] Third mole number derivative of b of each component,

[m^3/mol^4]

Notes

This derivative is checked numerically.

property d3b_dzizjzks
Helper method for calculating the third partial mole fraction derivatives of b. Note this is independent of
the phase. (︂

𝜕3𝑏

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗,𝑘

= 0

Returns
d3b_dzizjzks [list[list[list[float]]]] Third mole fraction derivatives of b of each component,

[m^3/mol]

Notes

This derivative is checked numerically.

property d3delta_dzizjzks
Helper method for calculating the third composition derivatives of delta. Note this is independent of the
phase. (︂

𝜕3𝛿

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0

Returns
d3delta_dzizjzks [list[list[list[float]]]] Third composition derivative of epsilon of each com-

ponent, [m^6/mol^5]
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Notes

This derivative is checked numerically.

property d3epsilon_dzizjzks
Helper method for calculating the third composition derivatives of epsilon. Note this is independent of the
phase. (︂

𝜕3𝜖

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0

Returns
d2epsilon_dzizjzks [list[list[list[float]]]] Composition derivative of epsilon of each compo-

nent, [m^6/mol^2]

Notes

This derivative is checked numerically.

dG_dep_dns(Z)
Calculates the molar departure Gibbs energy mole number derivatives (where the mole fractions sum to 1).
No specific formula is implemented for this property - it is calculated from the mole fraction derivative.(︂

𝜕𝐺𝑑𝑒𝑝

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Apart from the ideal term, this is the formulation for chemical potential.

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dG_dep_dns [float] Departure Gibbs energy mole number derivatives, [J/mol^2]

dG_dep_dzs(Z)
Calculates the molar departure Gibbs energy composition derivative (where the mole fractions do not sum
to 1). Verified numerically. Useful in solving for gibbs minimization calculations or for solving for the
true critical point. Also forms the basis for the molar departure Gibbs energy mole number derivative and
molar partial departure Gibbs energy.

(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 𝑃
𝑑

𝑑𝑥
𝑉 (𝑥) −

𝑅𝑇
(︀

𝑑
𝑑𝑥𝑉 (𝑥) − 𝑑

𝑑𝑥𝑏(𝑥)
)︀

𝑉 (𝑥) − 𝑏(𝑥)
−

2
(︀
−𝛿(𝑥) 𝑑

𝑑𝑥𝛿(𝑥) + 2 𝑑
𝑑𝑥𝜖(𝑥)

)︀
a𝛼 (𝑥) atanh

(︂
2𝑉 (𝑥)√

𝛿2(𝑥)−4𝜖(𝑥)
+ 𝛿(𝑥)√

𝛿2(𝑥)−4𝜖(𝑥)

)︂
(𝛿2(𝑥) − 4𝜖(𝑥))

3
2

−
2 atanh

(︂
2𝑉 (𝑥)√

𝛿2(𝑥)−4𝜖(𝑥)
+ 𝛿(𝑥)√

𝛿2(𝑥)−4𝜖(𝑥)

)︂
𝑑
𝑑𝑥 a𝛼 (𝑥)√︀

𝛿2(𝑥) − 4𝜖(𝑥)
−

2

(︂
2(−𝛿(𝑥) 𝑑

𝑑𝑥 𝛿(𝑥)+2 𝑑
𝑑𝑥 𝜖(𝑥))𝑉 (𝑥)

(𝛿2(𝑥)−4𝜖(𝑥))
3
2

+
(−𝛿(𝑥) 𝑑

𝑑𝑥 𝛿(𝑥)+2 𝑑
𝑑𝑥 𝜖(𝑥))𝛿(𝑥)

(𝛿2(𝑥)−4𝜖(𝑥))
3
2

+
2 𝑑

𝑑𝑥𝑉 (𝑥)√
𝛿2(𝑥)−4𝜖(𝑥)

+
𝑑
𝑑𝑥 𝛿(𝑥)√

𝛿2(𝑥)−4𝜖(𝑥)

)︂
a𝛼 (𝑥)(︃

1 −
(︂

2𝑉 (𝑥)√
𝛿2(𝑥)−4𝜖(𝑥)

+ 𝛿(𝑥)√
𝛿2(𝑥)−4𝜖(𝑥)

)︂2
)︃√︀

𝛿2(𝑥) − 4𝜖(𝑥)

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dG_dep_dzs [float] Departure Gibbs free energy composition derivatives, [J/mol]
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Notes

The derivation for the derivative is performed as follows using SymPy. The function source code is an
optimized variant created with the cse SymPy function, and hand optimized further.

>>> from sympy import *
>>> P, T, R, x = symbols('P, T, R, x')
>>> a_alpha, a, delta, epsilon, V, b, da_alpha_dT = symbols('a\ \\alpha, a,␣
→˓delta, epsilon, V, b, da_alpha_dT', cls=Function)
>>> S_dep = R*log(P*V(x)/(R*T)) + R*log(V(x)-b(x))+2*da_alpha_
→˓dT(x)*atanh((2*V(x)+delta(x))/sqrt(delta(x)**2-4*epsilon(x)))/
→˓sqrt(delta(x)**2-4*epsilon(x))-R*log(V(x))
>>> H_dep = P*V(x) - R*T + 2*atanh((2*V(x)+delta(x))/sqrt(delta(x)**2-
→˓4*epsilon(x)))*(da_alpha_dT(x)*T-a_alpha(x))/sqrt(delta(x)**2-4*epsilon(x))
>>> G_dep = simplify(H_dep - T*S_dep)
>>> diff(G_dep, x)
P*Derivative(V(x), x) - R*T*(Derivative(V(x), x) - Derivative(b(x), x))/(V(x) -␣
→˓b(x)) - 2*(-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*a␣
→˓\alpha(x)*atanh(2*V(x)/sqrt(delta(x)**2 - 4*epsilon(x)) + delta(x)/
→˓sqrt(delta(x)**2 - 4*epsilon(x)))/(delta(x)**2 - 4*epsilon(x))**(3/2) -␣
→˓2*atanh(2*V(x)/sqrt(delta(x)**2 - 4*epsilon(x)) + delta(x)/sqrt(delta(x)**2 -␣
→˓4*epsilon(x)))*Derivative(a \alpha(x), x)/sqrt(delta(x)**2 - 4*epsilon(x)) -␣
→˓2*(2*(-delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*V(x)/
→˓(delta(x)**2 - 4*epsilon(x))**(3/2) + (-delta(x)*Derivative(delta(x), x) +␣
→˓2*Derivative(epsilon(x), x))*delta(x)/(delta(x)**2 - 4*epsilon(x))**(3/2) +␣
→˓2*Derivative(V(x), x)/sqrt(delta(x)**2 - 4*epsilon(x)) + Derivative(delta(x),␣
→˓x)/sqrt(delta(x)**2 - 4*epsilon(x)))*a \alpha(x)/((1 - (2*V(x)/
→˓sqrt(delta(x)**2 - 4*epsilon(x)) + delta(x)/sqrt(delta(x)**2 -␣
→˓4*epsilon(x)))**2)*sqrt(delta(x)**2 - 4*epsilon(x)))

dH_dep_dns(Z)
Calculates the molar departure enthalpy mole number derivatives (where the mole fractions sum to 1). No
specific formula is implemented for this property - it is calculated from the mole fraction derivative.(︂

𝜕𝐻𝑑𝑒𝑝

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝐻𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃
Parameters

Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dH_dep_dns [float] Departure enthalpy mole number derivatives, [J/mol^2]

dH_dep_dzs(Z)
Calculates the molar departure enthalpy composition derivative (where the mole fractions do not sum to
1). Verified numerically. Useful in solving for enthalpy specifications in newton-type methods, and forms
the basis for the molar departure enthalpy mole number derivative and molar partial departure enthalpy.

(︂
𝜕𝐻𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 𝑃
𝑑

𝑑𝑥
𝑉 (𝑥) +

2
(︀
𝑇 𝜕

𝜕𝑇 a𝛼 (𝑇, 𝑥) − a𝛼 (𝑥)
)︀ (︀

−𝛿(𝑥) 𝑑
𝑑𝑥𝛿(𝑥) + 2 𝑑

𝑑𝑥𝜖(𝑥)
)︀

atanh

(︂
2𝑉 (𝑥)+𝛿(𝑥)√
𝛿2(𝑥)−4𝜖(𝑥)

)︂
(𝛿2(𝑥) − 4𝜖(𝑥))

3
2

+

2
(︀
𝑇 𝜕

𝜕𝑇 a𝛼 (𝑇, 𝑥) − a𝛼 (𝑥)
)︀(︂ (−𝛿(𝑥) 𝑑

𝑑𝑥 𝛿(𝑥)+2 𝑑
𝑑𝑥 𝜖(𝑥))(2𝑉 (𝑥)+𝛿(𝑥))

(𝛿2(𝑥)−4𝜖(𝑥))
3
2

+
2 𝑑

𝑑𝑥𝑉 (𝑥)+ 𝑑
𝑑𝑥 𝛿(𝑥)√

𝛿2(𝑥)−4𝜖(𝑥)

)︂
(︁
− (2𝑉 (𝑥)+𝛿(𝑥))2

𝛿2(𝑥)−4𝜖(𝑥) + 1
)︁√︀

𝛿2(𝑥) − 4𝜖(𝑥)
+

2
(︁
𝑇 𝜕2

𝜕𝑥𝜕𝑇 a𝛼 (𝑇, 𝑥) − 𝑑
𝑑𝑥 a𝛼 (𝑥)

)︁
atanh

(︂
2𝑉 (𝑥)+𝛿(𝑥)√
𝛿2(𝑥)−4𝜖(𝑥)

)︂
√︀
𝛿2(𝑥) − 4𝜖(𝑥)

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]
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Returns
dH_dep_dzs [float] Departure enthalpy composition derivatives, [J/mol]

Notes

The derivation for the derivative is performed as follows using SymPy. The function source code is an
optimized variant created with the cse SymPy function, and hand optimized further.

>>> from sympy import *
>>> P, T, V, R, b, a, delta, epsilon, x = symbols('P, T, V, R, b, a, delta,␣
→˓epsilon, x')
>>> V, delta, epsilon, a_alpha, b = symbols('V, delta, epsilon, a_alpha, b',␣
→˓cls=Function)
>>> H_dep = (P*V(x) - R*T + 2/sqrt(delta(x)**2 - 4*epsilon(x))*(T*Derivative(a_
→˓alpha(T, x), T)
... - a_alpha(x))*atanh((2*V(x)+delta(x))/sqrt(delta(x)**2-4*epsilon(x))))
>>> diff(H_dep, x)
P*Derivative(V(x), x) + 2*(T*Derivative(a \alpha(T, x), T) - a \alpha(x))*(-
→˓delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*atanh((2*V(x)␣
→˓+ delta(x))/sqrt(delta(x)**2 - 4*epsilon(x)))/(delta(x)**2 -␣
→˓4*epsilon(x))**(3/2) + 2*(T*Derivative(a \alpha(T, x), T) - a \alpha(x))*((-
→˓delta(x)*Derivative(delta(x), x) + 2*Derivative(epsilon(x), x))*(2*V(x) +␣
→˓delta(x))/(delta(x)**2 - 4*epsilon(x))**(3/2) + (2*Derivative(V(x), x) +␣
→˓Derivative(delta(x), x))/sqrt(delta(x)**2 - 4*epsilon(x)))/((-(2*V(x) +␣
→˓delta(x))**2/(delta(x)**2 - 4*epsilon(x)) + 1)*sqrt(delta(x)**2 -␣
→˓4*epsilon(x))) + 2*(T*Derivative(a \alpha(T, x), T, x) - Derivative(a \
→˓alpha(x), x))*atanh((2*V(x) + delta(x))/sqrt(delta(x)**2 - 4*epsilon(x)))/
→˓sqrt(delta(x)**2 - 4*epsilon(x))

dS_dep_dns(Z)
Calculates the molar departure entropy mole number derivatives (where the mole fractions sum to 1). No
specific formula is implemented for this property - it is calculated from the mole fraction derivative.(︂

𝜕𝑆𝑑𝑒𝑝

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝑆𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dS_dep_dns [float] Departure entropy mole number derivatives, [J/mol^2/K]

dS_dep_dzs(Z)
Calculates the molar departure entropy composition derivative (where the mole fractions do not sum to 1).
Verified numerically. Useful in solving for entropy specifications in newton-type methods, and forms the
basis for the molar departure entropy mole number derivative and molar partial departure entropy.(︂

𝜕𝑆𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

=
1

𝑇

(︃(︂
𝜕𝐻𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

−
(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]
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Returns
dS_dep_dzs [float] Departure entropy composition derivatives, [J/mol/K]

dV_dns(Z)
Calculates the molar volume mole number derivatives (where the mole fractions sum to 1). No specific
formula is implemented for this property - it is calculated from the mole fraction derivative.(︂

𝜕𝑉

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝑉

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃
Parameters

Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dV_dns [float] Molar volume mole number derivatives, [m^3/mol^2]

dV_dzs(Z)
Calculates the molar volume composition derivative (where the mole fractions do not sum to 1). Verified
numerically. Used in many other derivatives, and for the molar volume mole number derivative and partial
molar volume calculation.(︂
𝜕𝑉

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

=
−𝑅𝑇

(︀
𝑉 2(𝑥) + 𝑉 (𝑥)𝛿(𝑥) + 𝜖(𝑥)

)︀3 𝑑
𝑑𝑥𝑏(𝑥) + (𝑉 (𝑥) − 𝑏(𝑥))

2 (︀
𝑉 2(𝑥) + 𝑉 (𝑥)𝛿(𝑥) + 𝜖(𝑥)

)︀2 𝑑
𝑑𝑥 a𝛼 (𝑥) − (𝑉 (𝑥) − 𝑏(𝑥))

2
𝑉 3(𝑥) a𝛼 (𝑥) 𝑑

𝑑𝑥𝛿(𝑥) − (𝑉 (𝑥) − 𝑏(𝑥))
2
𝑉 2(𝑥) a𝛼 (𝑥)𝛿(𝑥) 𝑑

𝑑𝑥𝛿(𝑥) − (𝑉 (𝑥) − 𝑏(𝑥))
2
𝑉 2(𝑥) a𝛼 (𝑥) 𝑑

𝑑𝑥𝜖(𝑥) − (𝑉 (𝑥) − 𝑏(𝑥))
2
𝑉 (𝑥) a𝛼 (𝑥)𝛿(𝑥) 𝑑

𝑑𝑥𝜖(𝑥) − (𝑉 (𝑥) − 𝑏(𝑥))
2
𝑉 (𝑥) a𝛼 (𝑥)𝜖(𝑥) 𝑑

𝑑𝑥𝛿(𝑥) − (𝑉 (𝑥) − 𝑏(𝑥))
2

a𝛼 (𝑥)𝜖(𝑥) 𝑑
𝑑𝑥𝜖(𝑥)

−𝑅𝑇 (𝑉 2(𝑥) + 𝑉 (𝑥)𝛿(𝑥) + 𝜖(𝑥))
3

+ 2 (𝑉 (𝑥) − 𝑏(𝑥))
2
𝑉 3(𝑥) a𝛼 (𝑥) + 3 (𝑉 (𝑥) − 𝑏(𝑥))

2
𝑉 2(𝑥) a𝛼 (𝑥)𝛿(𝑥) + (𝑉 (𝑥) − 𝑏(𝑥))

2
𝑉 (𝑥) a𝛼 (𝑥)𝛿2(𝑥) + 2 (𝑉 (𝑥) − 𝑏(𝑥))

2
𝑉 (𝑥) a𝛼 (𝑥)𝜖(𝑥) + (𝑉 (𝑥) − 𝑏(𝑥))

2
a𝛼 (𝑥)𝛿(𝑥)𝜖(𝑥)

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dV_dzs [float] Molar volume composition derivatives, [m^3/mol]

Notes

The derivation for the derivative is performed as follows using SymPy. The function source code is an
optimized variant created with the cse SymPy function, and hand optimized further.

>>> from sympy import *
>>> P, T, R, x = symbols('P, T, R, x')
>>> V, delta, epsilon, a_alpha, b = symbols('V, delta, epsilon, a\ \\alpha, b',␣
→˓cls=Function)
>>> CUBIC = R*T/(V(x) - b(x)) - a_alpha(x)/(V(x)*V(x) + delta(x)*V(x) +␣
→˓epsilon(x)) - P
>>> solve(diff(CUBIC, x), Derivative(V(x), x))
[(-R*T*(V(x)**2 + V(x)*delta(x) + epsilon(x))**3*Derivative(b(x), x) + (V(x) -␣
→˓b(x))**2*(V(x)**2 + V(x)*delta(x) + epsilon(x))**2*Derivative(a \alpha(x), x)␣
→˓- (V(x) - b(x))**2*V(x)**3*a \alpha(x)*Derivative(delta(x), x) - (V(x) -␣
→˓b(x))**2*V(x)**2*a \alpha(x)*delta(x)*Derivative(delta(x), x) - (V(x) -␣
→˓b(x))**2*V(x)**2*a \alpha(x)*Derivative(epsilon(x), x) - (V(x) -␣
→˓b(x))**2*V(x)*a \alpha(x)*delta(x)*Derivative(epsilon(x), x) - (V(x) -␣
→˓b(x))**2*V(x)*a \alpha(x)*epsilon(x)*Derivative(delta(x), x) - (V(x) -␣
→˓b(x))**2*a \alpha(x)*epsilon(x)*Derivative(epsilon(x), x))/(-R*T*(V(x)**2 +␣
→˓V(x)*delta(x) + epsilon(x))**3 + 2*(V(x) - b(x))**2*V(x)**3*a \alpha(x) +␣
→˓3*(V(x) - b(x))**2*V(x)**2*a \alpha(x)*delta(x) + (V(x) - b(x))**2*V(x)*a \
→˓alpha(x)*delta(x)**2 + 2*(V(x) - b(x))**2*V(x)*a \alpha(x)*epsilon(x) + (V(x)␣
→˓- b(x))**2*a \alpha(x)*delta(x)*epsilon(x))]
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dZ_dns(Z)
Calculates the compressibility mole number derivatives (where the mole fractions sum to 1). No specific
formula is implemented for this property - it is calculated from the mole fraction derivative.(︂

𝜕𝑍

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝑍

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dZ_dns [float] Compressibility number derivatives, [1/mol]

dZ_dzs(Z)
Calculates the compressibility composition derivatives (where the mole fractions do not sum to 1). No
specific formula is implemented for this property - it is calculated from the composition derivative of molar
volume, which does have its formula implemented.(︂

𝜕𝑍

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

=
𝑃

𝑅𝑇

(︂
𝜕𝑉

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dZ_dzs [float] Compressibility composition derivative, [-]

property da_alpha_dT_dns
Helper method for calculating the mole number derivatives of da_alpha_dT. Note this is independent of
the phase.

(︂
𝜕2𝑎𝛼

𝜕𝑛𝑖𝜕𝑇

)︂
𝑃,𝑛�̸�=𝑗

= 2

⎡⎣∑︁
𝑗

−𝑧𝑗(𝑘𝑖𝑗 − 1)(𝑎𝛼)𝑖(𝑎𝛼)𝑗
𝜕(𝑎𝛼)𝑖
𝜕𝑇

𝜕(𝑎𝛼)𝑗
𝜕𝑇

((𝑎𝛼)𝑖(𝑎𝛼)𝑗)
−0.5 − 𝜕𝑎𝛼

𝜕𝑇

⎤⎦
Returns

da_alpha_dT_dns [list[float]] Composition derivative of da_alpha_dT of each component,
[kg*m^5/(mol^3*s^2*K)]

Notes

This derivative is checked numerically.

property da_alpha_dT_dzs
Helper method for calculating the composition derivatives of da_alpha_dT. Note this is independent of the
phase. (︂

𝜕2𝑎𝛼

𝜕𝑥𝑖𝜕𝑇

)︂
𝑃,𝑥�̸�=𝑗

= 2
∑︁
𝑗

−𝑧𝑗(𝑘𝑖𝑗 − 1)(𝑎𝛼)𝑖(𝑎𝛼)𝑗
𝜕(𝑎𝛼)𝑖
𝜕𝑇

𝜕(𝑎𝛼)𝑗
𝜕𝑇

((𝑎𝛼)𝑖(𝑎𝛼)𝑗)
−0.5

Returns
da_alpha_dT_dzs [list[float]] Composition derivative of da_alpha_dT of each component,

[kg*m^5/(mol^2*s^2*K)]
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Notes

This derivative is checked numerically.

property da_alpha_dT_ijs
Calculate and return the matrix for the temperature derivatives of the alpha terms.

𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇

=

√︀
a𝛼i (𝑇 ) a𝛼j (𝑇 ) (1 − 𝑘𝑖𝑗)

(︁
a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )

2 +
a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )

2

)︁
a𝛼i (𝑇 ) a𝛼j (𝑇 )

Returns
da_alpha_dT_ijs [list[list[float]]] First temperature derivative of a_alpha terms for each

component with every other component, [J^2/mol^2/Pa/K]

Notes

In an earlier implementation this matrix was stored each EOS solve; however, allocating that much memory
becomes quite expensive for large number of component cases and this is now calculated on-demand only.

property da_alpha_dns
Helper method for calculating the mole number derivatives of a_alpha. Note this is independent of the
phase. (︂

𝜕𝑎𝛼

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 2(−𝑎𝛼+
∑︁
𝑗

𝑧𝑗(1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗)

Returns
da_alpha_dns [list[float]] Mole number derivative of alpha of each component,

[kg*m^5/(mol^3*s^2)]

Notes

This derivative is checked numerically.

property da_alpha_dzs
Helper method for calculating the composition derivatives of a_alpha. Note this is independent of the
phase. (︂

𝜕𝑎𝛼

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 2 ·
∑︁
𝑗

𝑧𝑗(1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

Returns
da_alpha_dzs [list[float]] Composition derivative of alpha of each component,

[kg*m^5/(mol^2*s^2)]
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Notes

This derivative is checked numerically.

property db_dns
Helper method for calculating the mole number derivatives of b. Note this is independent of the phase.(︂

𝜕𝑏

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑏𝑖 − 𝑏

Returns
db_dns [list[float]] Composition derivative of b of each component, [m^3/mol^2]

Notes

This derivative is checked numerically.

property db_dzs
Helper method for calculating the composition derivatives of b. Note this is independent of the phase.(︂

𝜕𝑏

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 𝑏𝑖

Returns
db_dzs [list[float]] Composition derivative of b of each component, [m^3/mol]

Notes

This derivative is checked numerically.

dfugacities_dns(phase)
Generic formula for calculating the mole number derivaitves of fugacities for each species in a mixture.
Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here.(︂

𝜕𝑓𝑖
𝜕𝑛𝑖

)︂
𝑃,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dfugacities_dns [list[list[float]]] Mole number derivatives of fugacities for each species, [-]

dlnfugacities_dns(phase)
Generic formula for calculating the mole number derivaitves of log fugacities for each species in a mixture.
Verified numerically. Applicable to all cubic equations of state which can be cast in the form used here.(︂

𝜕 ln 𝑓𝑖
𝜕𝑛𝑖

)︂
𝑃,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
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dlnfugacities_dns [list[list[float]]] Mole number derivatives of log fugacities for each
species, [-]

dlnphi_dns(Z)
Calculates the mixture log fugacity coefficient mole number derivatives (where the mole fractions sum to
1). No specific formula is implemented for this property - it is calculated from the mole fraction derivative
of Gibbs free energy. (︂

𝜕 ln𝜑

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

This property can be converted into a partial molar property to obtain the individual fugacity coefficients.

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dlnphi_dns [float] Mixture log fugacity coefficient mole number derivatives, [1/mol]

dlnphi_dzs(Z)
Calculates the mixture log fugacity coefficient mole fraction derivatives (where the mole fractions do not
sum to 1). No specific formula is implemented for this property - it is calculated from the mole fraction
derivative of Gibbs free energy.(︂

𝜕 ln𝜑

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

=
1

𝑅𝑇

(︃(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dlnphi_dzs [float] Mixture log fugacity coefficient mole fraction derivatives, [-]

dlnphis_dP(phase)
Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a
mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form used
here.

Normally this routine is slower than EOS-specific ones, as it does not make assumptions that certain pa-
rameters are zero or equal to other parameters.(︂

𝜕 ln𝜑𝑖
𝜕𝑃

)︂
𝑇,𝑛𝑗 ̸=𝑖

=
𝐺𝑑𝑒𝑝

𝜕𝑃 𝑇,𝑛
+

(︂
𝜕2 ln𝜑

𝜕𝑃𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dP [float] Pressure derivatives of log fugacity coefficient for each species, [1/Pa]
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Notes

This expression for the partial derivative of the mixture lnphi with respect to pressure and mole number
can be derived as follows; to convert to the partial molar lnphi pressure and temperature derivative, add
::math::frac{G_{dep}/(RT)}{partial P}_{T, n}.

>>> from sympy import *
>>> P, T, R, n = symbols('P, T, R, n')
>>> a_alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2 = symbols('a_
→˓alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2', cls=Function)
>>> S_dep = R*log(P*V(n, P)/(R*T)) + R*log(V(n, P)-b(n))+2*da_alpha_dT(n,␣
→˓T)*atanh((2*V(n, P)+delta(n))/sqrt(delta(n)**2-4*epsilon(n)))/
→˓sqrt(delta(n)**2-4*epsilon(n))-R*log(V(n, P))
>>> H_dep = P*V(n, P) - R*T + 2*atanh((2*V(n, P)+delta(n))/sqrt(delta(n)**2-
→˓4*epsilon(n)))*(da_alpha_dT(n, T)*T-a_alpha(n, T))/sqrt(delta(n)**2-
→˓4*epsilon(n))
>>> G_dep = H_dep - T*S_dep
>>> lnphi = simplify(G_dep/(R*T))
>>> diff(diff(lnphi, P), n)
P*Derivative(V(n, P), P, n)/(R*T) + Derivative(V(n, P), P, n)/V(n, P) -␣
→˓Derivative(V(n, P), P)*Derivative(V(n, P), n)/V(n, P)**2 - Derivative(V(n, P),
→˓ P, n)/(V(n, P) - b(n)) - (-Derivative(V(n, P), n) + Derivative(b(n),␣
→˓n))*Derivative(V(n, P), P)/(V(n, P) - b(n))**2 + Derivative(V(n, P), n)/(R*T)␣
→˓- 4*(-2*delta(n)*Derivative(delta(n), n) + 4*Derivative(epsilon(n), n))*a_
→˓alpha(n, T)*Derivative(V(n, P), P)/(R*T*(1 - (2*V(n, P)/sqrt(delta(n)**2 -␣
→˓4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))**2)*(delta(n)**2 -␣
→˓4*epsilon(n))**2) - 4*a_alpha(n, T)*Derivative(V(n, P), P, n)/(R*T*(1 -␣
→˓(2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 -␣
→˓4*epsilon(n)))**2)*(delta(n)**2 - 4*epsilon(n))) - 4*Derivative(V(n, P),␣
→˓P)*Derivative(a_alpha(n, T), n)/(R*T*(1 - (2*V(n, P)/sqrt(delta(n)**2 -␣
→˓4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 - 4*epsilon(n)))**2)*(delta(n)**2 -␣
→˓4*epsilon(n))) - 4*(2*V(n, P)/sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/
→˓sqrt(delta(n)**2 - 4*epsilon(n)))*(4*(-delta(n)*Derivative(delta(n), n) +␣
→˓2*Derivative(epsilon(n), n))*V(n, P)/(delta(n)**2 - 4*epsilon(n))**(3/2) +␣
→˓2*(-delta(n)*Derivative(delta(n), n) + 2*Derivative(epsilon(n), n))*delta(n)/
→˓(delta(n)**2 - 4*epsilon(n))**(3/2) + 4*Derivative(V(n, P), n)/
→˓sqrt(delta(n)**2 - 4*epsilon(n)) + 2*Derivative(delta(n), n)/sqrt(delta(n)**2␣
→˓- 4*epsilon(n)))*a_alpha(n, T)*Derivative(V(n, P), P)/(R*T*(1 - (2*V(n, P)/
→˓sqrt(delta(n)**2 - 4*epsilon(n)) + delta(n)/sqrt(delta(n)**2 -␣
→˓4*epsilon(n)))**2)**2*(delta(n)**2 - 4*epsilon(n))) + R*T*(P*Derivative(V(n,␣
→˓P), P)/(R*T) + V(n, P)/(R*T))*Derivative(V(n, P), n)/(P*V(n, P)**2) -␣
→˓R*T*(P*Derivative(V(n, P), P, n)/(R*T) + Derivative(V(n, P), n)/(R*T))/(P*V(n,
→˓ P))

dlnphis_dT(phase)
Generic formula for calculating the temperature derivaitve of log fugacity coefficients for each species in
a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form
used here.

Normally this routine is slower than EOS-specific ones, as it does not make assumptions that certain pa-
rameters are zero or equal to other parameters.(︂

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
𝑃,𝑛𝑗 ̸=𝑖

=
𝐺𝑑𝑒𝑝

𝑅𝑇

𝜕𝑇 𝑃,𝑛
+

(︂
𝜕2 ln𝜑

𝜕𝑇𝜕𝑛𝑖

)︂
𝑃,𝑛𝑗 ̸=𝑖
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Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dT [float] Temperature derivatives of log fugacity coefficient for each species, [1/K]

Notes

This expression for the partial derivative of the mixture lnphi with respect to pressure and mole number
can be derived as follows; to convert to the partial molar lnphi pressure and temperature derivative, add
::math::frac{G_{dep}/(RT)}{partial T}_{P, n}.

>>> from sympy import *
>>> P, T, R, n = symbols('P, T, R, n')
>>> a_alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2 = symbols('a_
→˓alpha, a, delta, epsilon, V, b, da_alpha_dT, d2a_alpha_dT2', cls=Function)
>>> S_dep = R*log(P*V(n, T)/(R*T)) + R*log(V(n, T)-b(n))+2*da_alpha_dT(n,␣
→˓T)*atanh((2*V(n, T)+delta(n))/sqrt(delta(n)**2-4*epsilon(n)))/
→˓sqrt(delta(n)**2-4*epsilon(n))-R*log(V(n, T))
>>> H_dep = P*V(n, T) - R*T + 2*atanh((2*V(n, T)+delta(n))/sqrt(delta(n)**2-
→˓4*epsilon(n)))*(da_alpha_dT(n, T)*T-a_alpha(n, T))/sqrt(delta(n)**2-
→˓4*epsilon(n))
>>> G_dep = H_dep - T*S_dep
>>> lnphi = simplify(G_dep/(R*T))
>>> diff(diff(lnphi, T), n)

dlnphis_dns(Z)
Generic formula for calculating the mole number derivaitves of log fugacity coefficients for each species
in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form
used here. (︂

𝜕 ln𝜑𝑖
𝜕𝑛𝑖

)︂
𝑃,𝑛𝑗 ̸=𝑖

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dlnphis_dns [list[list[float]]] Mole number derivatives of log fugacity coefficient for each

species, [-]

dlnphis_dzs(Z)
Generic formula for calculating the mole fraction derivaitves of log fugacity coefficients for each species
in a mixture. Verified numerically. Applicable to all cubic equations of state which can be cast in the form
used here. (︂

𝜕 ln𝜑𝑖
𝜕𝑧𝑖

)︂
𝑃,𝑧𝑗 ̸=𝑖

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
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dlnphis_dzs [list[list[float]]] Mole fraction derivatives of log fugacity coefficient for each
species (such that the mole fractions do not sum to 1), [-]

dnG_dep_dns(Z)
Calculates the partial molar departure Gibbs energy. No specific formula is implemented for this property
- it is calculated from the mole fraction derivative.(︂

𝜕𝑛𝐺𝑑𝑒𝑝

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dnG_dep_dns [float] Partial molar departure Gibbs energy of the phase, [J/mol]

dnH_dep_dns(Z)
Calculates the partial molar departure enthalpy. No specific formula is implemented for this property - it is
calculated from the mole fraction derivative.(︂

𝜕𝑛𝐻𝑑𝑒𝑝

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝐻𝑑𝑒𝑝

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dnH_dep_dns [float] Partial molar departure enthalpies of the phase, [J/mol]

dnV_dns(Z)
Calculates the partial molar volume of the specified phase No specific formula is implemented for this
property - it is calculated from the molar volume mole fraction derivative.(︂

𝜕𝑛𝑉

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝑉

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dnV_dns [float] Partial molar volume of the mixture of the specified phase, [m^3/mol]

dnZ_dns(Z)
Calculates the partial compressibility of the specified phase No specific formula is implemented for this
property - it is calculated from the compressibility mole fraction derivative.(︂

𝜕𝑛𝑍

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑓

(︃(︂
𝜕𝑍

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

)︃

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dnZ_dns [float] Partial compressibility of the mixture of the specified phase, [-]
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property dna_alpha_dT_dns
Helper method for calculating the mole number derivatives of da_alpha_dT. Note this is independent of
the phase.

(︂
𝜕2𝑛𝑎𝛼

𝜕𝑛𝑖𝜕𝑇

)︂
𝑃,𝑛�̸�=𝑗

= 2

⎡⎣∑︁
𝑗

−𝑧𝑗(𝑘𝑖𝑗 − 1)(𝑎𝛼)𝑖(𝑎𝛼)𝑗
𝜕(𝑎𝛼)𝑖
𝜕𝑇

𝜕(𝑎𝛼)𝑗
𝜕𝑇

((𝑎𝛼)𝑖(𝑎𝛼)𝑗)
−0.5 − 0.5

𝜕𝑎𝛼

𝜕𝑇

⎤⎦
Returns

dna_alpha_dT_dns [list[float]] Composition derivative of da_alpha_dT of each compo-
nent, [kg*m^5/(mol^2*s^2*K)]

Notes

This derivative is checked numerically.

property dna_alpha_dns
Helper method for calculating the partial molar derivatives of a_alpha. Note this is independent of the
phase. (︂

𝜕𝑎𝛼

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 2(−0.5𝑎𝛼+
∑︁
𝑗

𝑧𝑗(1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗)

Returns
dna_alpha_dns [list[float]] Partial molar derivative of alpha of each component,

[kg*m^5/(mol^2*s^2)]

Notes

This derivative is checked numerically.

property dnb_dns
Helper method for calculating the partial molar derivative of b. Note this is independent of the phase.(︂

𝜕𝑛 · 𝑏
𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 𝑏𝑖

Returns
dnb_dns [list[float]] Partial molar derivative of b of each component, [m^3/mol]

Notes

This derivative is checked numerically.

classmethod from_json(json_repr)
Method to create a mixture cubic equation of state from a JSON friendly serialization of another mixture
cubic equation of state.

Parameters
json_repr [dict] Json representation, [-]

Returns
eos_mix [GCEOSMIX] Newly created object from the json serialization, [-]
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Notes

It is important that the input string be in the same format as that created by GCEOS.as_json.

Examples

>>> import pickle
>>> eos = PRSV2MIX(Tcs=[507.6], Pcs=[3025000], omegas=[0.2975], zs=[1], T=299.,␣
→˓P=1E6, kappa1s=[0.05104], kappa2s=[0.8634], kappa3s=[0.460])
>>> json_stuff = pickle.dumps(eos.as_json())
>>> new_eos = GCEOSMIX.from_json(pickle.loads(json_stuff))
>>> assert new_eos == eos

fugacities(only_l=False, only_g=False)
Helper method for calculating fugacity coefficients for any phases present, using either the overall mole
fractions for both phases or using specified mole fractions for each phase.

Requires fugacity_coefficients to be implemented by each subclassing EOS.

In addition to setting fugacities_l and/or fugacities_g, this also sets the fugacity coefficients phis_l and/or
phis_g.

𝜑𝑔𝑖 =
𝑓𝑔𝑖
𝑦𝑖𝑃

𝜑𝑙𝑖 =
𝑓 𝑙𝑖
𝑥𝑖𝑃

Note that in a flash calculation, each phase requires their own EOS object.

Parameters
only_l [bool] When true, if there is a liquid and a vapor root, only the liquid root (and prop-

erties) will be set.

only_g [bool] When true, if there is a liquid and a vapor root, only the vapor root (and prop-
erties) will be set.

Notes

It is helpful to check that fugacity_coefficients has been implemented correctly using the following
expression, from [1].

ln𝜑𝑖 =

[︂
𝜕(𝑛 ln𝜑)

𝜕𝑛𝑖

]︂
𝑇,𝑃,𝑛𝑗 ,𝑉𝑡

For reference, several expressions for fugacity of a component are as follows, shown in [1] and [2].

ln𝜑𝑖 =

∫︁ 𝑃

0

(︃
𝑉𝑖
𝑅𝑇

− 1

𝑃

)︃
𝑑𝑃

ln𝜑𝑖 =

∫︁ ∞

𝑉

[︂
1

𝑅𝑇

𝜕𝑃

𝜕𝑛𝑖
− 1

𝑉

]︂
𝑑𝑉 − ln𝑍
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References

[1], [2]

fugacity_coefficients(Z)
Generic formula for calculating log fugacity coefficients for each species in a mixture. Verified numerically.
Applicable to all cubic equations of state which can be cast in the form used here. Normally this routine is
slower than EOS-specific ones, as it does not make assumptions that certain parameters are zero or equal
to other parameters. (︂

𝜕𝑛 ln𝜑

𝜕𝑛𝑖

)︂
𝑛𝑘 ̸=𝑖

= ln𝜑𝑖 = ln𝜑+ 𝑛

(︂
𝜕 ln𝜑

𝜕𝑛𝑖

)︂
𝑛𝑘 ̸=𝑖(︂

𝜕 ln𝜑

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

=
1

𝑅𝑇

(︃(︂
𝜕𝐺𝑑𝑒𝑝

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

)︃
Parameters

Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
log_phis [float] Log fugacity coefficient for each species, [-]

kwargs_linear = ()
Tuple of 1D arguments used by the specific EOS in addition to the conventional ones.

kwargs_square = ('kijs',)
Tuple of 2D arguments used by the specific EOS.

mechanical_critical_point()
Method to calculate the mechanical critical point of a mixture of defined composition.

The mechanical critical point is where:

𝜕𝑃

𝜕𝜌
|𝑇 =

𝜕2𝑃

𝜕𝜌2
|𝑇 = 0

Returns
T [float] Mechanical critical temperature, [K]

P [float] Mechanical critical temperature, [Pa]

Notes

One useful application of the mechanical critical temperature is that the phase identification approach of
Venkatarathnam is valid only up to it.

Note that the equation of state, when solved at these conditions, will have fairly large (1e-3 - 1e-6) results
for the derivatives; but they are the minimum. This is just from floating point precision.

It can also be checked looking at the calculated molar volumes - all three (available with sorted_volumes)
will be very close (1e-5 difference in practice), again differing because of floating point error.

The algorithm here is a custom implementation, using Newton-Raphson’s method with the initial guesses
described in [1] (mole-weighted critical pressure average, critical temperature average using a quadratic
mixing rule). Normally ~4 iterations are needed to solve the system. It is relatively fast, as only one
evaluation of a_alpha and da_alpha_dT are needed per call to function and its jacobian.
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mix_kwargs_to_pure = {}

multicomponent = True
All inherited classes of GCEOSMIX are multicomponent.

nonstate_constants = ('N', 'cmps', 'Tcs', 'Pcs', 'omegas', 'kijs', 'kwargs', 'ais',
'bs')

property pseudo_Pc
Apply a linear mole-fraction mixing rule to compute the average critical pressure, [Pa].

Examples

>>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.pseudo_Pc
3878000.0

property pseudo_Tc
Apply a linear mole-fraction mixing rule to compute the average critical temperature, [K].

Examples

>>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.pseudo_Tc
151.9

property pseudo_a
Apply a linear mole-fraction mixing rule to compute the average a coefficient, [-].

Examples

>>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.pseudo_a
0.17634464184

property pseudo_omega
Apply a linear mole-fraction mixing rule to compute the average omega, [-].
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Examples

>>> base = RKMIX(T=150.0, P=4e6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.pseudo_omega
0.0284

pures()
Helper method which returns a list of pure EOSs at the same T and P and base EOS as the mixture.

Returns
eos_pures [list[eos]] A list of pure-species EOSs at the same T and P as the system, [-]

Notes

This is useful for i.e. comparing mixture fugacities with the Lewis-Randall rule or when using an activity
coefficient model which require pure component fugacities.

scalar = True
Whether the model is implemented using pure-Python lists of floats, or numpy arrays of float64.

set_dnzs_derivatives_and_departures(n=True, x=True, only_l=False, only_g=False)
Sets a number of mole number and/or composition partial derivatives of thermodynamic partial derivatives.

The list of properties set is as follows, with all properties suffixed with ‘_l’ or ‘_g’

if n is True: d2P_dTdns, d2P_dVdns, d2V_dTdns, d2V_dPdns, d2T_dVdns, d2T_dPdns, d3P_dT2dns,
d3P_dV2dns, d3V_dT2dns, d3V_dP2dns, d3T_dV2dns, d3T_dP2dns, d3V_dPdTdns, d3P_dTdVdns,
d3T_dPdVdns, dV_dep_dns, dG_dep_dns, dH_dep_dns, dU_dep_dns, dS_dep_dns, dA_dep_dns

if x is True: d2P_dTdzs, d2P_dVdzs, d2V_dTdzs, d2V_dPdzs, d2T_dVdzs, d2T_dPdzs, d3P_dT2dzs,
d3P_dV2dzs, d3V_dT2dzs, d3V_dP2dzs, d3T_dV2dzs, d3T_dP2dzs, d3V_dPdTdzs, d3P_dTdVdzs,
d3T_dPdVdzs, dV_dep_dzs, dG_dep_dzs, dH_dep_dzs, dU_dep_dzs, dS_dep_dzs, dA_dep_dzs

Parameters
n [bool, optional] Whether or not to set the mole number derivatives (sums up to one), [-]

x [bool, optional] Whether or not to set the composition derivatives (does not sum up to one),
[-]

only_l [bool, optional] Whether or not to set only the liquid-like phase properties (if there
are two phases), [-]

only_g [bool, optional] Whether or not to set only the gas-like phase properties (if there are
two phases), [-]

solve_T(P, V, quick=True, solution=None)
Generic method to calculate T from a specified P and V. Provides SciPy’s newton solver, and it-
erates to solve the general equation for P, recalculating a_alpha as a function of temperature using
a_alpha_and_derivatives each iteration.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

quick [bool, optional] Unimplemented, although it may be possible to derive explicit expres-
sions as done for many pure-component EOS
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solution [str or None, optional] ‘l’ or ‘g’ to specify a liquid of vapor solution (if one exists);
if None, will select a solution more likely to be real (closer to STP, attempting to avoid
temperatures like 60000 K or 0.0001 K).

Returns
T [float] Temperature, [K]

stabiliy_iteration_Michelsen(T, P, zs, Ks_initial=None, maxiter=20, xtol=1e-12, liq=True)

subset(idxs, **state_specs)
Method to construct a new GCEOSMIX that removes all components not specified in the idxs argument.

Parameters
idxs [list[int] or Slice] Indexes of components that should be included, [-]

Returns
subset_eos [GCEOSMIX] Multicomponent GCEOSMIX at the same specified specs but with a

composition normalized to 1 and with fewer components, [-]

state_specs [float] Keyword arguments which can be any of T, P, V, zs; zs is optional, as are
(T, P, V ), but if any of (T, P, V ) are specified, a second one is required as well, [various]

Notes

Subclassing equations of state require their kwargs_linear and kwargs_square attributes to be correct
for this to work. Tcs, Pcs, and omegas are always assumed to be used.

Examples

>>> kijs = [[0.0, 0.00076, 0.00171], [0.00076, 0.0, 0.00061], [0.00171, 0.00061,
→˓ 0.0]]
>>> PR3 = PRMIX(Tcs=[469.7, 507.4, 540.3], zs=[0.8168, 0.1501, 0.0331],␣
→˓omegas=[0.249, 0.305, 0.349], Pcs=[3.369E6, 3.012E6, 2.736E6], T=322.29,␣
→˓P=101325.0, kijs=kijs)
>>> PR3.subset([1,2])
PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349],␣
→˓kijs=[[0.0, 0.00061], [0.00061, 0.0]], zs=[0.8193231441048036, 0.
→˓1806768558951965], T=322.29, P=101325.0)
>>> PR3.subset([1,2], T=500.0, P=1e5, zs=[.2, .8])
PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349],␣
→˓kijs=[[0.0, 0.00061], [0.00061, 0.0]], zs=[0.2, 0.8], T=500.0, P=100000.0)
>>> PR3.subset([1,2], zs=[.2, .8])
PRMIX(Tcs=[507.4, 540.3], Pcs=[3012000.0, 2736000.0], omegas=[0.305, 0.349],␣
→˓kijs=[[0.0, 0.00061], [0.00061, 0.0]], zs=[0.2, 0.8], T=322.29, P=101325.0)

to(zs=None, T=None, P=None, V=None, fugacities=True)
Method to construct a new GCEOSMIX object at two of T, P or V with the specified composition. In the
event the specs match those of the current object, it will be returned unchanged.

Parameters
zs [list[float], optional] Mole fractions of EOS, [-]

T [float or None, optional] Temperature, [K]
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P [float or None, optional] Pressure, [Pa]

V [float or None, optional] Molar volume, [m^3/mol]

fugacities [bool] Whether or not to calculate fugacities, [-]

Returns
obj [GCEOSMIX] Pure component GCEOSMIX at the two specified specs, [-]

Notes

Constructs the object with parameters Tcs, Pcs, omegas, and kwargs.

Examples

>>> base = PRMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.to(T=300.0, P=1e9).state_specs
{'T': 300.0, 'P': 1000000000.0}
>>> base.to(T=300.0, V=1.0).state_specs
{'T': 300.0, 'V': 1.0}
>>> base.to(P=1e5, V=1.0).state_specs
{'P': 100000.0, 'V': 1.0}

to_PV(P, V)
Method to construct a new GCEOSMIX object at the spcified P and V with the current composition. In the
event the P and V match the current object’s P and V, it will be returned unchanged.

Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

Returns
obj [GCEOSMIX] Pure component GCEOSMIX at specified P and V, [-]

Notes

Constructs the object with parameters Tcs, Pcs, omegas, and kwargs.

Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> new = base.to_PV(P=1000000.0, V=1.0)
>>> base.state_specs, new.state_specs
({'T': 500.0, 'P': 1000000.0}, {'P': 1000000.0, 'V': 1.0})

to_PV_zs(P, V, zs, fugacities=True, only_l=False, only_g=False)
Method to construct a new GCEOSMIX instance at P, V, and zs with the same parameters as the existing
object. Optionally, only one set of phase properties can be solved for, increasing speed. The fugacities
calculation can be be skipped by by setting fugacities to False.
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Parameters
P [float] Pressure, [Pa]

V [float] Molar volume, [m^3/mol]

zs [list[float]] Mole fractions of each component, [-]

fugacities [bool] Whether or not to calculate and set the fugacities of each component, [-]

only_l [bool] When true, if there is a liquid and a vapor root, only the liquid root (and prop-
erties) will be set.

only_g [bool] When true, if there is a liquid and a vapor root, only the vapor root (and prop-
erties) will be set.

Returns
eos [GCEOSMIX] Multicomponent GCEOSMIX at the specified conditions [-]

Notes

A check for whether or not P, V, and zs are the same as the existing instance is performed; if it is, the
existing object is returned.

Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.to_PV_zs(V=0.004162, P=1e5, zs=[.1, 0.9])
RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011],␣
→˓kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.1, 0.9], P=100000.0, V=0.004162)

to_TP(T, P)
Method to construct a new GCEOSMIX object at the spcified T and P with the current composition. In the
event the T and P match the current object’s T and P, it will be returned unchanged.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

Returns
obj [GCEOSMIX] Pure component GCEOSMIX at specified T and P, [-]

Notes

Constructs the object with parameters Tcs, Pcs, omegas, and kwargs.
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Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> new = base.to_TP(T=10.0, P=2000.0)
>>> base.state_specs, new.state_specs
({'T': 500.0, 'P': 1000000.0}, {'T': 10.0, 'P': 2000.0})

to_TPV_pure(i, T=None, P=None, V=None)
Helper method which returns a pure EOSs at the specs (two of T, P and V ) and base EOS as the mixture
for a particular index.

Parameters
i [int] Index of specified compound, [-]

T [float or None, optional] Specified temperature, [K]

P [float or None, optional] Specified pressure, [Pa]

V [float or None, optional] Specified volume, [m^3/mol]

Returns
eos_pure [eos] A pure-species EOSs at the two specified T, P, and V for component i, [-]

to_TP_zs(T, P, zs, fugacities=True, only_l=False, only_g=False)
Method to construct a new GCEOSMIX instance at T, P, and zs with the same parameters as the existing
object. Optionally, only one set of phase properties can be solved for, increasing speed. The fugacities
calculation can be be skipped by by setting fugacities to False.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

zs [list[float]] Mole fractions of each component, [-]

fugacities [bool] Whether or not to calculate and set the fugacities of each component, [-]

only_l [bool] When true, if there is a liquid and a vapor root, only the liquid root (and prop-
erties) will be set.

only_g [bool] When true, if there is a liquid and a vapor root, only the vapor root (and prop-
erties) will be set.

Returns
eos [GCEOSMIX] Multicomponent GCEOSMIX at the specified conditions [-]

Notes

A check for whether or not T, P, and zs are the same as the existing instance is performed; if it is, the existing
object is returned.
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Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.to_TP_zs(T=300, P=1e5, zs=[.1, 0.9])
RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011],␣
→˓kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.1, 0.9], T=300, P=100000.0)

to_TP_zs_fast(T, P, zs, only_l=False, only_g=False, full_alphas=True)
Method to construct a new GCEOSMIX instance with the same parameters as the existing object. If both
instances are at the same temperature, a_alphas and da_alpha_dTs and d2a_alpha_dT2s are shared between
the instances. It is always assumed the new object has a differet composition. Optionally, only one set
of phase properties can be solved for, increasing speed. Additionally, if full_alphas is set to False no
temperature derivatives of a_alpha will be computed. Those derivatives are not needed in the context of a
PT or PVF flash.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

zs [list[float]] Mole fractions of each component, [-]

only_l [bool] When true, if there is a liquid and a vapor root, only the liquid root (and prop-
erties) will be set.

only_g [bool] When true, if there is a liquid and a vapor root, only the vapor root (and prop-
erties) will be set.

Returns
eos [GCEOSMIX] Multicomponent GCEOSMIX at the specified conditions [-]

Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.to_TP_zs_fast(T=300, P=1e5, zs=base.zs)
RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011],␣
→˓kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.6, 0.4], T=300, P=100000.0)

to_TV(T, V)
Method to construct a new GCEOSMIX object at the spcified T and V with the current composition. In the
event the T and V match the current object’s T and V, it will be returned unchanged.

Parameters
T [float] Temperature, [K]

V [float] Molar volume, [m^3/mol]

Returns
obj [GCEOSMIX] Pure component GCEOSMIX at specified T and V, [-]
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Notes

Constructs the object with parameters Tcs, Pcs, omegas, and kwargs.

Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> new = base.to_TV(T=1000000.0, V=1.0)
>>> base.state_specs, new.state_specs
({'T': 500.0, 'P': 1000000.0}, {'T': 1000000.0, 'V': 1.0})

to_mechanical_critical_point()
Method to construct a new GCEOSMIX object at the current object’s properties and composition, but which
is at the mechanical critical point.

Returns
obj [GCEOSMIX] Pure component GCEOSMIX at mechanical critical point [-]

Examples

>>> base = RKMIX(T=500.0, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.6, 0.4])
>>> base.to_mechanical_critical_point()
RKMIX(Tcs=[126.1, 190.6], Pcs=[3394000.0, 4604000.0], omegas=[0.04, 0.011],␣
→˓kijs=[[0.0, 0.0], [0.0, 0.0]], zs=[0.6, 0.4], T=151.861, P=3908737.9)

translated = False
Whether or not the model implements volume translation.

7.8.2 Peng-Robinson Family EOSs

Standard Peng Robinson

class thermo.eos_mix.PRMIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True,
only_l=False, only_g=False)

Bases: thermo.eos_mix.GCEOSMIX , thermo.eos.PR

Class for solving the Peng-Robinson [1] [2] cubic equation of state for a mixture of any number of compounds.
Subclasses PR. Solves the EOS on initialization and calculates fugacities for all components in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖
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𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 = [1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝜅𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

References

[1], [2]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = PRMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.
→˓04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(3.6257362939e-05, 0.00070066592313)
>>> eos.fugacities_l, eos.fugacities_g
([793860.83821, 73468.552253], [436530.92470, 358114.63827])

Attributes
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d2delta_dninjs Helper method for calculating the second mole number derivatives (hessian)
of delta.

d2delta_dzizjs Helper method for calculating the second composition derivatives (hessian)
of delta.

d2epsilon_dninjs Helper method for calculating the second mole number derivatives (hes-
sian) of epsilon.

d2epsilon_dzizjs Helper method for calculating the second composition derivatives (hes-
sian) of epsilon.

d3a_alpha_dT3 Method to calculate approximately the third temperature derivative of a_alpha
for the PR EOS.

d3delta_dninjnks Helper method for calculating the third partial mole number derivatives of
delta.

d3epsilon_dninjnks Helper method for calculating the third partial mole number derivatives
of epsilon.

ddelta_dns Helper method for calculating the mole number derivatives of delta.

ddelta_dzs Helper method for calculating the composition derivatives of delta.

depsilon_dns Helper method for calculating the mole number derivatives of epsilon.

depsilon_dzs Helper method for calculating the composition derivatives of epsilon.

Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the PR EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the PR EOS.

d3a_alpha_dT3_vectorized(T) Method to calculate the third temperature derivative
of pure-component a_alphas for the PR EOS.

dlnphis_dP(phase) Generic formula for calculating the pressure
derivaitve of log fugacity coefficients for each
species in a mixture for the Peng-Robinson EOS.

dlnphis_dT(phase) Formula for calculating the temperature derivaitve of
log fugacity coefficients for each species in a mixture
for the Peng-Robinson equation of state.

dlnphis_dzs(Z) Calculate and return the mole fraction derivaitves of
log fugacity coefficients for each species in a mixture.

eos_pure alias of thermo.eos.PR
fugacity_coefficients(Z) Literature formula for calculating fugacity coeffi-

cients for each species in a mixture.

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the PR EOS.
This vectorized implementation is added for extra speed.

𝑎𝛼 = 𝑎

(︂
𝜅

(︂
− 𝑇 0.5

𝑇𝑐0.5
+ 1

)︂
+ 1

)︂2

𝑑𝑎𝛼

𝑑𝑇
= − 1.0𝑎𝜅

𝑇 0.5𝑇𝑐0.5

(︂
𝜅

(︂
− 𝑇 0.5

𝑇𝑐0.5
+ 1

)︂
+ 1

)︂
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𝑑2𝑎𝛼

𝑑𝑇 2
= 0.5𝑎𝜅

(︂
− 1

𝑇 1.5𝑇𝑐0.5

(︂
𝜅

(︂
𝑇 0.5

𝑇𝑐0.5
− 1

)︂
− 1

)︂
+

𝜅

𝑇 1.0𝑇𝑐1.0

)︂
Parameters

T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the PR EOS. This vectorized implementation is added
for extra speed.

𝑎𝛼 = 𝑎

(︂
𝜅

(︂
− 𝑇 0.5

𝑇𝑐0.5
+ 1

)︂
+ 1

)︂2

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

property d2delta_dninjs
Helper method for calculating the second mole number derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 4𝑏− 2𝑏𝑖 − 2𝑏𝑗

Returns
d2delta_dninjs [list[list[float]]] Second mole number derivative of delta of each component,

[m^3/mol^3]

Notes

This derivative is checked numerically.

property d2delta_dzizjs
Helper method for calculating the second composition derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 0

Returns
d2delta_dzizjs [list[float]] Second Composition derivative of delta of each component,

[m^3/mol]
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Notes

This derivative is checked numerically.

property d2epsilon_dninjs
Helper method for calculating the second mole number derivatives (hessian) of epsilon. Note this is inde-
pendent of the phase.(︂

𝜕2𝜖

𝜕𝑛𝑖𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= −2𝑏(2𝑏− 𝑏𝑖 − 𝑏𝑗) − 2(𝑏− 𝑏𝑖)(𝑏− 𝑏𝑗)

Returns
d2epsilon_dninjs [list[list[float]]] Second mole number derivative of epsilon of each com-

ponent, [m^6/mol^4]

Notes

This derivative is checked numerically.

property d2epsilon_dzizjs
Helper method for calculating the second composition derivatives (hessian) of epsilon. Note this is inde-
pendent of the phase. (︂

𝜕2𝜖

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 2𝑏𝑖𝑏𝑗

Returns
d2epsilon_dzizjs [list[list[float]]] Second composition derivative of epsilon of each compo-

nent, [m^6/mol^2]

Notes

This derivative is checked numerically.

property d3a_alpha_dT3
Method to calculate approximately the third temperature derivative of a_alpha for the PR EOS. A rigorous
calculation has not been implemented.

Parameters
T [float] Temperature, [K]

Returns
d3a_alpha_dT3 [float] Third temperature derivative 𝑎𝛼, [J^2/mol^2/Pa/K^3]

d3a_alpha_dT3_vectorized(T)
Method to calculate the third temperature derivative of pure-component a_alphas for the PR EOS. This
vectorized implementation is added for extra speed.

Parameters
T [float] Temperature, [K]

Returns
d3a_alpha_dT3s [list[float]] Third temperature derivative of coefficient calculated by EOS-

specific method, [J^2/mol^2/Pa/K^3]
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property d3delta_dninjnks
Helper method for calculating the third partial mole number derivatives of delta. Note this is independent
of the phase. (︂

𝜕3𝛿

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛�̸�=𝑖,𝑗,𝑘

= 4(−3𝑏+ 𝑏𝑖 + 𝑏𝑗 + 𝑏𝑘)

Returns
d3delta_dninjnks [list[list[list[float]]]] Third mole number derivative of delta of each com-

ponent, [m^3/mol^4]

Notes

This derivative is checked numerically.

property d3epsilon_dninjnks
Helper method for calculating the third partial mole number derivatives of epsilon. Note this is independent
of the phase.(︂

𝜕3𝜖

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛𝑚 ̸=𝑖,𝑗,𝑘

= 24𝑏2 − 12𝑏(𝑏𝑖 + 𝑏𝑗 + 𝑏𝑘) + 4(𝑏𝑖𝑏𝑗 + 𝑏𝑖𝑏𝑘 + 𝑏𝑗𝑏𝑘)

Returns
d3epsilon_dninjnks [list[list[list[float]]]] Third mole number derivative of epsilon of each

component, [m^6/mol^5]

Notes

This derivative is checked numerically.

property ddelta_dns
Helper method for calculating the mole number derivatives of delta. Note this is independent of the phase.(︂

𝜕𝛿

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 2(𝑏𝑖 − 𝑏)

Returns
ddelta_dns [list[float]] Mole number derivative of delta of each component, [m^3/mol^2]

Notes

This derivative is checked numerically.

property ddelta_dzs
Helper method for calculating the composition derivatives of delta. Note this is independent of the phase.(︂

𝜕𝛿

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 2𝑏𝑖

Returns
ddelta_dzs [list[float]] Composition derivative of delta of each component, [m^3/mol]
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Notes

This derivative is checked numerically.

property depsilon_dns
Helper method for calculating the mole number derivatives of epsilon. Note this is independent of the
phase. (︂

𝜕𝜖

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 2𝑏(𝑏− 𝑏𝑖)

Returns
depsilon_dns [list[float]] Composition derivative of epsilon of each component,

[m^6/mol^3]

Notes

This derivative is checked numerically.

property depsilon_dzs
Helper method for calculating the composition derivatives of epsilon. Note this is independent of the phase.(︂

𝜕𝜖

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= −2𝑏𝑖 · 𝑏

Returns
depsilon_dzs [list[float]] Composition derivative of epsilon of each component,

[m^6/mol^2]

Notes

This derivative is checked numerically.

dlnphis_dP(phase)
Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a
mixture for the Peng-Robinson EOS. Verified numerically.(︂

𝜕 ln𝜑𝑖
𝜕𝑃

)︂
𝑇,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dP [float] Pressure derivatives of log fugacity coefficient for each species, [1/Pa]
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Notes

This expression was derived using SymPy and optimized with the cse technique.

dlnphis_dT(phase)
Formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture
for the Peng-Robinson equation of state. Verified numerically.(︂

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
𝑃,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dT [float] Temperature derivatives of log fugacity coefficient for each species, [1/K]

Notes

This expression was derived using SymPy and optimized with the cse technique.

dlnphis_dzs(Z)
Calculate and return the mole fraction derivaitves of log fugacity coefficients for each species in a mixture.
This formula is specific to the Peng-Robinson equation of state.(︂

𝜕 ln𝜑𝑖
𝜕𝑧𝑖

)︂
𝑃,𝑧𝑗 ̸=𝑖

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
dlnphis_dzs [list[list[float]]] Mole fraction derivatives of log fugacity coefficient for each

species (such that the mole fractions do not sum to 1), [-]

Notes

This formula is from [1] but is validated to match the generic implementation.

References

[1]

Examples

>>> kijs = [[0, 0.00076, 0.00171], [0.00076, 0, 0.00061], [0.00171, 0.00061, 0]]
>>> eos = PRMIX(Tcs=[469.7, 507.4, 540.3], zs=[0.8168, 0.1501, 0.0331],␣
→˓omegas=[0.249, 0.305, 0.349], Pcs=[3.369E6, 3.012E6, 2.736E6], T=322.29,␣
→˓P=101325, kijs=kijs)
>>> eos.dlnphis_dzs(eos.Z_l)
[[0.009938069276, 0.0151503498382, 0.018297235797], [-0.038517738793, -0.
→˓05958926042, -0.068438990795], [-0.07057106923, -0.10363920720, -0.
→˓14116283024]] (continues on next page)
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(continued from previous page)

eos_pure
alias of thermo.eos.PR

fugacity_coefficients(Z)
Literature formula for calculating fugacity coefficients for each species in a mixture. Verified numerically.
Applicable to most derivatives of the Peng-Robinson equation of state as well. Called by fugacities on
initialization, or by a solver routine which is performing a flash calculation.

ln𝜑𝑖 =
𝐵𝑖

𝐵
(𝑍 − 1) − ln(𝑍 −𝐵) +

𝐴

2
√

2𝐵

[︃
𝐵𝑖

𝐵
− 2

𝑎𝛼

∑︁
𝑖

𝑦𝑖(𝑎𝛼)𝑖𝑗

]︃
ln

[︃
𝑍 + (1 +

√
2)𝐵

𝑍 − (
√

2 − 1)𝐵

]︃

𝐴 =
(𝑎𝛼)𝑃

𝑅2𝑇 2

𝐵 =
𝑏𝑃

𝑅𝑇

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
log_phis [float] Log fugacity coefficient for each species, [-]

Peng Robinson (1978)

class thermo.eos_mix.PR78MIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True,
only_l=False, only_g=False)

Bases: thermo.eos_mix.PRMIX

Class for solving the Peng-Robinson cubic equation of state for a mixture of any number of compounds according
to the 1978 variant. Subclasses PR. Solves the EOS on initialization and calculates fugacities for all components
in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 = [1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝜅𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖 if 𝜔𝑖 ≤ 0.491

𝜅𝑖 = 0.379642 + 1.48503𝜔𝑖 − 0.164423𝜔2
𝑖 + 0.016666𝜔3

𝑖 if 𝜔𝑖 > 0.491
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Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

This variant is recommended over the original.

References

[1], [2]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa, with modified acentric factors to show the difference
between PRMIX

>>> eos = PR78MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.6, 0.7], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(3.2396438915e-05, 0.00050433802024)
>>> eos.fugacities_l, eos.fugacities_g
([833048.45119, 6160.9088153], [460717.27767, 279598.90103])
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Methods

eos_pure alias of thermo.eos.PR78

eos_pure
alias of thermo.eos.PR78

Peng Robinson Stryjek-Vera

class thermo.eos_mix.PRSVMIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, kappa1s=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.PRMIX , thermo.eos.PRSV

Class for solving the Peng-Robinson-Stryjek-Vera equations of state for a mixture as given in [1]. Subclasses
PRMIX and PRSV . Solves the EOS on initialization and calculates fugacities for all components in all phases.

Inherits the method of calculating fugacity coefficients from PRMIX . Two of T, P, and V are needed to solve the
EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 = [1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝜅𝑖 = 𝜅0,𝑖 + 𝜅1,𝑖(1 + 𝑇 0.5
𝑟,𝑖 )(0.7 − 𝑇𝑟,𝑖)

𝜅0,𝑖 = 0.378893 + 1.4897153𝜔𝑖 − 0.17131848𝜔2
𝑖 + 0.0196554𝜔3

𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]
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kappa1s [list[float], optional] Fit parameter; available in [1] for over 90 compounds,
SRKMIXTranslated[-]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

[1] recommends that kappa1 be set to 0 for Tr > 0.7. This is not done by default; the class boolean kappa1_Tr_limit
may be set to True and the problem re-solved with that specified if desired. kappa1_Tr_limit is not supported for
P-V inputs.

For P-V initializations, a numerical solver is used to find T.

[2] and [3] are two more resources documenting the PRSV EOS. [4] lists kappa values for 69 additional com-
pounds. See also PRSV2MIX . Note that tabulated kappa values should be used with the critical parameters used
in their fits. Both [1] and [4] only considered vapor pressure in fitting the parameter.

References

[1], [2], [3], [4]

Examples

P-T initialization, two-phase, nitrogen and methane

>>> eos = PRSVMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.phase, eos.V_l, eos.H_dep_l, eos.S_dep_l
('l/g', 3.6235536165e-05, -6349.0055583, -49.1240502472)

Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the PRSV
EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the PRSV EOS.

eos_pure alias of thermo.eos.PRSV

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the PRSV EOS.
This vectorized implementation is added for extra speed.

𝑎𝛼 = 𝑎

(︃(︃
𝜅0 + 𝜅1

(︃√︂
𝑇

𝑇𝑐
+ 1

)︃(︂
− 𝑇

𝑇𝑐
+

7

10

)︂)︃(︃
−
√︂

𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2
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Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the PRSV EOS. This vectorized implementation is
added for extra speed.

𝑎𝛼 = 𝑎

(︃(︃
𝜅0 + 𝜅1

(︃√︂
𝑇

𝑇𝑐
+ 1

)︃(︂
− 𝑇

𝑇𝑐
+

7

10

)︂)︃(︃
−
√︂

𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

eos_pure
alias of thermo.eos.PRSV

Peng Robinson Stryjek-Vera 2

class thermo.eos_mix.PRSV2MIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, kappa1s=None,
kappa2s=None, kappa3s=None, fugacities=True, only_l=False,
only_g=False)

Bases: thermo.eos_mix.PRMIX , thermo.eos.PRSV2

Class for solving the Peng-Robinson-Stryjek-Vera 2 equations of state for a Mixture as given in [1]. Subclasses
PRMIX and PRSV2 <thermo.eos.PRSV2>. Solves the EOS on initialization and calculates fugacities for all com-
ponents in all phases.

Inherits the method of calculating fugacity coefficients from PRMIX . Two of T, P, and V are needed to solve the
EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
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𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 = [1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝜅𝑖 = 𝜅0,𝑖 + [𝜅1,𝑖 + 𝜅2,𝑖(𝜅3,𝑖 − 𝑇𝑟,𝑖)(1 − 𝑇 0.5
𝑟,𝑖 )](1 + 𝑇 0.5

𝑟,𝑖 )(0.7 − 𝑇𝑟,𝑖)

𝜅0,𝑖 = 0.378893 + 1.4897153𝜔𝑖 − 0.17131848𝜔2
𝑖 + 0.0196554𝜔3

𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

kappa1s [list[float], optional] Fit parameter; available in [1] for over 90 compounds, [-]

kappa2s [list[float], optional] Fit parameter; available in [1] for over 90 compounds, [-]

kappa3s [list[float], optional] Fit parameter; available in [1] for over 90 compounds, [-]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

Note that tabulated kappa values should be used with the critical parameters used in their fits. [1] considered
only vapor pressure in fitting the parameter.

References

[1]
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Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = PRSV2MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(3.6235536165e-05, 0.00070024238654)
>>> eos.fugacities_l, eos.fugacities_g
([794057.58318, 72851.22327], [436553.65618, 357878.11066])

Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the PRSV2
EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the PRSV2 EOS.

eos_pure alias of thermo.eos.PRSV2

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the PRSV2
EOS. This vectorized implementation is added for extra speed.

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the PRSV2 EOS. This vectorized implementation is
added for extra speed.

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]
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Examples

>>> eos = PRSV2MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.a_alphas_vectorized(300)
[0.0860568595, 0.20174345803]

eos_pure
alias of thermo.eos.PRSV2

Peng Robinson Twu (1995)

class thermo.eos_mix.TWUPRMIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True,
only_l=False, only_g=False)

Bases: thermo.eos_alpha_functions.TwuPR95_a_alpha, thermo.eos_mix.PRMIX

Class for solving the Twu [1] variant of the Peng-Robinson cubic equation of state for a mixture. Solves the EOS
on initialization and calculates fugacities for all components in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 − 𝑏
− 𝑎𝛼(𝑇 )

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼𝑖 = 𝛼
(0)
𝑖 + 𝜔𝑖(𝛼

(1)
𝑖 − 𝛼

(0)
𝑖 )

𝛼(0 or 1) = 𝑇
𝑁(𝑀−1)
𝑟,𝑖 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟,𝑖 )]

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]
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zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T. Claimed to be more accurate than the PR, PR78 and
PRSV equations.

References

[1]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = TWUPRMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(3.624571041e-05, 0.0007004401318)
>>> eos.fugacities_l, eos.fugacities_g
([792155.022163, 73305.88829], [436468.967764, 358049.2495573])

Methods

eos_pure alias of thermo.eos.TWUPR

eos_pure
alias of thermo.eos.TWUPR
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Peng Robinson Translated

class thermo.eos_mix.PRMIXTranslated(Tcs, Pcs, omegas, zs, kijs=None, cs=None, T=None, P=None,
V=None, fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.PRMIX

Class for solving the Peng-Robinson [1] [2] translated cubic equation of state for a mixture of any number of
compounds. Solves the EOS on initialization and calculates fugacities for all components in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 = [1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝜅𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2
𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters; always zero in the original implementa-
tion, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]
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Notes

For P-V initializations, a numerical solver is used to find T.

References

[1], [2]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = PRMIXTranslated(T=115, P=1E6, cs=[-4.4e-6, -4.35e-6], Tcs=[126.1, 190.6],␣
→˓Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,
→˓0]])
>>> eos.V_l, eos.V_g
(3.9079056337e-05, 0.00060231393016)
>>> eos.fugacities_l, eos.fugacities_g
([442838.8615, 108854.48589], [184396.972, 565531.7709])

Attributes
d2delta_dninjs Helper method for calculating the second mole number derivatives (hessian)

of delta.

d2delta_dzizjs Helper method for calculating the second composition derivatives (hessian)
of delta.

d2epsilon_dninjs Helper method for calculating the second mole number derivatives (hes-
sian) of epsilon.

d2epsilon_dzizjs Helper method for calculating the second composition derivatives (hes-
sian) of epsilon.

d3delta_dninjnks Helper method for calculating the third partial mole number derivatives of
delta.

d3delta_dzizjzks Helper method for calculating the third composition derivatives of delta.

d3epsilon_dninjnks Helper method for calculating the third partial mole number derivatives
of epsilon.

d3epsilon_dzizjzks Helper method for calculating the third composition derivatives of ep-
silon.

ddelta_dns Helper method for calculating the mole number derivatives of delta.

ddelta_dzs Helper method for calculating the composition derivatives of delta.

depsilon_dns Helper method for calculating the mole number derivatives of epsilon.

depsilon_dzs Helper method for calculating the composition derivatives of epsilon.
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Methods

eos_pure alias of thermo.eos.PRTranslated

property d2delta_dninjs
Helper method for calculating the second mole number derivatives (hessian) of delta. Note this is indepen-
dent of the phase. 𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕2𝛿

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 2
(︀
𝛿 − 𝑏0𝑖 − 𝑏0𝑗 − 𝑐𝑖 − 𝑐𝑗

)︀
Returns

d2delta_dninjs [list[list[float]]] Second mole number derivative of delta of each component,
[m^3/mol^3]

Notes

This derivative is checked numerically.

property d2delta_dzizjs
Helper method for calculating the second composition derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 0

Returns
d2delta_dzizjs [list[float]] Second Composition derivative of delta of each component,

[m^3/mol]

Notes

This derivative is checked numerically.

property d2epsilon_dninjs
Helper method for calculating the second mole number derivatives (hessian) of epsilon. Note this is inde-
pendent of the phase.(︂

𝜕2𝜖

𝜕𝑛𝑖𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= −2𝑏0(2𝑏0 − 𝑏0𝑖 − 𝑏0𝑗 ) + 𝑐(4𝑏0 − 2𝑏0𝑖 − 2𝑏0𝑗 + 2𝑐− 𝑐𝑖 − 𝑐𝑗) − 2(𝑏0 − 𝑏0𝑖 )(𝑏0 − 𝑏0𝑗 ) + (𝑐− 𝑐𝑖)(2𝑏
0 − 2𝑏0𝑗 − 𝑐𝑗 + 𝑐) + (𝑐− 𝑐𝑗)(2𝑏

0 − 2𝑏0𝑖 − 𝑐𝑖 + 𝑐) + (2𝑏0 + 𝑐)(2𝑐− 𝑐𝑖 − 𝑐𝑗)

Returns
d2epsilon_dninjs [list[list[float]]] Second mole number derivative of epsilon of each com-

ponent, [m^6/mol^4]
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Notes

This derivative is checked numerically.

property d2epsilon_dzizjs
Helper method for calculating the second composition derivatives (hessian) of epsilon. Note this is inde-
pendent of the phase. (︂

𝜕2𝜖

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= −2𝑏0𝑖 𝑏
0
𝑗 + 2𝑏0𝑖 𝑐𝑗 + 2𝑏0𝑗𝑐𝑖 + 2𝑐𝑖𝑐𝑗

Returns
d2epsilon_dzizjs [list[list[float]]] Second composition derivative of epsilon of each compo-

nent, [m^6/mol^2]

Notes

This derivative is checked numerically.

property d3delta_dninjnks
Helper method for calculating the third partial mole number derivatives of delta. Note this is independent
of the phase. 𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕3𝛿

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛𝑚 ̸=𝑖,𝑗,𝑘

= 4
(︀
𝑏0𝑖 + 𝑏0𝑗 + 𝑏0𝑘 + 𝑐𝑖 + 𝑐𝑗 + 𝑐𝑘

)︀
− 6𝛿

Returns
d3delta_dninjnks [list[list[list[float]]]] Third mole number derivative of delta of each com-

ponent, [m^3/mol^4]

Notes

This derivative is checked numerically.

property d3delta_dzizjzks
Helper method for calculating the third composition derivatives of delta. Note this is independent of the
phase. (︂

𝜕3𝛿

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0

Returns
d3delta_dzizjzks [list[list[list[float]]]] Third composition derivative of epsilon of each com-

ponent, [m^6/mol^5]
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Notes

This derivative is checked numerically.

property d3epsilon_dninjnks
Helper method for calculating the third partial mole number derivatives of epsilon. Note this is independent
of the phase.(︂

𝜕3𝜖

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛�̸�=𝑖,𝑗,𝑘

= 4𝑏0(3𝑏0 − 𝑏0𝑖 − 𝑏0𝑗 − 𝑏0𝑘) − 2𝑐(6𝑏0 − 2(𝑏0𝑖 + 𝑏0𝑗 + 𝑏0𝑘) + 3𝑐− (𝑐𝑖 + 𝑐𝑗 + 𝑐𝑘)) + 2(𝑏0 − 𝑏0𝑖 )(2𝑏0 − 𝑏0𝑗 − 𝑏0𝑘) + 2(𝑏0 − 𝑏0𝑗 )(2𝑏0 − 𝑏0𝑖 − 𝑏0𝑘) + 2(𝑏0 − 𝑏0𝑘)(2𝑏0 − 𝑏0𝑖 − 𝑏0𝑗 ) − (𝑐− 𝑐𝑖)(4𝑏
0 − 2𝑏0𝑗 − 2𝑏0𝑘 + 2𝑐− 𝑐𝑗 − 𝑐𝑘) − (𝑐− 𝑐𝑗)(4𝑏

0 − 2𝑏0𝑖 − 2𝑏0𝑘 + 2𝑐− 𝑐𝑖 − 𝑐𝑘) − (𝑐− 𝑐𝑘)(4𝑏0 − 2𝑏0𝑗 − 2𝑏0𝑖 + 2𝑐− 𝑐𝑗 − 𝑐𝑖) − 2(𝑐+ 2𝑏0)(3𝑐− 𝑐𝑖 − 𝑐𝑗 − 𝑐𝑘) − (2𝑐− 𝑐𝑖 − 𝑐𝑗)(2𝑏
0 + 𝑐− 2𝑏0𝑘 − 𝑐𝑘) − (2𝑐− 𝑐𝑖 − 𝑐𝑘)(2𝑏0 + 𝑐− 2𝑏0𝑗 − 𝑐𝑗) − (2𝑐− 𝑐𝑗 − 𝑐𝑘)(2𝑏0 + 𝑐− 2𝑏0𝑖 − 𝑐𝑖)

Returns
d3epsilon_dninjnks [list[list[list[float]]]] Third mole number derivative of epsilon of each

component, [m^6/mol^5]

Notes

This derivative is checked numerically.

property d3epsilon_dzizjzks
Helper method for calculating the third composition derivatives of epsilon. Note this is independent of the
phase. (︂

𝜕3𝜖

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0

Returns
d2epsilon_dzizjzks [list[list[list[float]]]] Composition derivative of epsilon of each compo-

nent, [m^6/mol^2]

Notes

This derivative is checked numerically.

property ddelta_dns
Helper method for calculating the mole number derivatives of delta. Note this is independent of the phase.
𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝛿

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 2(𝑐𝑖 + 𝑏0𝑖 ) − 𝛿

Returns
ddelta_dns [list[float]] Mole number derivative of delta of each component, [m^3/mol^2]

Notes

This derivative is checked numerically.

property ddelta_dzs
Helper method for calculating the composition derivatives of delta. Note this is independent of the phase.
𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝛿

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 2(𝑐𝑖 + 𝑏0𝑖 )

316 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Returns
ddelta_dzs [list[float]] Composition derivative of delta of each component, [m^3/mol]

Notes

This derivative is checked numerically.

property depsilon_dns
Helper method for calculating the mole number derivatives of epsilon. Note this is independent of the
phase. 𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝜖

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 2𝑏0(𝑏0 − 𝑏0𝑖 ) − 𝑐(2𝑏0 − 2𝑏0𝑖 + 𝑐− 𝑐𝑖) − (𝑐− 𝑐𝑖)(2𝑏
0 + 𝑐)

Returns
depsilon_dns [list[float]] Composition derivative of epsilon of each component,

[m^6/mol^3]

Notes

This derivative is checked numerically.

property depsilon_dzs
Helper method for calculating the composition derivatives of epsilon. Note this is independent of the phase.
𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝜖

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 𝑐𝑖(2𝑏
0
𝑖 + 𝑐) + 𝑐(2𝑏0𝑖 + 𝑐𝑖) − 2𝑏0𝑏0𝑖

Returns
depsilon_dzs [list[float]] Composition derivative of epsilon of each component,

[m^6/mol^2]

Notes

This derivative is checked numerically.

eos_pure
alias of thermo.eos.PRTranslated

Peng Robinson Translated-Consistent

class thermo.eos_mix.PRMIXTranslatedConsistent(Tcs, Pcs, omegas, zs, kijs=None, cs=None,
alpha_coeffs=None, T=None, P=None, V=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_alpha_functions.Twu91_a_alpha, thermo.eos_mix.PRMIXTranslated

Class for solving the volume translated Le Guennec, Privat, and Jaubert revision of the Peng-Robinson equation
of state according to [1].

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)
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𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

𝛼𝑖 =

(︂
𝑇

𝑇𝑐

)︂𝑐3(𝑐2−1)

𝑒𝑐1(−( 𝑇
𝑇𝑐

)
𝑐2𝑐3+1)

If c is not provided, they are estimated as:

𝑐 =
𝑅𝑇𝑐
𝑃𝑐

(0.0198𝜔 − 0.0065)

If alpha_coeffs is not provided, the parameters L and M are estimated from the acentric factor as follows:

𝐿 = 0.1290𝜔2 + 0.6039𝜔 + 0.0877

𝑀 = 0.1760𝜔2 − 0.2600𝜔 + 0.8884

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters, [m^3/mol]

alpha_coeffs [list[tuple(float[3])], optional] Coefficients L, M, N (also called C1, C2, C3) of
TWU 1991 form, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]
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Notes

For P-V initializations, a numerical solver is used to find T.

References

[1]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = PRMIXTranslatedConsistent(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5,␣
→˓46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]])
>>> eos.V_l, eos.V_g
(3.675235812e-05, 0.00059709319879)
>>> eos.fugacities_l, eos.fugacities_g
([443454.9336, 106184.004057], [184122.74082, 563037.785])

Methods

eos_pure alias of thermo.eos.PRTranslatedConsistent

eos_pure
alias of thermo.eos.PRTranslatedConsistent

Peng Robinson Translated (Pina-Martinez, Privat, and Jaubert Variant)

class thermo.eos_mix.PRMIXTranslatedPPJP(Tcs, Pcs, omegas, zs, kijs=None, cs=None, T=None, P=None,
V=None, fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.PRMIXTranslated

Class for solving the Pina-Martinez, Privat, Jaubert, and Peng revision of the Peng-Robinson equation of state.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑣 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑣 + 𝑐)(𝑣 + 𝑐+ 𝑏) + 𝑏(𝑣 + 𝑐− 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖

𝑏𝑖 = 0.07780
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖
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𝛼(𝑇 )𝑖 = [1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝜅𝑖 = 0.3919 + 1.4996𝜔 − 0.2721𝜔2 + 0.1063𝜔3

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

References

[1]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = PRMIXTranslatedPPJP(T=115, P=1E6, cs=[-4.4e-6, -4.35e-6], Tcs=[126.1, 190.
→˓6], Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],
→˓[0.03,0]])
>>> eos.V_l, eos.V_g
(3.8989032701e-05, 0.00059686183724)
>>> eos.fugacities_l, eos.fugacities_g
([444791.13707, 104520.280997], [184782.600238, 563352.147])
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Methods

eos_pure alias of thermo.eos.PRTranslatedPPJP

eos_pure
alias of thermo.eos.PRTranslatedPPJP

7.8.3 SRK Family EOSs

Standard SRK

class thermo.eos_mix.SRKMIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None, fugacities=True,
only_l=False, only_g=False)

Bases: thermo.eos_mix.EpsilonZeroMixingRules, thermo.eos_mix.GCEOSMIX , thermo.eos.SRK

Class for solving the Soave-Redlich-Kwong cubic equation of state for a mixture of any number of compounds.
Solves the EOS on initialization and calculates fugacities for all components in all phases.

The implemented method here is fugacity_coefficients, which implements the formula for fugacity coef-
ficients in a mixture as given in [1]. Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 =

[︃
1 +𝑚𝑖

(︃
1 −

√︃
𝑇

𝑇𝑐,𝑖

)︃]︃2
𝑚𝑖 = 0.480 + 1.574𝜔𝑖 − 0.176𝜔2

𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]
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P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

References

[1], [2], [3]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> SRK_mix = SRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> SRK_mix.V_l, SRK_mix.V_g
(4.1047569614e-05, 0.0007110158049)

Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the SRK
EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the SRK EOS.

dlnphis_dP(phase) Generic formula for calculating the pressure
derivaitve of log fugacity coefficients for each
species in a mixture for the SRK EOS.

dlnphis_dT(phase) Formula for calculating the temperature derivaitve of
log fugacity coefficients for each species in a mixture
for the SRK equation of state.

eos_pure alias of thermo.eos.SRK
fugacity_coefficients(Z) Literature formula for calculating fugacity coeffi-

cients for each species in a mixture.

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the SRK EOS.
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This vectorized implementation is added for extra speed.

𝑎𝛼 = 𝑎

(︃
𝑚

(︃
−
√︂

𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

𝑑𝑎𝛼

𝑑𝑇
=
𝑎𝑚

𝑇

√︂
𝑇

𝑇𝑐

(︃
𝑚

(︃√︂
𝑇

𝑇𝑐
− 1

)︃
− 1

)︃

𝑑2𝑎𝛼

𝑑𝑇 2
=
𝑎𝑚
√︁

𝑇
𝑇𝑐

2𝑇 2
(𝑚+ 1)

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the SRK EOS. This vectorized implementation is
added for extra speed.

𝑎𝛼 = 𝑎

(︃
𝑚

(︃
−
√︂

𝑇

𝑇𝑐
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

dlnphis_dP(phase)
Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a
mixture for the SRK EOS. Verified numerically.(︂

𝜕 ln𝜑𝑖
𝜕𝑃

)︂
𝑇,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dP [float] Pressure derivatives of log fugacity coefficient for each species, [1/Pa]
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Notes

This expression was derived using SymPy and optimized with the cse technique.

dlnphis_dT(phase)
Formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture
for the SRK equation of state. Verified numerically.(︂

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
𝑃,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dT [float] Temperature derivatives of log fugacity coefficient for each species, [1/K]

Notes

This expression was derived using SymPy and optimized with the cse technique.

eos_pure
alias of thermo.eos.SRK

fugacity_coefficients(Z)
Literature formula for calculating fugacity coefficients for each species in a mixture. Verified numerically.
Applicable to most derivatives of the SRK equation of state as well. Called by fugacities on initializa-
tion, or by a solver routine which is performing a flash calculation.

ln𝜑𝑖 =
𝐵𝑖

𝐵
(𝑍 − 1) − ln(𝑍 −𝐵) +

𝐴

𝐵

[︃
𝐵𝑖

𝐵
− 2

𝑎𝛼

∑︁
𝑖

𝑦𝑖(𝑎𝛼)𝑖𝑗

]︃
ln

(︂
1 +

𝐵

𝑍

)︂

𝐴 =
𝑎𝛼𝑃

𝑅2𝑇 2

𝐵 =
𝑏𝑃

𝑅𝑇

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
log_phis [float] Log fugacity coefficient for each species, [-]

Twu SRK (1995)

class thermo.eos_mix.TWUSRKMIX(Tcs, Pcs, omegas, zs, kijs=None, T=None, P=None, V=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_alpha_functions.TwuSRK95_a_alpha, thermo.eos_mix.SRKMIX

Class for solving the Twu variant of the Soave-Redlich-Kwong cubic equation of state for a mixture. Solves the
EOS on initialization and calculates fugacities for all components in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)
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𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝛼𝑖 = 𝛼(0,𝑖) + 𝜔𝑖(𝛼
(1,𝑖) − 𝛼(0,𝑖))

𝛼(0 or 1, i) = 𝑇
𝑁(𝑀−1)
𝑟,𝑖 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟,𝑖 )]

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]
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Notes

For P-V initializations, a numerical solver is used to find T. Claimed to be more accurate than the SRK equation.

References

[1]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = TWUSRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(4.1087927542e-05, 0.00071170732525)
>>> eos.fugacities_l, eos.fugacities_g
([809692.830826, 74093.6388157], [441783.431489, 362470.3174107])

Methods

eos_pure alias of thermo.eos.TWUSRK

eos_pure
alias of thermo.eos.TWUSRK

API SRK

class thermo.eos_mix.APISRKMIX(Tcs, Pcs, zs, omegas=None, kijs=None, T=None, P=None, V=None,
S1s=None, S2s=None, fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.SRKMIX , thermo.eos.APISRK

Class for solving the Refinery Soave-Redlich-Kwong cubic equation of state for a mixture of any number of com-
pounds, as shown in the API Databook [1]. Subclasses APISRK . Solves the EOS on initialization and calculates
fugacities for all components in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖
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𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 =

[︃
1 + 𝑆1,𝑖

(︁
1 −

√︀
𝑇𝑟,𝑖

)︁
+ 𝑆2,𝑖

1 −
√︀
𝑇𝑟,𝑖√︀

𝑇𝑟,𝑖

]︃2
𝑆1,𝑖 = 0.48508 + 1.55171𝜔𝑖 − 0.15613𝜔2

𝑖 if S1 is not tabulated

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

S1s [float, optional] Fit constant or estimated from acentric factor if not provided [-]

S2s [float, optional] Fit constant or 0 if not provided [-]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

References

[1]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = APISRKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(4.101592310e-05, 0.00071046883030)
>>> eos.fugacities_l, eos.fugacities_g
([817882.3033, 71620.4823812], [442158.29113, 361519.79877])
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Methods

eos_pure alias of thermo.eos.APISRK

eos_pure
alias of thermo.eos.APISRK

SRK Translated

class thermo.eos_mix.SRKMIXTranslated(Tcs, Pcs, omegas, zs, kijs=None, cs=None, T=None, P=None,
V=None, fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.SRKMIX

Class for solving the volume translated Soave-Redlich-Kwong cubic equation of state for a mixture of any number
of compounds. Subclasses SRKMIX . Solves the EOS on initialization and calculates fugacities for all components
in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

𝛼(𝑇 )𝑖 =

[︃
1 +𝑚𝑖

(︃
1 −

√︃
𝑇

𝑇𝑐,𝑖

)︃]︃2
𝑚𝑖 = 0.480 + 1.574𝜔𝑖 − 0.176𝜔2

𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters; always zero in the original implementa-
tion, [m^3/mol]

T [float, optional] Temperature, [K]
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P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = SRKMIXTranslated(T=115, P=1E6, cs=[-4.4e-6, -4.35e-6], Tcs=[126.1, 190.6],
→˓ Pcs=[33.94E5, 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.
→˓03,0]])
>>> eos.V_l, eos.V_g
(4.35928920e-05, 0.00060927202)

Attributes
d2delta_dninjs Helper method for calculating the second mole number derivatives (hessian)

of delta.

d2delta_dzizjs Helper method for calculating the second composition derivatives (hessian)
of delta.

d2epsilon_dninjs Helper method for calculating the second mole number derivatives (hes-
sian) of epsilon.

d2epsilon_dzizjs Helper method for calculating the second composition derivatives (hes-
sian) of epsilon.

d3delta_dninjnks Helper method for calculating the third partial mole number derivatives of
delta.

d3delta_dzizjzks Helper method for calculating the third composition derivatives of delta.

d3epsilon_dninjnks Helper method for calculating the third partial mole number derivatives
of epsilon.

d3epsilon_dzizjzks Helper method for calculating the third composition derivatives of ep-
silon.

ddelta_dns Helper method for calculating the mole number derivatives of delta.

ddelta_dzs Helper method for calculating the composition derivatives of delta.

depsilon_dns Helper method for calculating the mole number derivatives of epsilon.

depsilon_dzs Helper method for calculating the composition derivatives of epsilon.
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Methods

eos_pure alias of thermo.eos.SRKTranslated

property d2delta_dninjs
Helper method for calculating the second mole number derivatives (hessian) of delta. Note this is indepen-
dent of the phase. 𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕2𝛿

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

=
(︀
(𝑏0 − 𝑐𝑖 − 𝑐𝑗) + 4𝑐− 𝑏0𝑖 − 𝑏0𝑗

)︀
Returns

d2delta_dninjs [list[list[float]]] Second mole number derivative of delta of each component,
[m^3/mol^3]

Notes

This derivative is checked numerically.

property d2delta_dzizjs
Helper method for calculating the second composition derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 0

Returns
d2delta_dzizjs [list[float]] Second Composition derivative of delta of each component,

[m^3/mol]

Notes

This derivative is checked numerically.

property d2epsilon_dninjs
Helper method for calculating the second mole number derivatives (hessian) of epsilon. Note this is inde-
pendent of the phase.(︂

𝜕2𝜖

𝜕𝑛𝑖𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 𝑏0(2𝑐− 𝑐𝑖 − 𝑐𝑗) + 𝑐(2𝑏0 − 𝑏0𝑖 − 𝑏0𝑗 ) + 2𝑐(2𝑐− 𝑐𝑖 − 𝑐𝑗) + (𝑏0 − 𝑏0𝑖 )(𝑐− 𝑐𝑗) + (𝑏0 − 𝑏0𝑗 )(𝑐− 𝑐𝑖) + 2(𝑐− 𝑐𝑖)(𝑐− 𝑐𝑗)

Returns
d2epsilon_dninjs [list[list[float]]] Second mole number derivative of epsilon of each com-

ponent, [m^6/mol^4]
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Notes

This derivative is checked numerically.

property d2epsilon_dzizjs
Helper method for calculating the second composition derivatives (hessian) of epsilon. Note this is inde-
pendent of the phase. (︂

𝜕2𝜖

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 𝑏0𝑖 𝑐𝑗 + 𝑏0𝑗𝑐𝑖 + 2𝑐𝑖𝑐𝑗

Returns
d2epsilon_dzizjs [list[list[float]]] Second composition derivative of epsilon of each compo-

nent, [m^6/mol^2]

Notes

This derivative is checked numerically.

property d3delta_dninjnks
Helper method for calculating the third partial mole number derivatives of delta. Note this is independent
of the phase. 𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕3𝛿

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛𝑚 ̸=𝑖,𝑗,𝑘

= −6𝑏0 + 2(𝑏0𝑖 + 𝑏0𝑗 + 𝑏0𝑘) + −12𝑐+ 4(𝑐𝑖 + 𝑐𝑗 + 𝑐𝑘)

Returns
d3delta_dninjnks [list[list[list[float]]]] Third mole number derivative of delta of each com-

ponent, [m^3/mol^4]

Notes

This derivative is checked numerically.

property d3delta_dzizjzks
Helper method for calculating the third composition derivatives of delta. Note this is independent of the
phase. (︂

𝜕3𝛿

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0

Returns
d3delta_dzizjzks [list[list[list[float]]]] Third composition derivative of epsilon of each com-

ponent, [m^6/mol^5]
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Notes

This derivative is checked numerically.

property d3epsilon_dninjnks
Helper method for calculating the third partial mole number derivatives of epsilon. Note this is independent
of the phase.(︂

𝜕3𝜖

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛�̸�=𝑖,𝑗,𝑘

= −2𝑏0(3𝑐− 𝑐𝑖 − 𝑐𝑗 − 𝑐𝑘) − 2𝑐(3𝑏0 − 𝑏0𝑖 − 𝑏0𝑗 − 𝑏0𝑘) − 4𝑐(3𝑐− 𝑐𝑖 − 𝑐𝑗 − 𝑐𝑘) − (𝑏0 − 𝑏0𝑖 )(2𝑐− 𝑐𝑗 − 𝑐𝑘) − (𝑏0 − 𝑏0𝑗 )(2𝑐− 𝑐𝑖 − 𝑐𝑘) − (𝑏0 − 𝑏0𝑘)(2𝑐− 𝑐𝑖 − 𝑐𝑗) − (𝑐− 𝑐𝑖)(2𝑏
0 − 𝑏0𝑗 − 𝑏0𝑘) − (𝑐− 𝑐𝑗)(2𝑏

0 − 𝑏0𝑖 − 𝑏0𝑘) − (𝑐− 𝑐𝑘)(2𝑏0 − 𝑏0𝑖 − 𝑏0𝑗 ) − 2(𝑐− 𝑐𝑖)(2𝑐− 𝑐𝑗 − 𝑐𝑘) − 2(𝑐− 𝑐𝑗)(2𝑐− 𝑐𝑖 − 𝑐𝑘) − 2(𝑐− 𝑐𝑘)(2𝑐− 𝑐𝑖 − 𝑐𝑗)

Returns
d3epsilon_dninjnks [list[list[list[float]]]] Third mole number derivative of epsilon of each

component, [m^6/mol^5]

Notes

This derivative is checked numerically.

property d3epsilon_dzizjzks
Helper method for calculating the third composition derivatives of epsilon. Note this is independent of the
phase. (︂

𝜕3𝜖

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
𝑇,𝑃,𝑥�̸�=𝑖,𝑗,𝑘

= 0

Returns
d2epsilon_dzizjzks [list[list[list[float]]]] Composition derivative of epsilon of each compo-

nent, [m^6/mol^2]

Notes

This derivative is checked numerically.

property ddelta_dns
Helper method for calculating the mole number derivatives of delta. Note this is independent of the phase.
𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝛿

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= (2𝑐𝑖 + 𝑏0𝑖 ) − 𝛿

Returns
ddelta_dns [list[float]] Mole number derivative of delta of each component, [m^3/mol^2]

Notes

This derivative is checked numerically.

property ddelta_dzs
Helper method for calculating the composition derivatives of delta. Note this is independent of the phase.
𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝛿

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 2(𝑐𝑖 + 𝑏0𝑖 )
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Returns
ddelta_dzs [list[float]] Composition derivative of delta of each component, [m^3/mol]

Notes

This derivative is checked numerically.

property depsilon_dns
Helper method for calculating the mole number derivatives of epsilon. Note this is independent of the
phase. 𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝜖

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= −𝑏0(𝑐− 𝑐𝑖) − 𝑐(𝑏0 − 𝑏0𝑖 ) − 2𝑐(𝑐− 𝑐𝑖)

Returns
depsilon_dns [list[float]] Composition derivative of epsilon of each component,

[m^6/mol^3]

Notes

This derivative is checked numerically.

property depsilon_dzs
Helper method for calculating the composition derivatives of epsilon. Note this is independent of the phase.
𝑏0 refers to the original b parameter not involving any translation.(︂

𝜕𝜖

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 𝑐𝑖𝑏
0 + 2𝑐𝑐𝑖 + 𝑏𝑖𝑐

Returns
depsilon_dzs [list[float]] Composition derivative of epsilon of each component,

[m^6/mol^2]

Notes

This derivative is checked numerically.

eos_pure
alias of thermo.eos.SRKTranslated

SRK Translated-Consistent

class thermo.eos_mix.SRKMIXTranslatedConsistent(Tcs, Pcs, omegas, zs, kijs=None, cs=None,
alpha_coeffs=None, T=None, P=None, V=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_alpha_functions.Twu91_a_alpha, thermo.eos_mix.SRKMIXTranslated

Class for solving the volume translated Le Guennec, Privat, and Jaubert revision of the SRK equation of state
according to [1].

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)
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𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝛼𝑖 =

(︂
𝑇

𝑇𝑐,𝑖

)︂𝑐3(𝑐2−1)

𝑒
𝑐1
(︁
−
(︁

𝑇
𝑇𝑐,𝑖

)︁𝑐2𝑐3
+1
)︁

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

If cs is not provided, they are estimated as:

𝑐 =
𝑅𝑇𝑐
𝑃𝑐

(0.0172𝜔 − 0.0096)

If alpha_coeffs is not provided, the parameters L and M are estimated from each of the acentric factors as follows:

𝐿 = 0.0947𝜔2 + 0.6871𝜔 + 0.1508

𝑀 = 0.1615𝜔2 − 0.2349𝜔 + 0.8876

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters, [m^3/mol]

alpha_coeffs [list[list[float]]] Coefficients for thermo.eos_alpha_functions.
Twu91_a_alpha, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]
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Notes

For P-V initializations, a numerical solver is used to find T.

References

[1]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = SRKMIXTranslatedConsistent(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5,
→˓ 46.04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]])
>>> eos.V_l, eos.V_g
(3.591044498e-05, 0.0006020501621)

Methods

eos_pure alias of thermo.eos.SRKTranslatedConsistent

eos_pure
alias of thermo.eos.SRKTranslatedConsistent

MSRK Translated

class thermo.eos_mix.MSRKMIXTranslated(Tcs, Pcs, omegas, zs, kijs=None, cs=None, alpha_coeffs=None,
T=None, P=None, V=None, fugacities=True, only_l=False,
only_g=False)

Bases: thermo.eos_alpha_functions.Soave_1979_a_alpha, thermo.eos_mix.
SRKMIXTranslatedConsistent

Class for solving the volume translated Soave (1980) alpha function, revision of the Soave-Redlich-Kwong equa-
tion of state for a pure compound according to [1]. Uses two fitting parameters N and M to more accurately fit
the vapor pressure of pure species.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 + 𝑐− 𝑏
− 𝑎𝛼(𝑇 )

(𝑉 + 𝑐)(𝑉 + 𝑐+ 𝑏)

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝛼(𝑇 )𝑖 = 1 + (1 − 𝑇𝑟,𝑖)(𝑀 +
𝑁

𝑇𝑟,𝑖
)

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖
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𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

This is an older correlation that offers lower accuracy on many properties which were sacrificed to obtain the
vapor pressure accuracy. The alpha function of this EOS does not meet any of the consistency requriements for
alpha functions.

Coefficients can be found in [2], or estimated with the method in [3]. The estimation method in [3] works as
follows, using the acentric factor and true critical compressibility:

𝑀 = 0.4745 + 2.7349(𝜔𝑍𝑐) + 6.0984(𝜔𝑍𝑐)
2

𝑁 = 0.0674 + 2.1031(𝜔𝑍𝑐) + 3.9512(𝜔𝑍𝑐)
2

An alternate estimation scheme is provided in [1], which provides analytical solutions to calculate the parameters
M and N from two points on the vapor pressure curve, suggested as 10 mmHg and 1 atm. This is used as an
estimation method here if the parameters are not provided, and the two vapor pressure points are obtained from
the original SRK equation of state.

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters, [m^3/mol]

alpha_coeffs [list[list[float]]] Coefficients for thermo.eos_alpha_functions.
Soave_1979_a_alpha, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]
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Notes

For P-V initializations, a numerical solver is used to find T.

References

[1], [2], [3]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = MSRKMIXTranslated(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.
→˓04E5], omegas=[0.04, 0.011], zs=[0.2, 0.8], kijs=[[0,0.03],[0.03,0]])
>>> eos.V_l, eos.V_g
(3.9222990198e-05, 0.00060438075638)

Methods

eos_pure alias of thermo.eos.MSRKTranslated

eos_pure
alias of thermo.eos.MSRKTranslated

7.8.4 Cubic Equation of State with Activity Coefficients

class thermo.eos_mix.PSRK(Tcs, Pcs, omegas, zs, alpha_coeffs, ge_model, kijs=None, cs=None, T=None,
P=None, V=None, fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_alpha_functions.Mathias_Copeman_poly_a_alpha, thermo.eos_mix.
PSRKMixingRules, thermo.eos_mix.SRKMIXTranslated

Class for solving the Predictive Soave-Redlich-Kwong [1] equation of state for a mixture of any number of
compounds. Solves the EOS on initialization.

Two of T, P, and V are needed to solve the EOS.

Warning: This class is not complete! Fugacities and their derivatives among others are not yet implemented.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 (𝑉 + 𝑏)

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖
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Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

omegas [float] Acentric factors of all compounds, [-]

zs [float] Overall mole fractions of all species, [-]

alpha_coeffs [list[list[float]]] Coefficients for thermo.eos_alpha_functions.
Mathias_Copeman_poly_a_alpha, [-]

ge_model [thermo.activity.GibbsExcess object] Excess Gibbs free energy model; to
match the PSRK model, this is a thermo.unifac.UNIFAC object, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

cs [list[float], optional] Volume translation parameters; always zero in the original implementa-
tion, [m^3/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

References

[1]

Examples

T-P initialization, equimolar CO2, n-hexane:

>>> from thermo.unifac import UNIFAC, PSRKIP, PSRKSG
>>> Tcs = [304.2, 507.4]
>>> Pcs = [7.37646e6, 3.014419e6]
>>> omegas = [0.2252, 0.2975]
>>> zs = [0.5, 0.5]
>>> Mathias_Copeman_coeffs = [[-1.7039, 0.2515, 0.8252, 1.0], [2.9173, -1.4411, 1.
→˓1061, 1.0]]
>>> T = 313.
>>> P = 1E6
>>> ge_model = UNIFAC.from_subgroups(T=T, xs=zs, chemgroups=[{117: 1}, {1:2, 2:4}],␣
→˓subgroups=PSRKSG, interaction_data=PSRKIP, version=0)
>>> eos = PSRK(Tcs=Tcs, Pcs=Pcs, omegas=omegas, zs=zs, ge_model=ge_model, alpha_
→˓coeffs=Mathias_Copeman_coeffs, T=T, P=P)
>>> eos

(continues on next page)
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(continued from previous page)

PSRK(Tcs=[304.2, 507.4], Pcs=[7376460.0, 3014419.0], omegas=[0.2252, 0.2975],␣
→˓kijs=[[0.0, 0.0], [0.0, 0.0]], alpha_coeffs=[[-1.7039, 0.2515, 0.8252, 1.0], [2.
→˓9173, -1.4411, 1.1061, 1.0]], cs=[0.0, 0.0], ge_model=UNIFAC(T=313.0, xs=[0.5, 0.
→˓5], rs=[1.3, 4.4998000000000005], qs=[0.982, 3.856], Qs=[0.848, 0.54, 0.982],␣
→˓vs=[[0, 2], [0, 4], [1, 0]], psi_abc=([[0.0, 0.0, 919.8], [0.0, 0.0, 919.8], [-38.
→˓672, -38.672, 0.0]], [[0.0, 0.0, -3.9132], [0.0, 0.0, -3.9132], [0.8615, 0.8615,␣
→˓0.0]], [[0.0, 0.0, 0.0046309], [0.0, 0.0, 0.0046309], [-0.0017906, -0.0017906, 0.
→˓0]]), version=0), zs=[0.5, 0.5], T=313.0, P=1000000.0)
>>> eos.phase, eos.V_l, eos.V_g
('l/g', 0.000110889753959, 0.00197520225546)

Methods

eos_pure alias of thermo.eos.SRKTranslated

eos_pure
alias of thermo.eos.SRKTranslated

7.8.5 Van der Waals Equation of State

class thermo.eos_mix.VDWMIX(Tcs, Pcs, zs, kijs=None, T=None, P=None, V=None, omegas=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.EpsilonZeroMixingRules, thermo.eos_mix.GCEOSMIX , thermo.eos.VDW

Class for solving the Van der Waals [1] [2] cubic equation of state for a mixture of any number of compounds.
Solves the EOS on initialization and calculates fugacities for all components in all phases.

Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎

𝑉 2

𝑎 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗𝑎𝑖𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√
𝑎𝑖𝑎𝑗

𝑎𝑖 =
27

64

(𝑅𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =
𝑅𝑇𝑐,𝑖
8𝑃𝑐,𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]

zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]
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T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

omegas [float, optional] Acentric factors of all compounds - Not used in equation of state!, [-]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

For P-V initializations, a numerical solver is used to find T.

References

[1], [2]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = VDWMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], zs=[0.5,␣
→˓0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(5.881369844883e-05, 0.00077708723758)
>>> eos.fugacities_l, eos.fugacities_g
([854533.266920, 207126.8497276], [448470.736338, 397826.543999])

Attributes
d2delta_dninjs Helper method for calculating the second mole number derivatives (hessian)

of delta.

d2delta_dzizjs Helper method for calculating the second composition derivatives (hessian)
of delta.

d3delta_dninjnks Helper method for calculating the third partial mole number derivatives of
delta.

ddelta_dns Helper method for calculating the mole number derivatives of delta.

ddelta_dzs Helper method for calculating the composition derivatives of delta.
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Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the VDW
EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the VDW EOS.

dlnphis_dP(phase) Generic formula for calculating the pressure
derivaitve of log fugacity coefficients for each
species in a mixture for the VDW EOS.

dlnphis_dT(phase) Formula for calculating the temperature derivaitve of
log fugacity coefficients for each species in a mixture
for the VDW equation of state.

eos_pure alias of thermo.eos.VDW
fugacity_coefficients(Z) Literature formula for calculating fugacity coeffi-

cients for each species in a mixture.

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the VDW EOS.
This vectorized implementation is added for extra speed.

𝑎𝛼 = 𝑎

𝑑𝑎𝛼

𝑑𝑇
= 0

𝑑2𝑎𝛼

𝑑𝑇 2
= 0

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the VDW EOS. This vectorized implementation is
added for extra speed.

𝑎𝛼 = 𝑎

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]
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property d2delta_dninjs
Helper method for calculating the second mole number derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 0

Returns
d2delta_dninjs [list[list[float]]] Second mole number derivative of delta of each component,

[m^3/mol^3]

Notes

This derivative is checked numerically.

property d2delta_dzizjs
Helper method for calculating the second composition derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 0

Returns
d2delta_dzizjs [list[float]] Second Composition derivative of delta of each component,

[m^3/mol]

Notes

This derivative is checked numerically.

property d3delta_dninjnks
Helper method for calculating the third partial mole number derivatives of delta. Note this is independent
of the phase. (︂

𝜕3𝛿

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛𝑚 ̸=𝑖,𝑗,𝑘

= 0

Returns
d3delta_dninjnks [list[list[list[float]]]] Third mole number derivative of delta of each com-

ponent, [m^3/mol^4]

Notes

This derivative is checked numerically.

property ddelta_dns
Helper method for calculating the mole number derivatives of delta. Note this is independent of the phase.(︂

𝜕𝛿

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= 0

Returns
ddelta_dns [list[float]] Mole number derivative of delta of each component, [m^3/mol^2]
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Notes

This derivative is checked numerically.

property ddelta_dzs
Helper method for calculating the composition derivatives of delta. Note this is independent of the phase.(︂

𝜕𝛿

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 0

Returns
ddelta_dzs [list[float]] Composition derivative of delta of each component, [m^3/mol]

Notes

This derivative is checked numerically.

dlnphis_dP(phase)
Generic formula for calculating the pressure derivaitve of log fugacity coefficients for each species in a
mixture for the VDW EOS. Verified numerically.(︂

𝜕 ln𝜑𝑖
𝜕𝑃

)︂
𝑇,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dP [float] Pressure derivatives of log fugacity coefficient for each species, [1/Pa]

Notes

This expression was derived using SymPy and optimized with the cse technique.

dlnphis_dT(phase)
Formula for calculating the temperature derivaitve of log fugacity coefficients for each species in a mixture
for the VDW equation of state. Verified numerically.(︂

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
𝑃,𝑛𝑗 ̸=𝑖

Parameters
phase [str] One of ‘l’ or ‘g’, [-]

Returns
dlnphis_dT [float] Temperature derivatives of log fugacity coefficient for each species, [1/K]
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Notes

This expression was derived using SymPy and optimized with the cse technique.

eos_pure
alias of thermo.eos.VDW

fugacity_coefficients(Z)
Literature formula for calculating fugacity coefficients for each species in a mixture. Verified numerically.
Called by fugacities on initialization, or by a solver routine which is performing a flash calculation.

ln𝜑𝑖 =
𝑏𝑖

𝑉 − 𝑏
− ln

[︂
𝑍

(︂
1 − 𝑏

𝑉

)︂]︂
−

2
√
𝑎𝑎𝑖

𝑅𝑇𝑉

Parameters
Z [float] Compressibility of the mixture for a desired phase, [-]

Returns
log_phis [float] Log fugacity coefficient for each species, [-]

References

[1]

7.8.6 Redlich-Kwong Equation of State

class thermo.eos_mix.RKMIX(Tcs, Pcs, zs, omegas=None, kijs=None, T=None, P=None, V=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.EpsilonZeroMixingRules, thermo.eos_mix.GCEOSMIX , thermo.eos.RK

Class for solving the Redlich Kwong [1] [2] cubic equation of state for a mixture of any number of compounds.
Subclasses thermo.eos.RK . Solves the EOS on initialization and calculates fugacities for all components in
all phases. Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎

𝑉
√
𝑇 (𝑉 + 𝑏)

𝑎 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗𝑎𝑖𝑗

𝑏 =
∑︁
𝑖

𝑧𝑖𝑏𝑖

𝑎𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√
𝑎𝑖𝑎𝑗

𝑎𝑖 =

(︃
𝑅2(𝑇𝑐,𝑖)

2

9( 3
√

2 − 1)𝑃𝑐,𝑖

)︃
=

0.42748 ·𝑅2(𝑇𝑐,𝑖)
2

𝑃𝑐,𝑖

𝑏𝑖 =

(︃
( 3
√

2 − 1)

3

)︃
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

=
0.08664 ·𝑅𝑇𝑐,𝑖

𝑃𝑐,𝑖

Parameters
Tcs [float] Critical temperatures of all compounds, [K]

Pcs [float] Critical pressures of all compounds, [Pa]
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zs [float] Overall mole fractions of all species, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

omegas [float, optional] Acentric factors of all compounds - Not used in this equation of state!,
[-]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

The PV solution for T is iterative.

References

[1], [2]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = RKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], zs=[0.5,␣
→˓0.5], kijs=[[0,0],[0,0]])
>>> eos.V_l, eos.V_g
(4.048414781e-05, 0.00070060605863)

Attributes
d2delta_dninjs Helper method for calculating the second mole number derivatives (hessian)

of delta.

d2delta_dzizjs Helper method for calculating the second composition derivatives (hessian)
of delta.

d3delta_dninjnks Helper method for calculating the third partial mole number derivatives of
delta.

ddelta_dns Helper method for calculating the mole number derivatives of delta.

ddelta_dzs Helper method for calculating the composition derivatives of delta.
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Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the RK EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the RK EOS.

eos_pure alias of thermo.eos.RK

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the RK EOS.
This vectorized implementation is added for extra speed.

𝑎𝛼 =
𝑎√︁
𝑇
𝑇𝑐

𝑑𝑎𝛼

𝑑𝑇
= − 𝑎

2𝑇
√︁

𝑇
𝑇𝑐

𝑑2𝑎𝛼

𝑑𝑇 2
=

3𝑎

4𝑇 2

√︁
𝑇
𝑇𝑐

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

Examples

>>> eos = RKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.a_alpha_and_derivatives_vectorized(115)
([0.1449810919468, 0.30019773677], [-0.000630352573681, -0.00130520755121], [8.
→˓2219900915e-06, 1.7024446320e-05])

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the RK EOS. This vectorized implementation is
added for extra speed.

𝑎𝛼 =
𝑎√︁
𝑇
𝑇𝑐

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]
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Examples

>>> eos = RKMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5],␣
→˓omegas=[0.04, 0.011], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
>>> eos.a_alphas_vectorized(115)
[0.1449810919468, 0.30019773677]

property d2delta_dninjs
Helper method for calculating the second mole number derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑛𝑖𝜕𝑛𝑗

)︂
𝑇,𝑃,𝑛𝑘 ̸=𝑖,𝑗

= 2𝑏− 𝑏𝑖 − 𝑏𝑗

Returns
d2delta_dninjs [list[list[float]]] Second mole number derivative of delta of each component,

[m^3/mol^3]

Notes

This derivative is checked numerically.

property d2delta_dzizjs
Helper method for calculating the second composition derivatives (hessian) of delta. Note this is indepen-
dent of the phase. (︂

𝜕2𝛿

𝜕𝑥𝑖𝜕𝑥𝑗

)︂
𝑇,𝑃,𝑥𝑘 ̸=𝑖,𝑗

= 0

Returns
d2delta_dzizjs [list[float]] Second Composition derivative of delta of each component,

[m^3/mol]

Notes

This derivative is checked numerically.

property d3delta_dninjnks
Helper method for calculating the third partial mole number derivatives of delta. Note this is independent
of the phase. (︂

𝜕3𝛿

𝜕𝑛𝑖𝜕𝑛𝑗𝜕𝑛𝑘

)︂
𝑇,𝑃,𝑛�̸�=𝑖,𝑗,𝑘

= 2(−3𝑏+ 𝑏𝑖 + 𝑏𝑗 + 𝑏𝑘)

Returns
d3delta_dninjnks [list[list[list[float]]]] Third mole number derivative of delta of each com-

ponent, [m^3/mol^4]
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Notes

This derivative is checked numerically.

property ddelta_dns
Helper method for calculating the mole number derivatives of delta. Note this is independent of the phase.(︂

𝜕𝛿

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛�̸�=𝑗

= (𝑏𝑖 − 𝑏)

Returns
ddelta_dns [list[float]] Mole number derivative of delta of each component, [m^3/mol^2]

Notes

This derivative is checked numerically.

property ddelta_dzs
Helper method for calculating the composition derivatives of delta. Note this is independent of the phase.(︂

𝜕𝛿

𝜕𝑥𝑖

)︂
𝑇,𝑃,𝑥�̸�=𝑗

= 𝑏𝑖

Returns
ddelta_dzs [list[float]] Composition derivative of delta of each component, [m^3/mol]

Notes

This derivative is checked numerically.

eos_pure
alias of thermo.eos.RK

7.8.7 Ideal Gas Equation of State

class thermo.eos_mix.IGMIX(zs, T=None, P=None, V=None, Tcs=None, Pcs=None, omegas=None, kijs=None,
fugacities=True, only_l=False, only_g=False)

Bases: thermo.eos_mix.EpsilonZeroMixingRules, thermo.eos_mix.GCEOSMIX , thermo.eos.IG

Class for solving the ideal gas [1] [2] equation of state for a mixture of any number of compounds. Subclasses
thermo.eos.IG . Solves the EOS on initialization. Two of T, P, and V are needed to solve the EOS.

𝑃 =
𝑅𝑇

𝑉

Parameters
zs [list[float]] Overall mole fractions of all species, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

V [float, optional] Molar volume, [m^3/mol]

Tcs [list[float], optional] Critical temperatures of all compounds, [K]
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Pcs [list[float], optional] Critical pressures of all compounds, [Pa]

omegas [list[float], optional] Acentric factors of all compounds - Not used in this equation of
state!, [-]

kijs [list[list[float]], optional] n*n size list of lists with binary interaction parameters for the Van
der Waals mixing rules, default all 0 and not used[-]

fugacities [bool, optional] Whether or not to calculate fugacity related values (phis, log phis,
and fugacities); default True, [-]

only_l [bool, optional] When true, if there is a liquid and a vapor root, only the liquid root (and
properties) will be set; default False, [-]

only_g [bool, optional] When true, if there is a liquid and a vapor root, only the vapor root (and
properties) will be set; default False, [-]

Notes

Many properties of this object are zero. Many of the arguments are not used and are provided for consistency
only.

References

[1], [2]

Examples

T-P initialization, nitrogen-methane at 115 K and 1 MPa:

>>> eos = IGMIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.
→˓04, .008], zs=[0.5, 0.5])
>>> eos.phase, eos.V_g
('g', 0.0009561632010876225)

Methods

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for the Ideal Gas
EOS.

a_alphas_vectorized(T) Method to calculate the pure-component a_alphas
for the Ideal Gas EOS.

eos_pure alias of thermo.eos.IG

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for the Ideal Gas
EOS. This vectorized implementation is added for extra speed.

𝑎𝛼 = 0

𝑑𝑎𝛼

𝑑𝑇
= 0
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𝑑2𝑎𝛼

𝑑𝑇 2
= 0

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alphas_vectorized(T)
Method to calculate the pure-component a_alphas for the Ideal Gas EOS. This vectorized implementation
is added for extra speed.

𝑎𝛼 = 0

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

eos_pure
alias of thermo.eos.IG

7.8.8 Different Mixing Rules

class thermo.eos_mix.EpsilonZeroMixingRules

Attributes
d2epsilon_dninjs Helper method for calculating the second mole number derivatives (hes-

sian) of epsilon.

d2epsilon_dzizjs Helper method for calculating the second composition derivatives (hes-
sian) of epsilon.

d3epsilon_dninjnks Helper method for calculating the third partial mole number derivatives
of epsilon.

depsilon_dns Helper method for calculating the mole number derivatives of epsilon.

depsilon_dzs Helper method for calculating the composition derivatives of epsilon.

class thermo.eos_mix.PSRKMixingRules
Bases: object
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Methods

a_alpha_and_derivatives(T[, full, quick, ...]) Method to calculate a_alpha and its first and second
derivatives for an EOS with the PSRK mixing rules.

A = -0.6466271649250525

a_alpha_and_derivatives(T, full=True, quick=True, pure_a_alphas=True)
Method to calculate a_alpha and its first and second derivatives for an EOS with the PSRK mixing rules.
Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2.

For use in some methods, this returns only a_alpha if full is False.

𝛼 = 𝑏𝑅𝑇

[︃∑︁
𝑖

𝑧𝑖𝛼𝑖

𝑏𝑖𝑅𝑇
+

1

𝐴

(︃
𝐺𝐸

𝑅𝑇
+
∑︁
𝑖

𝑧𝑖 ln

(︂
𝑏

𝑏𝑖

)︂)︃]︃

𝜕𝛼

𝜕𝑇
= 𝑅𝑇𝑏

[︃∑︁
𝑖

(︃
𝑧𝑖

𝜕𝛼𝑖

𝜕𝑇

𝑅𝑇𝑏𝑖
− 𝑧𝑖𝛼𝑖

𝑅𝑇 2𝑏𝑖

)︃
+

1

𝐴

(︃
𝜕𝐺𝐸

𝜕𝑇

𝑅𝑇
− 𝐺𝐸

𝑅𝑇 2

)︃]︃
+
𝛼

𝑇

𝜕2𝛼

𝜕𝑇 2
= 𝑏

[︃∑︁
𝑖

(︃
𝑧𝑖

𝜕2𝛼𝑖

𝜕𝑇 2

𝑏𝑖
−

2𝑧𝑖
𝜕𝛼𝑖

𝜕𝑇

𝑇𝑏𝑖
+

2𝑧𝑖𝛼𝑖

𝑇 2𝑏𝑖

)︃
+

2

𝑇

[︃∑︁
𝑖

(︃
𝑧𝑖

𝜕𝛼𝑖

𝜕𝑇

𝑏𝑖
− 𝑧𝑖𝛼𝑖

𝑇𝑏𝑖

)︃
+

1

𝐴

(︂
𝜕𝐺𝐸

𝜕𝑇
− 𝐺𝐸

𝑇

)︂]︃
+

1

𝐴

(︂
𝜕2𝐺𝐸

𝜕𝑇 2
− 2

𝑇

𝜕𝐺𝐸

𝜕𝑇
+ 2

𝐺𝐸

𝑇 2

)︂]︃
Parameters

T [float] Temperature, [K]

full [bool, optional] If False, calculates and returns only a_alpha

quick [bool, optional] Only the quick variant is implemented; it is little faster anyhow

pure_a_alphas [bool, optional] Whether or not to recalculate the a_alpha terms of pure com-
ponents (for the case of mixtures only) which stay the same as the composition changes (i.e
in a PT flash), [-]

Returns
a_alpha [float] Coefficient calculated by PSRK-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by PSRK-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by PSRK-
specific method, [J^2/mol^2/Pa/K**2]

u = 1.1
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7.8.9 Lists of Equations of State

thermo.eos_mix.eos_mix_list = [<class 'thermo.eos_mix.PRMIX'>, <class
'thermo.eos_mix.SRKMIX'>, <class 'thermo.eos_mix.PR78MIX'>, <class
'thermo.eos_mix.VDWMIX'>, <class 'thermo.eos_mix.PRSVMIX'>, <class
'thermo.eos_mix.PRSV2MIX'>, <class 'thermo.eos_mix.TWUPRMIX'>, <class
'thermo.eos_mix.TWUSRKMIX'>, <class 'thermo.eos_mix.APISRKMIX'>, <class
'thermo.eos_mix.IGMIX'>, <class 'thermo.eos_mix.RKMIX'>, <class
'thermo.eos_mix.PRMIXTranslatedConsistent'>, <class
'thermo.eos_mix.PRMIXTranslatedPPJP'>, <class
'thermo.eos_mix.SRKMIXTranslatedConsistent'>, <class 'thermo.eos_mix.PRMIXTranslated'>,
<class 'thermo.eos_mix.SRKMIXTranslated'>]

List of all exported EOS classes.

thermo.eos_mix.eos_mix_no_coeffs_list = [<class 'thermo.eos_mix.PRMIX'>, <class
'thermo.eos_mix.SRKMIX'>, <class 'thermo.eos_mix.PR78MIX'>, <class
'thermo.eos_mix.VDWMIX'>, <class 'thermo.eos_mix.TWUPRMIX'>, <class
'thermo.eos_mix.TWUSRKMIX'>, <class 'thermo.eos_mix.IGMIX'>, <class
'thermo.eos_mix.RKMIX'>, <class 'thermo.eos_mix.PRMIXTranslatedConsistent'>, <class
'thermo.eos_mix.PRMIXTranslated'>, <class 'thermo.eos_mix.SRKMIXTranslated'>, <class
'thermo.eos_mix.PRMIXTranslatedPPJP'>, <class
'thermo.eos_mix.SRKMIXTranslatedConsistent'>]

List of all exported EOS classes that do not require special parameters or can fill in their special parameters from
other specified parameters.

7.9 Cubic Equations of State Utilities (thermo.eos_mix_methods)

This file contains a number of overflow methods for EOSs which for various reasons are better implemented as func-
tions. Documentation is not provided for this file and no methods are intended to be used outside this library.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Alpha Function Mixing Rules

7.9.1 Alpha Function Mixing Rules

These are where the bulk of the time is spent in solving the equation of state. For that reason, these functional forms
often duplicate functionality but have different performance characteristics.

Implementations which store N^2 matrices for other calculations:

thermo.eos_mix_methods.a_alpha_aijs_composition_independent(a_alphas, kijs)
Calculates the matrix (𝑎𝛼)𝑖𝑗 as well as the array

√︀
(𝑎𝛼)𝑖 and the matrix 1√

(𝑎𝛼)𝑖
√

(𝑎𝛼)𝑗
.

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

This routine is efficient in both numba and PyPy, but it is generally better to avoid calculating and storing any
N^2 matrices. However, this particular calculation only depends on T so in some circumstances this can be
feasible.

Parameters
a_alphas [list[float]] EOS attractive terms, [J^2/mol^2/Pa]
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kijs [list[list[float]]] Constant kijs, [-]

Returns
a_alpha_ijs [list[list[float]]] Matrix of (1 − 𝑘𝑖𝑗)

√︀
(𝑎𝛼)𝑖(𝑎𝛼)𝑗 , [J^2/mol^2/Pa]

a_alpha_roots [list[float]] Array of
√︀

(𝑎𝛼)𝑖 values, [J/mol/Pa^0.5]

a_alpha_ij_roots_inv [list[list[float]]] Matrix of 1√
(𝑎𝛼)𝑖

√
(𝑎𝛼)𝑗

, [mol^2*Pa/J^2]

Examples

>>> kijs = [[0,.083],[0.083,0]]
>>> a_alphas = [0.2491099357671155, 0.6486495863528039]
>>> a_alpha_ijs, a_alpha_roots, a_alpha_ij_roots_inv = a_alpha_aijs_composition_
→˓independent(a_alphas, kijs)
>>> a_alpha_ijs
[[0.249109935767, 0.36861239374], [0.36861239374, 0.64864958635]]
>>> a_alpha_roots
[0.49910914213, 0.80538784840]
>>> a_alpha_ij_roots_inv
[[4.0142919105, 2.487707997796], [2.487707997796, 1.54166443799]]

thermo.eos_mix_methods.a_alpha_aijs_composition_independent_support_zeros(a_alphas, kijs)

thermo.eos_mix_methods.a_alpha_and_derivatives_full(a_alphas, da_alpha_dTs, d2a_alpha_dT2s, T, zs,
kijs, a_alpha_ijs=None, a_alpha_roots=None,
a_alpha_ij_roots_inv=None)

Calculates the a_alpha term, and its first two temperature derivatives, for an equation of state along with the
matrix quantities calculated in the process.

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

𝜕(𝑎𝛼)

𝜕𝑇
=
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗
𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇

𝜕2(𝑎𝛼)

𝜕𝑇 2
=
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗
𝜕2(𝑎𝛼)𝑖𝑗
𝜕𝑇 2

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇

=

√︀
a𝛼i (𝑇 ) a𝛼j (𝑇 ) (1 − 𝑘𝑖𝑗)

(︁
a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )

2 +
a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )

2

)︁
a𝛼i (𝑇 ) a𝛼j (𝑇 )

𝜕2(𝑎𝛼)𝑖𝑗
𝜕𝑇 2

= −

√︀
a𝛼i (𝑇 ) a𝛼j (𝑇 ) (𝑘𝑖𝑗 − 1)

(︂
(a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑
𝑑𝑇 a𝛼i (𝑇 ))

2

4 a𝛼i (𝑇 ) a𝛼j (𝑇 ) − (a𝛼i (𝑇 ) 𝑑
𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )) 𝑑
𝑑𝑇 a𝛼j (𝑇 )

2 a𝛼j (𝑇 ) − (a𝛼i (𝑇 ) 𝑑
𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )) 𝑑
𝑑𝑇 a𝛼i (𝑇 )

2 a𝛼i (𝑇 ) +
a𝛼i (𝑇 ) 𝑑2

𝑑𝑇2 a𝛼j (𝑇 )

2 +
a𝛼j (𝑇 ) 𝑑2

𝑑𝑇2 a𝛼i (𝑇 )

2 + 𝑑
𝑑𝑇 a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )

)︂
a𝛼i (𝑇 ) a𝛼j (𝑇 )

Parameters
a_alphas [list[float]] EOS attractive terms, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

7.9. Cubic Equations of State Utilities (thermo.eos_mix_methods) 353



thermo Documentation, Release 0.2.20

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K**2]

T [float] Temperature, not used, [K]

zs [list[float]] Mole fractions of each species

kijs [list[list[float]]] Constant kijs, [-]

a_alpha_ijs [list[list[float]], optional] Matrix of (1 − 𝑘𝑖𝑗)
√︀

(𝑎𝛼)𝑖(𝑎𝛼)𝑗 , [J^2/mol^2/Pa]

a_alpha_roots [list[float], optional] Array of
√︀

(𝑎𝛼)𝑖 values, [J/mol/Pa^0.5]

a_alpha_ij_roots_inv [list[list[float]], optional] Matrix of 1√
(𝑎𝛼)𝑖

√
(𝑎𝛼)𝑗

, [mol^2*Pa/J^2]

Returns
a_alpha [float] EOS attractive term, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific method,
[J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K**2]

a_alpha_ijs [list[list[float]], optional] Matrix of (1 − 𝑘𝑖𝑗)
√︀

(𝑎𝛼)𝑖(𝑎𝛼)𝑗 , [J^2/mol^2/Pa]

da_alpha_dT_ijs [list[list[float]], optional] Matrix of 𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇 , [J^2/mol^2/Pa/K]

d2a_alpha_dT2_ijs [list[list[float]], optional] Matrix of 𝜕2(𝑎𝛼)𝑖𝑗
𝜕𝑇 2 , [J^2/mol^2/Pa/K^2]

Examples

>>> kijs = [[0,.083],[0.083,0]]
>>> zs = [0.1164203, 0.8835797]
>>> a_alphas = [0.2491099357671155, 0.6486495863528039]
>>> da_alpha_dTs = [-0.0005102028006086241, -0.0011131153520304886]
>>> d2a_alpha_dT2s = [1.8651128859234162e-06, 3.884331923127011e-06]
>>> a_alpha, da_alpha_dT, d2a_alpha_dT2, a_alpha_ijs, da_alpha_dT_ijs, d2a_alpha_
→˓dT2_ijs = a_alpha_and_derivatives_full(a_alphas=a_alphas, da_alpha_dTs=da_alpha_
→˓dTs, d2a_alpha_dT2s=d2a_alpha_dT2s, T=299.0, zs=zs, kijs=kijs)
>>> a_alpha, da_alpha_dT, d2a_alpha_dT2
(0.58562139582, -0.001018667672, 3.56669817856e-06)
>>> a_alpha_ijs
[[0.2491099357, 0.3686123937], [0.36861239374, 0.64864958635]]
>>> da_alpha_dT_ijs
[[-0.000510202800, -0.0006937567844], [-0.000693756784, -0.00111311535]]
>>> d2a_alpha_dT2_ijs
[[1.865112885e-06, 2.4734471244e-06], [2.4734471244e-06, 3.8843319e-06]]

Compute only the alpha term itself:

thermo.eos_mix_methods.a_alpha_and_derivatives(a_alphas, T, zs, kijs, a_alpha_ijs=None,
a_alpha_roots=None, a_alpha_ij_roots_inv=None)

Faster implementations which do not store N^2 matrices:
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thermo.eos_mix_methods.a_alpha_quadratic_terms(a_alphas, a_alpha_roots, T, zs, kijs,
a_alpha_j_rows=None, vec0=None)

Calculates the a_alpha term for an equation of state along with the vector quantities needed to compute the
fugacities of the mixture. This routine is efficient in both numba and PyPy.

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

The secondary values are as follows: ∑︁
𝑖

𝑦𝑖(𝑎𝛼)𝑖𝑗

Parameters
a_alphas [list[float]] EOS attractive terms, [J^2/mol^2/Pa]

a_alpha_roots [list[float]] Square roots of a_alphas; provided for speed [J/mol/Pa^0.5]

T [float] Temperature, not used, [K]

zs [list[float]] Mole fractions of each species

kijs [list[list[float]]] Constant kijs, [-]

a_alpha_j_rows [list[float], optional] EOS attractive term row destimation vector (does not need
to be zeroed, should be provided to prevent allocations), [J^2/mol^2/Pa]

vec0 [list[float], optional] Empty vector, used in internal calculations, provide to avoid the allo-
cations; does not need to be zeroed, [-]

Returns
a_alpha [float] EOS attractive term, [J^2/mol^2/Pa]

a_alpha_j_rows [list[float]] EOS attractive term row sums, [J^2/mol^2/Pa]

Notes

Tried moving the i=j loop out, no difference in speed, maybe got a bit slower in PyPy.

Examples

>>> kijs = [[0,.083],[0.083,0]]
>>> zs = [0.1164203, 0.8835797]
>>> a_alphas = [0.2491099357671155, 0.6486495863528039]
>>> a_alpha_roots = [i**0.5 for i in a_alphas]
>>> a_alpha, a_alpha_j_rows = a_alpha_quadratic_terms(a_alphas, a_alpha_roots, 299.
→˓0, zs, kijs)
>>> a_alpha, a_alpha_j_rows
(0.58562139582, [0.35469988173, 0.61604757237])

thermo.eos_mix_methods.a_alpha_and_derivatives_quadratic_terms(a_alphas, a_alpha_roots,
da_alpha_dTs, d2a_alpha_dT2s,
T, zs, kijs, a_alpha_j_rows=None,
da_alpha_dT_j_rows=None)

Calculates the a_alpha term, and its first two temperature derivatives, for an equation of state along with the
vector quantities needed to compute the fugacitie and temperature derivatives of fugacities of the mixture. This
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routine is efficient in both numba and PyPy.

𝑎𝛼 =
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗(𝑎𝛼)𝑖𝑗

𝜕(𝑎𝛼)

𝜕𝑇
=
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗
𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇

𝜕2(𝑎𝛼)

𝜕𝑇 2
=
∑︁
𝑖

∑︁
𝑗

𝑧𝑖𝑧𝑗
𝜕2(𝑎𝛼)𝑖𝑗
𝜕𝑇 2

(𝑎𝛼)𝑖𝑗 = (1 − 𝑘𝑖𝑗)
√︁

(𝑎𝛼)𝑖(𝑎𝛼)𝑗

𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇

=

√︀
a𝛼i (𝑇 ) a𝛼j (𝑇 ) (1 − 𝑘𝑖𝑗)

(︁
a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )

2 +
a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )

2

)︁
a𝛼i (𝑇 ) a𝛼j (𝑇 )

𝜕2(𝑎𝛼)𝑖𝑗
𝜕𝑇 2

= −

√︀
a𝛼i (𝑇 ) a𝛼j (𝑇 ) (𝑘𝑖𝑗 − 1)

(︂
(a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑
𝑑𝑇 a𝛼i (𝑇 ))

2

4 a𝛼i (𝑇 ) a𝛼j (𝑇 ) − (a𝛼i (𝑇 ) 𝑑
𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )) 𝑑
𝑑𝑇 a𝛼j (𝑇 )

2 a𝛼j (𝑇 ) − (a𝛼i (𝑇 ) 𝑑
𝑑𝑇 a𝛼j (𝑇 )+a𝛼j (𝑇 ) 𝑑

𝑑𝑇 a𝛼i (𝑇 )) 𝑑
𝑑𝑇 a𝛼i (𝑇 )

2 a𝛼i (𝑇 ) +
a𝛼i (𝑇 ) 𝑑2

𝑑𝑇2 a𝛼j (𝑇 )

2 +
a𝛼j (𝑇 ) 𝑑2

𝑑𝑇2 a𝛼i (𝑇 )

2 + 𝑑
𝑑𝑇 a𝛼i (𝑇 ) 𝑑

𝑑𝑇 a𝛼j (𝑇 )

)︂
a𝛼i (𝑇 ) a𝛼j (𝑇 )

The secondary values are as follows: ∑︁
𝑖

𝑦𝑖(𝑎𝛼)𝑖𝑗

∑︁
𝑖

𝑦𝑖
𝜕(𝑎𝛼)𝑖𝑗
𝜕𝑇

Parameters
a_alphas [list[float]] EOS attractive terms, [J^2/mol^2/Pa]

a_alpha_roots [list[float]] Square roots of a_alphas; provided for speed [J/mol/Pa^0.5]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K**2]

T [float] Temperature, not used, [K]

zs [list[float]] Mole fractions of each species

kijs [list[list[float]]] Constant kijs, [-]

Returns
a_alpha [float] EOS attractive term, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific method,
[J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K**2]

a_alpha_j_rows [list[float]] EOS attractive term row sums, [J^2/mol^2/Pa]

da_alpha_dT_j_rows [list[float]] Temperature derivative of EOS attractive term row sums,
[J^2/mol^2/Pa/K]
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Examples

>>> kijs = [[0,.083],[0.083,0]]
>>> zs = [0.1164203, 0.8835797]
>>> a_alphas = [0.2491099357671155, 0.6486495863528039]
>>> a_alpha_roots = [i**0.5 for i in a_alphas]
>>> da_alpha_dTs = [-0.0005102028006086241, -0.0011131153520304886]
>>> d2a_alpha_dT2s = [1.8651128859234162e-06, 3.884331923127011e-06]
>>> a_alpha_and_derivatives_quadratic_terms(a_alphas, a_alpha_roots, da_alpha_dTs,␣
→˓d2a_alpha_dT2s, 299.0, zs, kijs)
(0.58562139582, -0.001018667672, 3.56669817856e-06, [0.35469988173, 0.61604757237],␣
→˓[-0.000672387374, -0.001064293501])

7.10 Cubic Equations of State Volume Solvers (thermo.eos_volume)

Some of the methods implemented here are numerical while others are analytical.

The cubic EOS can be rearranged into the following polynomial form:

0 = 𝑍3 + (𝛿′ −𝐵′ − 1)𝑍2 + [𝜃′ + 𝜖′ − 𝛿(𝐵′ + 1)]𝑍 − [𝜖′(𝐵′ + 1) + 𝜃′𝜂′]

𝐵′ =
𝑏𝑃

𝑅𝑇

𝛿′ =
𝛿𝑃

𝑅𝑇

𝜃′ =
𝑎𝛼𝑃

(𝑅𝑇 )2

𝜖′ = 𝜖

(︂
𝑃

𝑅𝑇

)︂2

The range of pressures, temperatures, and 𝑎𝛼 values is so large that almost all analytical solutions produce huge errors
in some conditions. Because the EOS volume cannot be under b, this often results in a root being ignored where there
should have been a liquid-like root detected.

A number of plots showing the relative error in volume calculation are shown below to demonstrate how different
methods work.

• Analytical Solvers

• Numerical Solvers

• Higher-Precision Solvers
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7.10.1 Analytical Solvers

thermo.eos_volume.volume_solutions_Cardano(T, P, b, delta, epsilon, a_alpha)
Calculate the molar volume solutions to a cubic equation of state using Cardano’s formula, and a few tweaks to
improve numerical precision. This solution is quite fast in general although it involves powers or trigonometric
functions. However, it has numerical issues at many seemingly random areas in the low pressure region.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [list[float]] Three possible molar volumes, [m^3/mol]

Notes

Two sample regions where this method does not obtain the correct solution (PR EOS for hydrogen) are as follows:
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References

[1]

thermo.eos_volume.volume_solutions_fast(T, P, b, delta, epsilon, a_alpha)
Solution of this form of the cubic EOS in terms of volumes. Returns three values, all with some complex part.
This is believed to be the fastest analytical formula, and while it does not suffer from the same errors as Cardano’s
formula, it has plenty of its own numerical issues.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]

Notes

Using explicit formulas, as can be derived in the following example, is faster than most numeric root finding
techniques, and finds all values explicitly. It takes several seconds.

>>> from sympy import *
>>> P, T, V, R, b, a, delta, epsilon, alpha = symbols('P, T, V, R, b, a, delta,␣
→˓epsilon, alpha')
>>> Tc, Pc, omega = symbols('Tc, Pc, omega')
>>> CUBIC = R*T/(V-b) - a*alpha/(V*V + delta*V + epsilon) - P
>>> #solve(CUBIC, V)
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A sample region where this method does not obtain the correct solution (PR EOS for methanol) is as follows:

References

[1]

thermo.eos_volume.volume_solutions_a1(T, P, b, delta, epsilon, a_alpha)
Solution of this form of the cubic EOS in terms of volumes. Returns three values, all with some complex part.
This uses an analytical solution for the cubic equation with the leading coefficient set to 1 as in the EOS case;
and the analytical solution is the one recommended by Mathematica.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]
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Notes

A sample region where this method does not obtain the correct solution (PR EOS for methanol) is as follows:

Examples

Numerical precision is always challenging and has edge cases. The following results all havev imaginary com-
ponents, but depending on the math library used by the compiler even the first complex digit may not match!

>>> volume_solutions_a1(8837.07874361444, 216556124.0631852, 0.0003990176625589891,␣
→˓0.0010590390565805598, -1.5069972655436541e-07, 7.20417995032918e-15)
((0.000738308-7.5337e-20j), (-0.001186094-6.52444e-20j), (0.000127055+6.52444e-20j))

thermo.eos_volume.volume_solutions_a2(T, P, b, delta, epsilon, a_alpha)
Solution of this form of the cubic EOS in terms of volumes. Returns three values, all with some complex part.
This uses an analytical solution for the cubic equation with the leading coefficient set to 1 as in the EOS case;
and the analytical solution is the one recommended by Maple.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]
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Notes

A sample region where this method does not obtain the correct solution (SRK EOS for decane) is as follows:

thermo.eos_volume.volume_solutions_numpy(T, P, b, delta, epsilon, a_alpha)
Calculate the molar volume solutions to a cubic equation of state using NumPy’s roots function, which is a power
series iterative matrix solution that is very stable but does not have full precision in some cases.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [list[float]] Three possible molar volumes, [m^3/mol]
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Notes

A sample region where this method does not obtain the correct solution (SRK EOS for ethane) is as follows:

References

[1]

thermo.eos_volume.volume_solutions_ideal(T, P, b=0.0, delta=0.0, epsilon=0.0, a_alpha=0.0)
Calculate the ideal-gas molar volume in a format compatible with the other cubic EOS solvers. The ideal gas
volume is the first element; and the secodn and third elements are zero. This is implemented to allow the ideal-gas
model to be compatible with the cubic models, whose equations do not work with parameters of zero.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float, optional] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float, optional] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float, optional] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float, optional] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [list[float]] Three possible molar volumes, [m^3/mol]
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Examples

>>> volume_solutions_ideal(T=300, P=1e7)
(0.0002494338785445972, 0.0, 0.0)

7.10.2 Numerical Solvers

thermo.eos_volume.volume_solutions_halley(T, P, b, delta, epsilon, a_alpha)
Halley’s method based solver for cubic EOS volumes based on the idea of initializing from a single liquid-like
guess which is solved precisely, deflating the cubic analytically, solving the quadratic equation for the next two
volumes, and then performing two halley steps on each of them to obtain the final solutions. This method does
not calculate imaginary roots - they are set to zero on detection. This method has been rigorously tested over a
wide range of conditions.

The method uses the standard combination of bisection to provide high and low boundaries as well, to keep the
iteration always moving forward.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [tuple[float]] Three possible molar volumes, [m^3/mol]

Notes

A sample region where this method works perfectly is shown below:

thermo.eos_volume.volume_solutions_NR(T, P, b, delta, epsilon, a_alpha, tries=0)
Newton-Raphson based solver for cubic EOS volumes based on the idea of initializing from an analytical solver.
This algorithm can only be described as a monstrous mess. It is fairly fast for most cases, but about 3x slower
than volume_solutions_halley. In the worst case this will fall back to mpmath.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

tries [int, optional] Internal parameter as this function will call itself if it needs to; number of
previous solve attempts, [-]
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Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]

Notes

Sample regions where this method works perfectly are shown below:

thermo.eos_volume.volume_solutions_NR_low_P(T, P, b, delta, epsilon, a_alpha)
Newton-Raphson based solver for cubic EOS volumes designed specifically for the low-pressure regime. Seeks
only two possible solutions - an ideal gas like one, and one near the eos covolume b - as the initializations are
R*T/P and b*1.000001 .

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

tries [int, optional] Internal parameter as this function will call itself if it needs to; number of
previous solve attempts, [-]

Returns
Vs [tuple[complex]] Three possible molar volumes (third one is hardcoded to 1j), [m^3/mol]
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Notes

The algorithm is NR, with some checks that will switch the solver to brenth some of the time.

7.10.3 Higher-Precision Solvers

thermo.eos_volume.volume_solutions_mpmath(T, P, b, delta, epsilon, a_alpha, dps=50)
Solution of this form of the cubic EOS in terms of volumes, using the mpmath arbitrary precision library. The
number of decimal places returned is controlled by the dps parameter.

This function is the reference implementation which provides exactly correct solutions; other algorithms are
compared against this one.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

dps [int] Number of decimal places in the result by mpmath, [-]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]

Notes

Although mpmath has a cubic solver, it has been found to fail to solve in some cases. Accordingly, the algorithm
is as follows:

Working precision is dps plus 40 digits; and if P < 1e-10 Pa, it is dps plus 400 digits. The input parameters are
converted exactly to mpf objects on input.

polyroots from mpmath is used with maxsteps=2000, and extra precision of 15 digits. If the solution does not
converge, 20 extra digits are added up to 8 times. If no solution is found, mpmath’s findroot is called on the
pressure error function using three initial guesses from another solver.

Needless to say, this function is quite slow.

References

[1]
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Examples

Test case which presented issues for PR EOS (three roots were not being returned):

>>> volume_solutions_mpmath(0.01, 1e-05, 2.5405184201558786e-05, 5.081036840311757e-
→˓05, -6.454233843151321e-10, 0.3872747173781095)
(mpf('0.0000254054613415548712260258773060137'), mpf('4.
→˓66038025602155259976574392093252'), mpf('8309.80218708657190094424659859346'))

thermo.eos_volume.volume_solutions_mpmath_float(T, P, b, delta, epsilon, a_alpha)
Simple wrapper around volume_solutions_mpmath which uses the default parameters and returns the values
as floats.

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

dps [int] Number of decimal places in the result by mpmath, [-]

Returns
Vs [tuple[complex]] Three possible molar volumes, [m^3/mol]

Examples

Test case which presented issues for PR EOS (three roots were not being returned):

>>> volume_solutions_mpmath_float(0.01, 1e-05, 2.5405184201558786e-05, 5.
→˓081036840311757e-05, -6.454233843151321e-10, 0.3872747173781095)
((2.540546134155487e-05+0j), (4.660380256021552+0j), (8309.802187086572+0j))

thermo.eos_volume.volume_solutions_sympy(T, P, b, delta, epsilon, a_alpha)
Solution of this form of the cubic EOS in terms of volumes, using the sympy mathematical library with real
numbers.

This function is generally slow, and somehow still has more than desired error in the real and complex result.
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𝑃3

)︁2

2 + 27(−𝑃𝑏𝜖−𝑅𝑇𝜖−𝑎𝛼𝑏)
2𝑃 − 9(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

2𝑃 2 + (−𝑃𝑏+𝑃𝛿−𝑅𝑇 )3

𝑃 3

3
− −𝑃𝑏+ 𝑃𝛿 −𝑅𝑇

3𝑃
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𝑉2 = −
− 3(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

𝑃 + (−𝑃𝑏+𝑃𝛿−𝑅𝑇 )2

𝑃 2

3
(︁
− 1

2 +
√
3𝑖
2

)︁ 3

√︃√︂
−4
(︁
− 3(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

𝑃 +
(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )2

𝑃2

)︁3
+
(︁

27(−𝑃𝑏𝜖−𝑅𝑇𝜖−𝑎𝛼𝑏)
𝑃 − 9(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

𝑃2 +
2(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )3

𝑃3

)︁2

2 + 27(−𝑃𝑏𝜖−𝑅𝑇𝜖−𝑎𝛼𝑏)
2𝑃 − 9(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

2𝑃 2 + (−𝑃𝑏+𝑃𝛿−𝑅𝑇 )3

𝑃 3

−

(︁
− 1

2 +
√
3𝑖
2

)︁ 3

√︃√︂
−4
(︁
− 3(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

𝑃 +
(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )2

𝑃2

)︁3
+
(︁

27(−𝑃𝑏𝜖−𝑅𝑇𝜖−𝑎𝛼𝑏)
𝑃 − 9(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

𝑃2 +
2(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )3

𝑃3

)︁2

2 + 27(−𝑃𝑏𝜖−𝑅𝑇𝜖−𝑎𝛼𝑏)
2𝑃 − 9(−𝑃𝑏+𝑃𝛿−𝑅𝑇 )(−𝑃𝑏𝛿+𝑃𝜖−𝑅𝑇𝛿+𝑎𝛼)

2𝑃 2 + (−𝑃𝑏+𝑃𝛿−𝑅𝑇 )3

𝑃 3

3
− −𝑃𝑏+ 𝑃𝛿 −𝑅𝑇

3𝑃

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

b [float] Coefficient calculated by EOS-specific method, [m^3/mol]

delta [float] Coefficient calculated by EOS-specific method, [m^3/mol]

epsilon [float] Coefficient calculated by EOS-specific method, [m^6/mol^2]

a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Returns
Vs [tuple[sympy.Rational]] Three possible molar volumes, [m^3/mol]

Notes

The solution can be derived as follows:

>>> from sympy import *
>>> P, T, V, R, b, delta, epsilon = symbols('P, T, V, R, b, delta, epsilon')
>>> a_alpha = Symbol(r'a \alpha')
>>> CUBIC = R*T/(V-b) - a_alpha/(V*V + delta*V + epsilon) - P
>>> V_slns = solve(CUBIC, V)

References

[1]

Examples

>>> Vs = volume_solutions_sympy(0.01, 1e-05, 2.5405184201558786e-05, 5.
→˓081036840311757e-05, -6.454233843151321e-10, 0.3872747173781095)
>>> [complex(v) for v in Vs]
[(2.540546e-05+2.402202278e-12j), (4.660380256-2.40354958e-12j), (8309.80218+1.
→˓348096981e-15j)]
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7.11 Cubic Equation of State Alpha Functions
(thermo.eos_alpha_functions)

This module contains implementations of the calculation of pure-component EOS 𝑎𝛼 parameters in a vectorized way.
Functions for calculating their temperature derivatives as may be necessary are included as well.

For certain alpha functions, a class is available to provide these functions to and class that inherits from it.

A mixing rule must be used on the a_alphas to get the overall a_alpha term.

• Vectorized Alpha Functions

• Vectorized Alpha Functions With Derivatives

• Class With Alpha Functions

• Pure Alpha Functions

7.11.1 Vectorized Alpha Functions

thermo.eos_alpha_functions.PR_a_alphas_vectorized(T, Tcs, ais, kappas, a_alphas=None)
Calculates the a_alpha terms for the Peng-Robinson equation of state given the critical temperatures Tcs, con-
stants ais, and kappas.

𝑎𝑖𝛼(𝑇 )𝑖 = 𝑎𝑖[1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

kappas [list[float]] kappa parameters of Peng-Robinson EOS; formulas vary, but the original
form uses 𝜅𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2

𝑖 , [-]

a_alphas [list[float], optional] Vector for pure component a_alpha terms in the cubic EOS to be
calculated and stored in, [Pa*m^6/mol^2]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [2.0698956357716662, 2.7018068455659545, 3.3725793885832323]
>>> kappas = [0.74192743008, 0.819919992, 0.8800122140799999]
>>> PR_a_alphas_vectorized(322.29, Tcs=Tcs, ais=ais, kappas=kappas)
[2.6306811679, 3.6761503348, 4.8593286234]
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thermo.eos_alpha_functions.SRK_a_alphas_vectorized(T, Tcs, ais, ms, a_alphas=None)
Calculates the a_alpha terms for the SRK equation of state given the critical temperatures Tcs, constants ais, and
kappas.

𝑎𝑖𝛼(𝑇 )𝑖 =

[︃
1 +𝑚𝑖

(︃
1 −

√︃
𝑇

𝑇𝑐,𝑖

)︃]︃2
Parameters

T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 =
0.42748·𝑅2(𝑇𝑐,𝑖)

2

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

ms [list[float]] m parameters of SRK EOS; formulas vary, but the original form uses 𝑚𝑖 =
0.480 + 1.574𝜔𝑖 − 0.176𝜔2

𝑖 , [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> ms = [0.8610138239999999, 0.9436976, 1.007889024]
>>> SRK_a_alphas_vectorized(322.29, Tcs=Tcs, ais=ais, ms=ms)
[2.549485814512, 3.586598245260, 4.76614806648]

thermo.eos_alpha_functions.PRSV_a_alphas_vectorized(T, Tcs, ais, kappa0s, kappa1s, a_alphas=None)
Calculates the a_alpha terms for the Peng-Robinson-Stryjek-Vera equation of state given the critical temperatures
Tcs, constants ais, PRSV parameters kappa0s and kappa1s.

𝑎𝑖𝛼𝑖 = 𝑎𝑖

(︃(︃
𝜅0 + 𝜅1

(︃√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃(︂
− 𝑇

𝑇𝑐,𝑖
+

7

10

)︂)︃(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃
+ 1

)︃2

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

kappa0s [list[float]] kappa0 parameters of PRSV EOS; the original form uses 𝜅0,𝑖 =
0.378893 + 1.4897153𝜔𝑖 − 0.17131848𝜔2

𝑖 + 0.0196554𝜔3
𝑖 , [-]

kappa1s [list[float]] Fit parameters, can be set to 0 if unknown [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]
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Examples

>>> Tcs = [507.6]
>>> ais = [2.6923169620277805]
>>> kappa0s = [0.8074380841890093]
>>> kappa1s = [0.05104]
>>> PRSV_a_alphas_vectorized(299.0, Tcs=Tcs, ais=ais, kappa0s=kappa0s,␣
→˓kappa1s=kappa1s)
[3.81298569831]

thermo.eos_alpha_functions.PRSV2_a_alphas_vectorized(T, Tcs, ais, kappa0s, kappa1s, kappa2s,
kappa3s, a_alphas=None)

Calculates the a_alpha terms for the Peng-Robinson-Stryjek-Vera 2 equation of state given the critical tempera-
tures Tcs, constants ais, PRSV2 parameters kappa0s, `kappa1s, kappa2s, and kappa3s.

𝑎𝑖𝛼𝑖 = 𝑎𝑖

(︃(︃
1 −

√︃
𝑇

𝑇𝑐,𝑖

)︃(︃
𝜅0,𝑖 +

(︃
𝜅1,𝑖 + 𝜅2,𝑖

(︃
1 −

√︃
𝑇

𝑇𝑐,𝑖

)︃(︂
− 𝑇

𝑇𝑐,𝑖
+ 𝜅3,𝑖

)︂)︃(︃√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃(︂
− 𝑇

𝑇𝑐,𝑖
+

7

10

)︂)︃
+ 1

)︃2

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

kappa0s [list[float]] kappa0 parameters of PRSV EOS; the original form uses 𝜅0,𝑖 =
0.378893 + 1.4897153𝜔𝑖 − 0.17131848𝜔2

𝑖 + 0.0196554𝜔3
𝑖 , [-]

kappa1s [list[float]] Fit parameters, can be set to 0 if unknown [-]

kappa2s [list[float]] Fit parameters, can be set to 0 if unknown [-]

kappa3s [list[float]] Fit parameters, can be set to 0 if unknown [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> PRSV2_a_alphas_vectorized(400.0, Tcs=[507.6], ais=[2.6923169620277805],␣
→˓kappa0s=[0.8074380841890093], kappa1s=[0.05104], kappa2s=[0.8634], kappa3s=[0.
→˓460])
[3.2005700986984]

thermo.eos_alpha_functions.APISRK_a_alphas_vectorized(T, Tcs, ais, S1s, S2s, a_alphas=None)
Calculates the a_alpha terms for the API SRK equation of state given the critical temperatures Tcs, constants
ais, and API parameters S1s and S2s.

𝑎𝑖𝛼(𝑇 )𝑖 = 𝑎𝑖

[︃
1 + 𝑆1,𝑖

(︁
1 −

√︀
𝑇𝑟,𝑖

)︁
+ 𝑆2,𝑖

1 −
√︀
𝑇𝑟,𝑖√︀

𝑇𝑟,𝑖

]︃2
Parameters

T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]
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ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 =
0.42748·𝑅2(𝑇𝑐,𝑖)

2

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

S1s [list[float]] S1 parameters of API SRK EOS; regressed or estimated with 𝑆1,𝑖 = 0.48508 +
1.55171𝜔𝑖 − 0.15613𝜔2

𝑖 , [-]

S2s [list[float]] S2 parameters of API SRK EOS; regressed or set to zero, [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> APISRK_a_alphas_vectorized(T=430.0, Tcs=[514.0], ais=[1.2721974560809934], ␣
→˓S1s=[1.678665], S2s=[-0.216396])
[1.60465652994097]

thermo.eos_alpha_functions.RK_a_alphas_vectorized(T, Tcs, ais, a_alphas=None)
Calculates the a_alpha terms for the RK equation of state given the critical temperatures Tcs, and a parameters
ais.

𝑎𝑖𝛼𝑖 =
𝑎𝑖√︁
𝑇

𝑇𝑐,𝑖

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 =
0.42748·𝑅2(𝑇𝑐,𝑖)

2

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> RK_a_alphas_vectorized(322.29, Tcs=Tcs, ais=ais)
[2.3362073307, 3.16943743055, 4.0825575798]

7.11.2 Vectorized Alpha Functions With Derivatives

thermo.eos_alpha_functions.PR_a_alpha_and_derivatives_vectorized(T, Tcs, ais, kappas,
a_alphas=None,
da_alpha_dTs=None,
d2a_alpha_dT2s=None)

Calculates the a_alpha terms and their first two temperature derivatives for the Peng-Robinson equation of state
given the critical temperatures Tcs, constants ais, and kappas.

𝑎𝑖𝛼(𝑇 )𝑖 = 𝑎𝑖[1 + 𝜅𝑖(1 −
√︀
𝑇𝑟,𝑖)]

2

𝑑𝑎𝑖𝛼𝑖

𝑑𝑇
= − 𝑎𝑖𝜅𝑖

𝑇 0.5𝑇𝑐
0.5
𝑖

(︂
𝜅𝑖

(︂
− 𝑇 0.5

𝑇𝑐
0.5
𝑖

+ 1

)︂
+ 1

)︂
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𝑑2𝑎𝑖𝛼𝑖

𝑑𝑇 2
= 0.5𝑎𝑖𝜅𝑖

(︂
− 1

𝑇 1.5𝑇𝑐
0.5
𝑖

(︂
𝜅𝑖

(︂
𝑇 0.5

𝑇𝑐
0.5
𝑖

− 1

)︂
− 1

)︂
+

𝜅𝑖
𝑇𝑇𝑐𝑖

)︂
Parameters

T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
[Pa*m^6/mol^2]

kappas [list[float]] kappa parameters of Peng-Robinson EOS; formulas vary, but the original
form uses 𝜅𝑖 = 0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔2

𝑖 , [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTs [list[float]] First temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K)]

d2a_alpha_dT2s [list[float]] Second temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [2.0698956357716662, 2.7018068455659545, 3.3725793885832323]
>>> kappas = [0.74192743008, 0.819919992, 0.8800122140799999]
>>> PR_a_alpha_and_derivatives_vectorized(322.29, Tcs=Tcs, ais=ais, kappas=kappas)
([2.63068116797, 3.67615033489, 4.859328623453], [-0.0044497546430, -0.
→˓00638993749167, -0.0085372308846], [1.066668360e-05, 1.546687574587e-05, 2.
→˓07440632117e-05])

thermo.eos_alpha_functions.SRK_a_alpha_and_derivatives_vectorized(T, Tcs, ais, ms,
a_alphas=None,
da_alpha_dTs=None,
d2a_alpha_dT2s=None)

Calculates the a_alpha terms and their first and second temperature derivatives for the SRK equation of state
given the critical temperatures Tcs, constants ais, and kappas.

𝑎𝑖𝛼(𝑇 )𝑖 =

[︃
1 +𝑚𝑖

(︃
1 −

√︃
𝑇

𝑇𝑐,𝑖

)︃]︃2

𝑑𝑎𝑖𝛼𝑖

𝑑𝑇
=
𝑎𝑖𝑚𝑖

𝑇

√︃
𝑇

𝑇𝑐,𝑖

(︃
𝑚𝑖

(︃√︃
𝑇

𝑇𝑐, 𝑖
− 1

)︃
− 1

)︃

𝑑2𝑎𝑖𝛼𝑖

𝑑𝑇 2
=
𝑎𝑖𝑚𝑖

√︁
𝑇

𝑇𝑐,𝑖

2𝑇 2
(𝑚𝑖 + 1)

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 =
0.42748·𝑅2(𝑇𝑐,𝑖)

2

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]
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ms [list[float]] m parameters of SRK EOS; formulas vary, but the original form uses 𝑚𝑖 =
0.480 + 1.574𝜔𝑖 − 0.176𝜔2

𝑖 , [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTs [list[float]] First temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K)]

d2a_alpha_dT2s [list[float]] Second temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> ms = [0.8610138239999999, 0.9436976, 1.007889024]
>>> SRK_a_alpha_and_derivatives_vectorized(322.29, Tcs=Tcs, ais=ais, ms=ms)
([2.549485814512, 3.586598245260, 4.76614806648], [-0.004915469296196, -0.
→˓00702410108423, -0.00936320876945], [1.236441916324e-05, 1.77752796719e-05, 2.
→˓37231823137e-05])

thermo.eos_alpha_functions.PRSV_a_alpha_and_derivatives_vectorized(T, Tcs, ais, kappa0s,
kappa1s, a_alphas=None,
da_alpha_dTs=None,
d2a_alpha_dT2s=None)

Calculates the a_alpha terms and their first and second derivative for the Peng-Robinson-Stryjek-Vera equation
of state given the critical temperatures Tcs, constants ais, PRSV parameters kappa0s and kappa1s.
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(︁√︁
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√︁
𝑇

𝑇𝑐,𝑖

(︁
𝜅0,𝑖 + 𝜅1,𝑖

(︁√︁
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(︂√︁
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⎞⎟⎟⎟⎟⎠
200

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

kappa0s [list[float]] kappa0 parameters of PRSV EOS; the original form uses 𝜅0,𝑖 =
0.378893 + 1.4897153𝜔𝑖 − 0.17131848𝜔2

𝑖 + 0.0196554𝜔3
𝑖 , [-]

kappa1s [list[float]] Fit parameters, can be set to 0 if unknown [-]

Returns
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a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTs [list[float]] First temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K)]

d2a_alpha_dT2s [list[float]] Second temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [507.6]
>>> ais = [2.6923169620277805]
>>> kappa0s = [0.8074380841890093]
>>> kappa1s = [0.05104]
>>> PRSV_a_alpha_and_derivatives_vectorized(299.0, Tcs=Tcs, ais=ais,␣
→˓kappa0s=kappa0s, kappa1s=kappa1s)
([3.8129856983], [-0.0069769034748], [2.00265608110e-05])

thermo.eos_alpha_functions.PRSV2_a_alpha_and_derivatives_vectorized(T, Tcs, ais, kappa0s,
kappa1s, kappa2s, kappa3s,
a_alphas=None,
da_alpha_dTs=None,
d2a_alpha_dT2s=None)

Calculates the a_alpha terms and their first and second derivatives for the Peng-Robinson-Stryjek-Vera 2 equation
of state given the critical temperatures Tcs, constants ais, PRSV2 parameters kappa0s, `kappa1s, kappa2s, and
kappa3s.

𝑎𝑖𝛼𝑖 = 𝑎𝑖
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Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 = 0.45724
𝑅2𝑇 2

𝑐,𝑖

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

kappa0s [list[float]] kappa0 parameters of PRSV EOS; the original form uses 𝜅0,𝑖 =
0.378893 + 1.4897153𝜔𝑖 − 0.17131848𝜔2

𝑖 + 0.0196554𝜔3
𝑖 , [-]

kappa1s [list[float]] Fit parameters, can be set to 0 if unknown [-]

kappa2s [list[float]] Fit parameters, can be set to 0 if unknown [-]

kappa3s [list[float]] Fit parameters, can be set to 0 if unknown [-]
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Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTs [list[float]] First temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K)]

d2a_alpha_dT2s [list[float]] Second temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K^2)]

Examples

>>> PRSV2_a_alpha_and_derivatives_vectorized(400.0, Tcs=[507.6], ais=[2.
→˓6923169620277805], kappa0s=[0.8074380841890093], kappa1s=[0.05104], kappa2s=[0.
→˓8634], kappa3s=[0.460])
([3.2005700986], [-0.005301195971], [1.11181477576e-05])

thermo.eos_alpha_functions.APISRK_a_alpha_and_derivatives_vectorized(T, Tcs, ais, S1s, S2s,
a_alphas=None,
da_alpha_dTs=None,
d2a_alpha_dT2s=None)

Calculates the a_alpha terms and their first two temperature derivatives for the API SRK equation of state given
the critical temperatures Tcs, constants ais, and API parameters S1s and S2s.

𝑎𝑖𝛼(𝑇 )𝑖 = 𝑎𝑖

[︃
1 + 𝑆1,𝑖

(︁
1 −

√︀
𝑇𝑟,𝑖

)︁
+ 𝑆2,𝑖

1 −
√︀
𝑇𝑟,𝑖√︀

𝑇𝑟,𝑖

]︃2

𝑑𝑎𝑖𝛼𝑖

𝑑𝑇
= 𝑎𝑖

𝑇𝑐,𝑖
𝑇 2

(︃
−𝑆2,𝑖

(︃√︃
𝑇

𝑇𝑐,𝑖
− 1

)︃
+

√︃
𝑇

𝑇𝑐,𝑖

(︃
𝑆1,𝑖

√︃
𝑇

𝑇𝑐,𝑖
+ 𝑆2,𝑖

)︃)︃(︃
𝑆2,𝑖

(︃√︃
𝑇

𝑇𝑐,𝑖
− 1

)︃
+

√︃
𝑇

𝑇𝑐,𝑖

(︃
𝑆1,𝑖

(︃√︃
𝑇

𝑇𝑐,𝑖
− 1

)︃
− 1

)︃)︃

𝑑2𝑎𝑖𝛼𝑖

𝑑𝑇 2
= 𝑎𝑖

1

2𝑇 3

(︃
𝑆2
1,𝑖𝑇

√︃
𝑇

𝑇𝑐,𝑖
− 𝑆1,𝑖𝑆2,𝑖𝑇

√︃
𝑇

𝑇𝑐,𝑖
+ 3𝑆1,𝑖𝑆2,𝑖𝑇𝑐,𝑖

√︃
𝑇

𝑇𝑐,𝑖
+ 𝑆1,𝑖𝑇

√︃
𝑇

𝑇𝑐,𝑖
− 3𝑆2

2,𝑖𝑇𝑐,𝑖

√︃
𝑇

𝑇𝑐,𝑖
+ 4𝑆2

2,𝑖𝑇𝑐,𝑖 + 3𝑆2,𝑖𝑇𝑐,𝑖

√︃
𝑇

𝑇𝑐,𝑖

)︃
Parameters

T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 =
0.42748·𝑅2(𝑇𝑐,𝑖)

2

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

S1s [list[float]] S1 parameters of API SRK EOS; regressed or estimated with 𝑆1,𝑖 = 0.48508 +
1.55171𝜔𝑖 − 0.15613𝜔2

𝑖 , [-]

S2s [list[float]] S2 parameters of API SRK EOS; regressed or set to zero, [-]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTs [list[float]] First temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K)]

d2a_alpha_dT2s [list[float]] Second temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K^2)]
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Examples

>>> APISRK_a_alpha_and_derivatives_vectorized(T=430.0, Tcs=[514.0], ais=[1.
→˓2721974560809934], S1s=[1.678665], S2s=[-0.216396])
([1.60465652994], [-0.0043155855337], [8.9931026263e-06])

thermo.eos_alpha_functions.RK_a_alpha_and_derivatives_vectorized(T, Tcs, ais, a_alphas=None,
da_alpha_dTs=None,
d2a_alpha_dT2s=None)

Calculates the a_alpha terms and their first and second temperature derivatives for the RK equation of state given
the critical temperatures Tcs, and a parameters ais.

𝑎𝑖𝛼𝑖 =
𝑎𝑖√︁
𝑇

𝑇𝑐,𝑖

𝑑𝑎𝑖𝛼𝑖

𝑑𝑇
= − 𝑎𝑖

2𝑇
√︁

𝑇
𝑇𝑐,𝑖

𝑑2𝑎𝑖𝛼𝑖

𝑑𝑇 2
=

3𝑎𝑖

4𝑇 2
√︁

𝑇
𝑇𝑐,𝑖

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of components, [K]

ais [list[float]] a parameters of cubic EOS, 𝑎𝑖 =
0.42748·𝑅2(𝑇𝑐,𝑖)

2

𝑃𝑐,𝑖
, [Pa*m^6/mol^2]

Returns
a_alphas [list[float]] Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTs [list[float]] First temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K)]

d2a_alpha_dT2s [list[float]] Second temperature derivative of pure component a_alpha,
[Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> RK_a_alpha_and_derivatives_vectorized(322.29, Tcs=Tcs, ais=ais)
([2.3362073307, 3.16943743055, 4.08255757984], [-0.00362438693525, -0.0049170582868,
→˓ -0.00633367088622], [1.6868597855e-05, 2.28849403652e-05, 2.94781294155e-05])
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7.11.3 Class With Alpha Functions

The class-based ones van save a little code when implementing a new EOS. If there is not a standalone function available
for an alpha function, it has not yet been accelerated in a nice vectorized way.

class thermo.eos_alpha_functions.a_alpha_base
Bases: object

class thermo.eos_alpha_functions.Almeida_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Almeida et al. (1991) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Almeida et al. (1991) [1].
Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more doc-
umentation. Three coefficients needed.

𝛼 = 𝑒
𝑐1
(︁
− 𝑇

𝑇𝑐,𝑖
+1
)︁⃒⃒⃒

𝑇
𝑇𝑐,𝑖

−1
⃒⃒⃒𝑐2−1

+𝑐3
(︁
−1+

𝑇𝑐,𝑖
𝑇

)︁

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Androulakis_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Androulakis et al. (1989)
[1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Androulakis et al. (1989)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
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documentation. Three coefficients needed.

𝛼 = 𝑐1

(︃
−
(︂
𝑇

𝑇𝑐,𝑖

)︂ 2
3

+ 1

)︃
+ 𝑐2

(︃
−
(︂
𝑇

𝑇𝑐,𝑖

)︂ 2
3

+ 1

)︃2

+ 𝑐3

(︃
−
(︂
𝑇

𝑇𝑐,𝑖

)︂ 2
3

+ 1

)︃3

+ 1

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Chen_Yang_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Hamid and Yang (2017) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Hamid and Yang (2017)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. Seven coefficients needed.

𝛼 = 𝑒

⎛⎝−𝑐
ln

(︂
𝑇

𝑇𝑐,𝑖

)︂
3 +1

⎞⎠(︁− 𝑇𝑐2
𝑇𝑐,𝑖

+𝑐1
)︁

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Coquelet_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Coquelet et al. (2004) [1].

a_alpha_pure
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a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Coquelet et al. (2004) [1].
Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more doc-
umentation. Three coefficients needed.

𝛼 = 𝑒
𝑐1
(︁
− 𝑇

𝑇𝑐,𝑖
+1
)︁(︂

𝑐2

(︂
−
√︁

𝑇
𝑇𝑐,𝑖

+1

)︂2

+𝑐3

(︂
−
√︁

𝑇
𝑇𝑐,𝑖

+1

)︂3

+1

)︂2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Gasem_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Gasem (2001) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Gasem (2001) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Three coefficients needed.

𝛼 = 𝑒

(︁
−
(︁

𝑇
𝑇𝑐,𝑖

)︁𝑐3
+1
)︁(︁

𝑇𝑐2
𝑇𝑐,𝑖

+𝑐1
)︁

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Gibbons_Laughton_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and sec-
ond derivatives according to Gibbons and Laughton
(1984) [1].

a_alpha_pure
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a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Gibbons and Laughton (1984)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. Two coefficients needed.

𝛼 = 𝑐1

(︂
𝑇

𝑇𝑐,𝑖
− 1

)︂
+ 𝑐2

(︃√︃
𝑇

𝑇𝑐,𝑖
− 1

)︃
+ 1

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Haghtalab_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Haghtalab et al. (2010) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Haghtalab et al. (2010)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. Three coefficients needed.

𝛼 = 𝑒

⎛⎝−𝑐
ln

(︂
𝑇

𝑇𝑐,𝑖

)︂
3 +1

⎞⎠(︁− 𝑇𝑐2
𝑇𝑐,𝑖

+𝑐1
)︁

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Harmens_Knapp_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base
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Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Harmens and Knapp (1980)
[1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Harmens and Knapp (1980)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. Two coefficients needed.

𝛼 =

(︃
𝑐1

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃
− 𝑐2

(︂
1 − 𝑇𝑐,𝑖

𝑇

)︂
+ 1

)︃2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Heyen_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Heyen (1980) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Heyen (1980) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Two coefficients needed.

𝛼 = 𝑒
𝑐1
(︁
−
(︁

𝑇
𝑇𝑐,𝑖

)︁𝑐2
+1
)︁
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References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Mathias_1983_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Mathias (1983) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Mathias (1983) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Two coefficients needed.

𝛼 =

(︃
𝑐1

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃
− 𝑐2

(︂
− 𝑇

𝑇𝑐,𝑖
+ 0.7

)︂(︂
− 𝑇

𝑇𝑐,𝑖
+ 1

)︂
+ 1

)︃2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Mathias_Copeman_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and sec-
ond derivatives according to Mathias and Copeman
(1983) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Mathias and Copeman (1983)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
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documentation. Three coefficients needed.

𝛼 =

⎛⎝𝑐1(︃−
√︃

𝑇

𝑇𝑐,𝑖
+ 1

)︃
+ 𝑐2

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃2

+ 𝑐3

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃3

+ 1

⎞⎠2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Mathias_Copeman_poly_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure
a_alpha_and_derivatives_vectorized
a_alpha_pure
a_alphas_vectorized

a_alpha_and_derivatives_pure(T)

a_alpha_and_derivatives_vectorized(T)

a_alpha_pure(T)

a_alphas_vectorized(T)

class thermo.eos_alpha_functions.Mathias_Copeman_untruncated_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and sec-
ond derivatives according to Mathias and Copeman
(1983) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Mathias and Copeman (1983)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
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documentation. Three coefficients needed.

𝛼 =

⎛⎝𝑐1(︃−
√︃

𝑇

𝑇𝑐,𝑖
+ 1

)︃
+ 𝑐2

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃2

+ 𝑐3

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃3

+ 1

⎞⎠2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Melhem_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Melhem et al. (1989) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Melhem et al. (1989) [1].
Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more doc-
umentation. Two coefficients needed.

𝛼 = 𝑒
𝑐1
(︁
− 𝑇

𝑇𝑐,𝑖
+1
)︁
+𝑐2

(︂
−
√︁

𝑇
𝑇𝑐,𝑖

+1

)︂2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Poly_a_alpha
Bases: object

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives given that there is a polynomial equation
for 𝛼.

a_alpha_pure(T) Method to calculate a_alpha given that there is a
polynomial equation for 𝛼.
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a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives given that there is a polynomial equation
for 𝛼.

𝑎𝛼 = 𝑎 · poly(𝑇 )

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alpha_pure(T)
Method to calculate a_alpha given that there is a polynomial equation for 𝛼.

𝑎𝛼 = 𝑎 · poly(𝑇 )

Parameters
T [float] Temperature, [K]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

class thermo.eos_alpha_functions.Saffari_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Saffari and Zahedi (2013)
[1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Saffari and Zahedi (2013)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. Three coefficients needed.

𝛼 = 𝑒
𝑇𝑐1
𝑇𝑐,𝑖

+𝑐2 ln
(︁

𝑇
𝑇𝑐,𝑖

)︁
+𝑐3

(︂
−
√︁

𝑇
𝑇𝑐,𝑖

+1

)︂
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References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Schwartzentruber_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and sec-
ond derivatives according to Schwartzentruber et al.
(1990) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Schwartzentruber et al. (1990)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. Three coefficients needed.

𝛼 =

(︃
𝑐4

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃
−

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃(︂
𝑇 2𝑐3
𝑇𝑐2

+
𝑇𝑐2
𝑇𝑐,𝑖

+ 𝑐1

)︂
+ 1

)︃2

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Soave_1972_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Soave (1972) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Soave (1972) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Same as SRK.a_alpha_and_derivatives but slower and requiring alpha_coeffs to be set. One coeffi-
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cient needed.

𝛼 =

(︃
𝑐0

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃
+ 1

)︃2

References

[1], [2]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Soave_1984_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Soave (1984) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Soave (1984) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Two coefficients needed.

𝛼 = 𝑐1

(︂
− 𝑇

𝑇𝑐,𝑖
+ 1

)︂
+ 𝑐2

(︂
−1 +

𝑇𝑐,𝑖
𝑇

)︂
+ 1

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Soave_1979_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Soave (1979) [1].

a_alpha_and_derivatives_vectorized
a_alpha_pure
a_alphas_vectorized
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a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Soave (1979) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. Three coefficients are needed.

𝛼 = 1 + (1 − 𝑇𝑟)(𝑀 +
𝑁

𝑇𝑟
)

References

[1]

a_alpha_and_derivatives_vectorized(T)

a_alpha_pure(T)

a_alphas_vectorized(T)

class thermo.eos_alpha_functions.Soave_1993_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Soave (1983) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Soave (1983) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Two coefficient needed.

𝛼 = 𝑐1

(︂
− 𝑇

𝑇𝑐,𝑖
+ 1

)︂
+ 𝑐2

(︃
−

√︃
𝑇

𝑇𝑐,𝑖
+ 1

)︃2

+ 1

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Trebble_Bishnoi_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base
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Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Trebble and Bishnoi (1987)
[1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Trebble and Bishnoi (1987)
[1]. Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more
documentation. One coefficient needed.

𝛼 = 𝑒
𝑐1
(︁
− 𝑇

𝑇𝑐,𝑖
+1
)︁

References

[1]

a_alpha_pure(T)

class thermo.eos_alpha_functions.Twu91_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Twu et al. (1991) [1].

a_alpha_and_derivatives_vectorized(T) Method to calculate the pure-component a_alphas
and their first and second derivatives for TWU91 al-
pha function EOS.

a_alpha_pure
a_alphas_vectorized

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Twu et al. (1991) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Three coefficients needed.

𝛼 =

(︂
𝑇

𝑇𝑐,𝑖

)︂𝑐3(𝑐2−1)

𝑒
𝑐1
(︁
−
(︁

𝑇
𝑇𝑐,𝑖

)︁𝑐2𝑐3
+1
)︁
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References

[1]

a_alpha_and_derivatives_vectorized(T)
Method to calculate the pure-component a_alphas and their first and second derivatives for TWU91 alpha
function EOS. This vectorized implementation is added for extra speed.

𝛼 =

(︂
𝑇

𝑇𝑐,𝑖

)︂𝑐3(𝑐2−1)

𝑒
𝑐1
(︁
−
(︁

𝑇
𝑇𝑐,𝑖

)︁𝑐2𝑐3
+1
)︁

Parameters
T [float] Temperature, [K]

Returns
a_alphas [list[float]] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTs [list[float]] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2s [list[float]] Second temperature derivative of coefficient calculated by
EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alpha_pure(T)

a_alphas_vectorized(T)

class thermo.eos_alpha_functions.TwuPR95_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for the Twu alpha function.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for the Twu alpha function.

a_alpha_and_derivatives_vectorized
a_alphas_vectorized

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for the Twu alpha function. Uses the set values
of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:
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L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

The derivatives are somewhat long and are not described here for brevity; they are obtainable from the
following SymPy expression.

>>> from sympy import *
>>> T, Tc, omega, N1, N0, M1, M0, L1, L0 = symbols('T, Tc, omega, N1, N0, M1,␣
→˓M0, L1, L0')
>>> Tr = T/Tc
>>> alpha0 = Tr**(N0*(M0-1))*exp(L0*(1-Tr**(N0*M0)))
>>> alpha1 = Tr**(N1*(M1-1))*exp(L1*(1-Tr**(N1*M1)))
>>> alpha = alpha0 + omega*(alpha1-alpha0)
>>> diff(alpha, T)
>>> diff(alpha, T, T)

a_alpha_and_derivatives_vectorized(T)

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for the Twu alpha function. Uses the set values of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.

Parameters
T [float] Temperature at which to calculate the value, [-]
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Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

a_alphas_vectorized(T)

class thermo.eos_alpha_functions.TwuSRK95_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base

Methods

a_alpha_and_derivatives_pure(T) Method to calculate 𝑎𝛼 and its first and second
derivatives for the Twu alpha function.

a_alpha_pure(T) Method to calculate 𝑎𝛼 for the Twu alpha function.

a_alpha_and_derivatives_vectorized
a_alphas_vectorized

a_alpha_and_derivatives_pure(T)
Method to calculate 𝑎𝛼 and its first and second derivatives for the Twu alpha function. Uses the set values
of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
T [float] Temperature at which to calculate the values, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dT [float] Temperature derivative of coefficient calculated by EOS-specific
method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2 [float] Second temperature derivative of coefficient calculated by EOS-
specific method, [J^2/mol^2/Pa/K^2]
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Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

The derivatives are somewhat long and are not described here for brevity; they are obtainable from the
following SymPy expression.

>>> from sympy import *
>>> T, Tc, omega, N1, N0, M1, M0, L1, L0 = symbols('T, Tc, omega, N1, N0, M1,␣
→˓M0, L1, L0')
>>> Tr = T/Tc
>>> alpha0 = Tr**(N0*(M0-1))*exp(L0*(1-Tr**(N0*M0)))
>>> alpha1 = Tr**(N1*(M1-1))*exp(L1*(1-Tr**(N1*M1)))
>>> alpha = alpha0 + omega*(alpha1-alpha0)
>>> diff(alpha, T)
>>> diff(alpha, T, T)

a_alpha_and_derivatives_vectorized(T)

a_alpha_pure(T)
Method to calculate 𝑎𝛼 for the Twu alpha function. Uses the set values of Tc, omega and a.

𝛼 = 𝛼(0) + 𝜔(𝛼(1) − 𝛼(0))

𝛼(𝑖) = 𝑇𝑁(𝑀−1)
𝑟 exp[𝐿(1 − 𝑇𝑁𝑀

𝑟 )]

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
T [float] Temperature at which to calculate the value, [-]

Returns
a_alpha [float] Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of
the object.

a_alphas_vectorized(T)

class thermo.eos_alpha_functions.Yu_Lu_a_alpha
Bases: thermo.eos_alpha_functions.a_alpha_base
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Methods

a_alpha_and_derivatives_pure(T) Method to calculate a_alpha and its first and second
derivatives according to Yu and Lu (1987) [1].

a_alpha_pure

a_alpha_and_derivatives_pure(T)
Method to calculate a_alpha and its first and second derivatives according to Yu and Lu (1987) [1]. Returns
a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documenta-
tion. Four coefficients needed.

𝛼 = 10
𝑐4
(︁
− 𝑇

𝑇𝑐,𝑖
+1
)︁(︂

𝑇2𝑐3
𝑇𝑐2

+
𝑇𝑐2
𝑇𝑐,𝑖

+𝑐1

)︂

References

[1]

a_alpha_pure(T)

7.11.4 Pure Alpha Functions

thermo.eos_alpha_functions.Twu91_alpha_pure(T, Tc, c0, c1, c2)

thermo.eos_alpha_functions.Soave_1972_alpha_pure(T, Tc, c0)

thermo.eos_alpha_functions.Soave_1979_alpha_pure(T, Tc, M, N)

thermo.eos_alpha_functions.Heyen_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Harmens_Knapp_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Mathias_1983_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Mathias_Copeman_untruncated_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Gibbons_Laughton_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Soave_1984_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Yu_Lu_alpha_pure(T, Tc, c1, c2, c3, c4)

thermo.eos_alpha_functions.Trebble_Bishnoi_alpha_pure(T, Tc, c1)
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thermo.eos_alpha_functions.Melhem_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Androulakis_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Schwartzentruber_alpha_pure(T, Tc, c1, c2, c3, c4)

thermo.eos_alpha_functions.Almeida_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Soave_1993_alpha_pure(T, Tc, c1, c2)

thermo.eos_alpha_functions.Gasem_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Coquelet_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Haghtalab_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Saffari_alpha_pure(T, Tc, c1, c2, c3)

thermo.eos_alpha_functions.Chen_Yang_alpha_pure(T, Tc, omega, c1, c2, c3, c4, c5, c6, c7)

7.12 Equilibrium State (thermo.equilibrium)

This module contains an object designed to store the result of a flash calculation and provide convinient access to all
properties of the calculated phases and bulks.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• EquilibriumState

7.12.1 EquilibriumState

class thermo.equilibrium.EquilibriumState(T, P, zs, gas, liquids, solids, betas, flash_specs=None,
flash_convergence=None, constants=None,
correlations=None, flasher=None,
settings=<thermo.bulk.BulkSettings object>)

Class to represent a thermodynamic equilibrium state with one or more phases in it. This object is designed to
be the output of the thermo.flash.Flash interface and to provide easy acess to all properties of the mixture.

Properties like Cp are calculated using the mixing rules configured by the BulkSettings object. For states with
a single phase, this will always reduce to the properties of that phase.

This interface allows calculation of thermodynamic properties, and transport properties. Both molar and mass
outputs are provided, as separate calls (ex. Cp and Cp_mass).

Parameters
T [float] Temperature of state, [K]
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P [float] Pressure of state, [Pa]

zs [list[float]] Overall mole fractions of all species in the state, [-]

gas [Phase] The calcualted gas phase object, if one was found, [-]

liquids [list[Phase]] A list of liquid phase objects, if any were found, [-]

solids [list[Phase]] A list of solid phase objects, if any were found, [-]

betas [list[float]] Molar phase fractions of every phase, ordered [gas beta, liquid beta0, liquid
beta1, . . . , solid beta0, solid beta1, . . . ]

flash_specs [dict[str][float], optional] A dictionary containing the specifications for the flash
calculations, [-]

flash_convergence [dict[str][float], optional] A dictionary containing the convergence results
for the flash calculations; this is to help support development of the library only and the
contents of this dictionary is subject to change, [-]

constants [ChemicalConstantsPackage, optional] Package of chemical constants; all cases
these properties are accessible as attributes of this object, [-] EquilibriumState object, [-]

correlations [PropertyCorrelationsPackage, optional] Package of chemical T-dependent
properties; these properties are accessible as attributes of this object object, [-]

flasher [Flash object, optional] This reference can be provided to this object to allow the object
to return properties which are themselves calculated from results of flash calculations, [-]

settings [BulkSettings, optional] Object containing settings for calculating bulk and transport
properties, [-]

Examples

The following sample shows a flash for the CO2-n-hexane system with all constants provided, using no data from
thermo.

>>> from thermo import *
>>> constants = ChemicalConstantsPackage(names=['carbon dioxide', 'hexane'], CASs=[
→˓'124-38-9', '110-54-3'], MWs=[44.0095, 86.17536], omegas=[0.2252, 0.2975],␣
→˓Pcs=[7376460.0, 3025000.0], Tbs=[194.67, 341.87], Tcs=[304.2, 507.6], Tms=[216.65,
→˓ 178.075])
>>> correlations = PropertyCorrelationsPackage(constants=constants, skip_
→˓missing=True,
... ␣
→˓HeatCapacityGases=[HeatCapacityGas(poly_fit=(50.0, 1000.0, [-3.1115474168865828e-
→˓21, 1.39156078498805e-17, -2.5430881416264243e-14, 2.4175307893014295e-11, -1.
→˓2437314771044867e-08, 3.1251954264658904e-06, -0.00021220221928610925, 0.
→˓000884685506352987, 29.266811602924644])),
... ␣
→˓HeatCapacityGas(poly_fit=(200.0, 1000.0, [1.3740654453881647e-21, -8.
→˓344496203280677e-18, 2.2354782954548568e-14, -3.4659555330048226e-11, 3.
→˓410703030634579e-08, -2.1693611029230923e-05, 0.008373280796376588, -1.
→˓356180511425385, 175.67091124888998]))])
>>> eos_kwargs = {'Pcs': constants.Pcs, 'Tcs': constants.Tcs, 'omegas': constants.
→˓omegas}
>>> gas = CEOSGas(PRMIX, eos_kwargs, HeatCapacityGases=correlations.
→˓HeatCapacityGases)

(continues on next page)
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(continued from previous page)

>>> liq = CEOSLiquid(PRMIX, eos_kwargs, HeatCapacityGases=correlations.
→˓HeatCapacityGases)
>>> flasher = FlashVL(constants, correlations, liquid=liq, gas=gas)
>>> state = flasher.flash(P=1e5, T=196.0, zs=[0.5, 0.5])
>>> type(state) is EquilibriumState
True
>>> state.phase_count
2
>>> state.bulk.Cp()
108.3164692
>>> state.flash_specs
{'zs': [0.5, 0.5], 'T': 196.0, 'P': 100000.0}
>>> state.Tms
[216.65, 178.075]
>>> state.liquid0.H()
-34376.4853
>>> state.gas.H()
-3608.0551

Attributes
gas_count [int] Number of gas phases present (0 or 1), [-]

liquid_count [int] Number of liquid phases present, [-]

solid_count [int] Number of solid phases present, [-]

phase_count [int] Number of phases present, [-]

gas_beta [float] Molar phase fraction of the gas phase; 0 if no gas phase is present, [-]

liquids_betas [list[float]] Liquid molar phase fractions, [-]

solids_betas [list[float]] Solid molar phase fractions, [-]

liquid_zs [list[float]] Overall mole fractions of each component in the overall liquid phase, [-]

liquid_bulk [Bulk] Liquid phase bulk, [-]

solid_zs [list[float]] Overall mole fractions of each component in the overall solid phase, [-]

solid_bulk [Bulk] Solid phase bulk, [-]

bulk [Bulk] Overall phase bulk, [-]

IDs Alias of CASs.

LF Method to return the liquid fraction of the equilibrium state.

VF Method to return the vapor fraction of the equilibrium state.

betas_liquids Method to calculate and return the fraction of the liquid phase that each liquid
phase is, by molar phase fraction.

betas_mass Method to calculate and return the mass fraction of all of the phases in the system.

betas_mass_liquids Method to calculate and return the fraction of the liquid phase that each
liquid phase is, by mass phase fraction.

betas_mass_states Method to return the mass phase fractions of each of the three fundamen-
tal types of phases.
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betas_states Method to return the molar phase fractions of each of the three fundamental
types of phases.

betas_volume Method to calculate and return the volume fraction of all of the phases in the
system.

betas_volume_liquids Method to calculate and return the fraction of the liquid phase that
each liquid phase is, by volume phase fraction.

betas_volume_states Method to return the volume phase fractions of each of the three fun-
damental types of phases.

heaviest_liquid The liquid-like phase with the highest mass density, [-]

lightest_liquid The liquid-like phase with the lowest mass density, [-]

phase Method to calculate and return a string representing the phase of the mixture.

quality Method to return the mass vapor fraction of the equilibrium state.

water_index The index of the component water in the components.

water_phase The liquid-like phase with the highest water mole fraction, [-]

water_phase_index The liquid-like phase with the highest mole fraction of water, [-]

atomss Breakdown of each component into its elements and their counts, as a dict, [-].

Carcinogens Status of each component in cancer causing registries, [-].

CASs CAS registration numbers for each component, [-].

Ceilings Ceiling exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

charges Charge number (valence) for each component, [-].

conductivities Electrical conductivities for each component, [S/m].

dipoles Dipole moments for each component, [debye].

economic_statuses Status of each component in in relation to import and export from various
regions, [-].

formulas Formulas of each component, [-].

Gfgs Ideal gas standard molar Gibbs free energy of formation for each component, [J/mol].

Gfgs_mass Ideal gas standard Gibbs free energy of formation for each component, [J/kg].

GWPs Global Warming Potentials for each component (impact/mass chemical)/(impact/mass
CO2), [-].

Hcs Higher standard molar heats of combustion for each component, [J/mol].

Hcs_lower Lower standard molar heats of combustion for each component, [J/mol].

Hcs_lower_mass Lower standard heats of combustion for each component, [J/kg].

Hcs_mass Higher standard heats of combustion for each component, [J/kg].

Hfgs Ideal gas standard molar enthalpies of formation for each component, [J/mol].

Hfgs_mass Ideal gas standard enthalpies of formation for each component, [J/kg].

Hfus_Tms Molar heats of fusion for each component at their respective melting points, [J/mol].

Hfus_Tms_mass Heats of fusion for each component at their respective melting points, [J/kg].

Hsub_Tts Heats of sublimation for each component at their respective triple points, [J/mol].
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Hsub_Tts_mass Heats of sublimation for each component at their respective triple points,
[J/kg].

Hvap_298s Molar heats of vaporization for each component at 298.15 K, [J/mol].

Hvap_298s_mass Heats of vaporization for each component at 298.15 K, [J/kg].

Hvap_Tbs Molar heats of vaporization for each component at their respective normal boiling
points, [J/mol].

Hvap_Tbs_mass Heats of vaporization for each component at their respective normal boiling
points, [J/kg].

InChI_Keys InChI Keys for each component, [-].

InChIs InChI strings for each component, [-].

legal_statuses Status of each component in in relation to import and export rules from var-
ious regions, [-].

LFLs Lower flammability limits for each component, [-].

logPs Octanol-water partition coefficients for each component, [-].

molecular_diameters Lennard-Jones molecular diameters for each component, [angstrom].

MWs Similatiry variables for each component, [g/mol].

names Names for each component, [-].

ODPs Ozone Depletion Potentials for each component (impact/mass chemical)/(impact/mass
CFC-11), [-].

omegas Acentric factors for each component, [-].

Parachors Parachors for each component, [N^0.25*m^2.75/mol].

Pcs Critical pressures for each component, [Pa].

phase_STPs Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].

Psat_298s Vapor pressures for each component at 298.15 K, [Pa].

PSRK_groups PSRK subgroup: count groups for each component, [-].

Pts Triple point pressures for each component, [Pa].

PubChems Pubchem IDs for each component, [-].

rhocs Molar densities at the critical point for each component, [mol/m^3].

rhocs_mass Densities at the critical point for each component, [kg/m^3].

rhol_STPs Molar liquid densities at STP for each component, [mol/m^3].

rhol_STPs_mass Liquid densities at STP for each component, [kg/m^3].

RIs Refractive indexes for each component, [-].

S0gs Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component, [J/(mol*K)].

S0gs_mass Ideal gas absolute entropies at 298.15 K at 1 atm for each component, [J/(kg*K)].

Sfgs Ideal gas standard molar entropies of formation for each component, [J/(mol*K)].

Sfgs_mass Ideal gas standard entropies of formation for each component, [J/(kg*K)].

similarity_variables Similarity variables for each component, [mol/g].

Skins Whether each compound can be absorbed through the skin or not, [-].
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smiless SMILES identifiers for each component, [-].

STELs Short term exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

StielPolars Stiel polar factors for each component, [-].

Stockmayers Lennard-Jones Stockmayer parameters (depth of potential-energy minimum over
k) for each component, [K].

Tautoignitions Autoignition temperatures for each component, [K].

Tbs Boiling temperatures for each component, [K].

Tcs Critical temperatures for each component, [K].

Tflashs Flash point temperatures for each component, [K].

Tms Melting temperatures for each component, [K].

Tts Triple point temperatures for each component, [K].

TWAs Time-weighted average exposure limits to chemicals (and their units; ppm or mg/m^3),
[various].

UFLs Upper flammability limits for each component, [-].

UNIFAC_Dortmund_groups UNIFAC_Dortmund_group: count groups for each component, [-
].

UNIFAC_groups UNIFAC_group: count groups for each component, [-].

Van_der_Waals_areas Unnormalized Van der Waals areas for each component, [m^2/mol].

Van_der_Waals_volumes Unnormalized Van der Waals volumes for each component,
[m^3/mol].

Vcs Critical molar volumes for each component, [m^3/mol].

Vml_STPs Liquid molar volumes for each component at STP, [m^3/mol].

Vml_Tms Liquid molar volumes for each component at their respective melting points,
[m^3/mol].

Zcs Critical compressibilities for each component, [-].

UNIFAC_Rs UNIFAC R parameters for each component, [-].

UNIFAC_Qs UNIFAC Q parameters for each component, [-].

rhos_Tms Solid molar densities for each component at their respective melting points,
[mol/m^3].

Vms_Tms Solid molar volumes for each component at their respective melting points, [m^3/mol].

rhos_Tms_mass Solid mass densities for each component at their melting point, [kg/m^3].

solubility_parameters Solubility parameters for each component at 298.15 K, [Pa^0.5].

Vml_60Fs Liquid molar volumes for each component at 60 °F, [m^3/mol].

rhol_60Fs Liquid molar densities for each component at 60 °F, [mol/m^3].

rhol_60Fs_mass Liquid mass densities for each component at 60 °F, [kg/m^3].

conductivity_Ts Temperatures at which the electrical conductivities for each component
were measured, [K].

RI_Ts Temperatures at which the refractive indexes were reported for each component, [K].
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Vmg_STPs Gas molar volumes for each component at STP; metastable if normally another state,
[m^3/mol].

rhog_STPs Molar gas densities at STP for each component; metastable if normally another
state, [mol/m^3].

rhog_STPs_mass Gas densities at STP for each component; metastable if normally another
state, [kg/m^3].

sigma_STPs Liquid-air surface tensions at 298.15 K and the higher of 101325 Pa or the satura-
tion pressure, [N/m].

sigma_Tms Liquid-air surface tensions at the melting point and 101325 Pa, [N/m].

sigma_Tbs Liquid-air surface tensions at the normal boiling point and 101325 Pa, [N/m].

Hf_STPs Standard state molar enthalpies of formation for each component, [J/mol].

Hf_STPs_mass Standard state mass enthalpies of formation for each component, [J/kg].

VaporPressures Wrapper to obtain the list of VaporPressures objects of the associated
PropertyCorrelationsPackage.

VolumeLiquids Wrapper to obtain the list of VolumeLiquids objects of the associated
PropertyCorrelationsPackage.

VolumeGases Wrapper to obtain the list of VolumeGases objects of the associated
PropertyCorrelationsPackage.

VolumeSolids Wrapper to obtain the list of VolumeSolids objects of the associated
PropertyCorrelationsPackage.

HeatCapacityGases Wrapper to obtain the list of HeatCapacityGases objects of the associated
PropertyCorrelationsPackage.

HeatCapacitySolids Wrapper to obtain the list of HeatCapacitySolids objects of the associ-
ated PropertyCorrelationsPackage.

HeatCapacityLiquids Wrapper to obtain the list of HeatCapacityLiquids objects of the asso-
ciated PropertyCorrelationsPackage.

EnthalpyVaporizations Wrapper to obtain the list of EnthalpyVaporizations objects of the
associated PropertyCorrelationsPackage.

EnthalpySublimations Wrapper to obtain the list of EnthalpySublimations objects of the as-
sociated PropertyCorrelationsPackage.

SublimationPressures Wrapper to obtain the list of SublimationPressures objects of the as-
sociated PropertyCorrelationsPackage.

PermittivityLiquids Wrapper to obtain the list of PermittivityLiquids objects of the associ-
ated PropertyCorrelationsPackage.

ViscosityLiquids Wrapper to obtain the list of ViscosityLiquids objects of the associated
PropertyCorrelationsPackage.

ViscosityGases Wrapper to obtain the list of ViscosityGases objects of the associated
PropertyCorrelationsPackage.

ThermalConductivityLiquids Wrapper to obtain the list of ThermalConductivityLiquids
objects of the associated PropertyCorrelationsPackage.

ThermalConductivityGases Wrapper to obtain the list of ThermalConductivityGases objects
of the associated PropertyCorrelationsPackage.
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SurfaceTensions Wrapper to obtain the list of SurfaceTensions objects of the associated
PropertyCorrelationsPackage.

VolumeGasMixture Wrapper to obtain the list of VolumeGasMixture objects of the associated
PropertyCorrelationsPackage.

VolumeLiquidMixture Wrapper to obtain the list of VolumeLiquidMixture objects of the as-
sociated PropertyCorrelationsPackage.

VolumeSolidMixture Wrapper to obtain the list of VolumeSolidMixture objects of the asso-
ciated PropertyCorrelationsPackage.

HeatCapacityGasMixture Wrapper to obtain the list of HeatCapacityGasMixture objects of
the associated PropertyCorrelationsPackage.

HeatCapacityLiquidMixture Wrapper to obtain the list of HeatCapacityLiquidMixture ob-
jects of the associated PropertyCorrelationsPackage.

HeatCapacitySolidMixture Wrapper to obtain the list of HeatCapacitySolidMixture objects
of the associated PropertyCorrelationsPackage.

ViscosityGasMixture Wrapper to obtain the list of ViscosityGasMixture objects of the asso-
ciated PropertyCorrelationsPackage.

ViscosityLiquidMixture Wrapper to obtain the list of ViscosityLiquidMixture objects of
the associated PropertyCorrelationsPackage.

ThermalConductivityGasMixture Wrapper to obtain the list of ThermalConductivityGas-
Mixture objects of the associated PropertyCorrelationsPackage.

ThermalConductivityLiquidMixture Wrapper to obtain the list of ThermalConductiv-
ityLiquidMixture objects of the associated PropertyCorrelationsPackage.

SurfaceTensionMixture Wrapper to obtain the list of SurfaceTensionMixture objects of the
associated PropertyCorrelationsPackage.

Methods

A() Method to calculate and return the Helmholtz energy
of the phase.

API([phase]) Method to calculate and return the API of the phase.
A_dep() Method to calculate and return the departure

Helmholtz energy of the phase.
A_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas

Helmholtz energy of formation of the phase (as if
the phase was an ideal gas).

A_ideal_gas([phase]) Method to calculate and return the ideal-gas
Helmholtz energy of the phase.

A_mass([phase]) Method to calculate and return mass Helmholtz en-
ergy of the phase.

A_reactive() Method to calculate and return the Helmholtz free en-
ergy of the phase on a reactive basis.

Bvirial([phase]) Method to calculate and return the B virial coefficient
of the phase at its current conditions.

Cp() Method to calculate and return the constant-
temperature and constant phase-fraction heat
capacity of the bulk phase.

continues on next page
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Table 65 – continued from previous page
Cp_Cv_ratio() Method to calculate and return the Cp/Cv ratio of the

phase.
Cp_Cv_ratio_ideal_gas([phase]) Method to calculate and return the ratio of the ideal-

gas heat capacity to its constant-volume heat capac-
ity.

Cp_dep([phase]) Method to calculate and return the difference between
the actual Cp and the ideal-gas heat capacity 𝐶𝑖𝑔

𝑝 of
the phase.

Cp_ideal_gas([phase]) Method to calculate and return the ideal-gas heat ca-
pacity of the phase.

Cp_mass([phase]) Method to calculate and return mass constant pres-
sure heat capacity of the phase.

Cv() Method to calculate and return the constant-volume
heat capacity Cv of the phase.

Cv_dep([phase]) Method to calculate and return the difference between
the actual Cv and the ideal-gas constant volume heat
capacity 𝐶𝑖𝑔

𝑣 of the phase.
Cv_ideal_gas([phase]) Method to calculate and return the ideal-gas constant

volume heat capacity of the phase.
Cv_mass([phase]) Method to calculate and return mass constant volume

heat capacity of the phase.
G() Method to calculate and return the Gibbs free energy

of the phase.
G_dep() Method to calculate and return the departure Gibbs

free energy of the phase.
G_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas Gibbs

free energy of formation of the phase (as if the phase
was an ideal gas).

G_ideal_gas([phase]) Method to calculate and return the ideal-gas Gibbs
free energy of the phase.

G_mass([phase]) Method to calculate and return mass Gibbs energy of
the phase.

G_reactive() Method to calculate and return the Gibbs free energy
of the phase on a reactive basis.

H() Method to calculate and return the constant-
temperature and constant phase-fraction enthalpy of
the bulk phase.

H_C_ratio([phase]) Method to calculate and return the atomic ratio of hy-
drogen atoms to carbon atoms, based on the current
composition of the phase.

H_C_ratio_mass([phase]) Method to calculate and return the mass ratio of hy-
drogen atoms to carbon atoms, based on the current
composition of the phase.

H_dep([phase]) Method to calculate and return the difference between
the actual H and the ideal-gas enthalpy of the phase.

H_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas enthalpy
of formation of the phase (as if the phase was an ideal
gas).

H_ideal_gas([phase]) Method to calculate and return the ideal-gas enthalpy
of the phase.

continues on next page
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Table 65 – continued from previous page
H_mass([phase]) Method to calculate and return mass enthalpy of the

phase.
H_reactive() Method to calculate and return the constant-

temperature and constant phase-fraction reactive
enthalpy of the bulk phase.

Hc([phase]) Method to calculate and return the molar ideal-gas
higher heat of combustion of the object, [J/mol]

Hc_lower([phase]) Method to calculate and return the molar ideal-gas
lower heat of combustion of the object, [J/mol]

Hc_lower_mass([phase]) Method to calculate and return the mass ideal-gas
lower heat of combustion of the object, [J/mol]

Hc_lower_normal([phase]) Method to calculate and return the volumetric ideal-
gas lower heat of combustion of the object using the
normal gas volume, [J/m^3]

Hc_lower_standard([phase]) Method to calculate and return the volumetric ideal-
gas lower heat of combustion of the object using the
standard gas volume, [J/m^3]

Hc_mass([phase]) Method to calculate and return the mass ideal-gas
higher heat of combustion of the object, [J/mol]

Hc_normal([phase]) Method to calculate and return the volumetric ideal-
gas higher heat of combustion of the object using the
normal gas volume, [J/m^3]

Hc_standard([phase]) Method to calculate and return the volumetric ideal-
gas higher heat of combustion of the object using the
standard gas volume, [J/m^3]

Joule_Thomson() Method to calculate and return the Joule-Thomson
coefficient of the bulk according to the selected cal-
culation methodology.

Ks(phase[, phase_ref]) Method to calculate and return the K-values of each
phase.

MW([phase]) Method to calculate and return the molecular weight
of the phase.

PIP() Method to calculate and return the phase identifica-
tion parameter of the phase.

Pmc([phase]) Method to calculate and return the mechanical criti-
cal pressure of the phase.

S() Method to calculate and return the constant-
temperature and constant phase-fraction entropy of
the bulk phase.

SG([phase]) Method to calculate and return the standard liquid
specific gravity of the phase, using constant liquid
pure component densities not calculated by the phase
object, at 60 °F.

SG_gas([phase]) Method to calculate and return the specific gravity of
the phase with respect to a gas reference density.

S_dep([phase]) Method to calculate and return the difference between
the actual S and the ideal-gas entropy of the phase.

S_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas entropy
of formation of the phase (as if the phase was an ideal
gas).

continues on next page
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Table 65 – continued from previous page
S_ideal_gas([phase]) Method to calculate and return the ideal-gas entropy

of the phase.
S_mass([phase]) Method to calculate and return mass entropy of the

phase.
S_reactive() Method to calculate and return the constant-

temperature and constant phase-fraction reactive
entropy of the bulk phase.

Tmc([phase]) Method to calculate and return the mechanical criti-
cal temperature of the phase.

U() Method to calculate and return the internal energy of
the phase.

U_dep() Method to calculate and return the departure internal
energy of the phase.

U_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas internal
energy of formation of the phase (as if the phase was
an ideal gas).

U_ideal_gas([phase]) Method to calculate and return the ideal-gas internal
energy of the phase.

U_mass([phase]) Method to calculate and return mass internal energy
of the phase.

U_reactive() Method to calculate and return the internal energy of
the phase on a reactive basis.

V() Method to calculate and return the molar volume of
the bulk phase.

V_dep() Method to calculate and return the departure (from
ideal gas behavior) molar volume of the phase.

V_gas([phase]) Method to calculate and return the ideal-gas molar
volume of the phase at the chosen reference tempera-
ture and pressure, according to the temperature vari-
able T_gas_ref and pressure variable P_gas_ref of
the thermo.bulk.BulkSettings.

V_gas_normal([phase]) Method to calculate and return the ideal-gas mo-
lar volume of the phase at the normal temperature
and pressure, according to the temperature variable
T_normal and pressure variable P_normal of the
thermo.bulk.BulkSettings.

V_gas_standard([phase]) Method to calculate and return the ideal-gas mo-
lar volume of the phase at the standard temperature
and pressure, according to the temperature variable
T_standard and pressure variable P_standard of the
thermo.bulk.BulkSettings.

V_ideal_gas([phase]) Method to calculate and return the ideal-gas molar
volume of the phase.

V_iter([phase, force]) Method to calculate and return the volume of the
phase in a way suitable for a TV resolution to con-
verge on the same pressure.

V_liquid_ref ([phase]) Method to calculate and return the liquid refer-
ence molar volume according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

continues on next page
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Table 65 – continued from previous page
V_liquids_ref () Method to calculate and return the liquid refer-

ence molar volumes according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings.

V_mass([phase]) Method to calculate and return the specific volume of
the phase.

Vfgs([phase]) Method to calculate and return the ideal-gas volume
fractions of the components of the phase.

Vfls([phase]) Method to calculate and return the ideal-liquid vol-
ume fractions of the components of the phase,
using the standard liquid densities at the tem-
perature variable T_liquid_volume_ref of thermo.
bulk.BulkSettings and the composition of the
phase.

Vmc([phase]) Method to calculate and return the mechanical criti-
cal volume of the phase.

Wobbe_index([phase]) Method to calculate and return the molar Wobbe in-
dex of the object, [J/mol].

Wobbe_index_lower([phase]) Method to calculate and return the molar lower
Wobbe index of the

Wobbe_index_lower_mass([phase]) Method to calculate and return the lower mass Wobbe
index of the object, [J/kg].

Wobbe_index_lower_normal([phase]) Method to calculate and return the volumetric normal
lower Wobbe index of the object, [J/m^3].

Wobbe_index_lower_standard([phase]) Method to calculate and return the volumetric stan-
dard lower Wobbe index of the object, [J/m^3].

Wobbe_index_mass([phase]) Method to calculate and return the mass Wobbe index
of the object, [J/kg].

Wobbe_index_normal([phase]) Method to calculate and return the volumetric normal
Wobbe index of the object, [J/m^3].

Wobbe_index_standard([phase]) Method to calculate and return the volumetric stan-
dard Wobbe index of the object, [J/m^3].

Z() Method to calculate and return the compressibility
factor of the phase.

Zmc([phase]) Method to calculate and return the mechanical criti-
cal compressibility of the phase.

alpha([phase]) Method to calculate and return the thermal diffusivity
of the equilibrium state.

atom_fractions([phase]) Method to calculate and return the atomic composi-
tion of the phase; returns a dictionary of atom frac-
tion (by count), containing only those elements who
are present.

atom_mass_fractions([phase]) Method to calculate and return the atomic mass frac-
tions of the phase; returns a dictionary of atom frac-
tion (by mass), containing only those elements who
are present.

d2P_dT2() Method to calculate and return the second tempera-
ture derivative of pressure of the bulk according to
the selected calculation methodology.

continues on next page

408 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Table 65 – continued from previous page
d2P_dT2_frozen() Method to calculate and return the second constant-

volume derivative of pressure with respect to temper-
ature of the bulk phase, at constant phase fractions
and phase compositions.

d2P_dTdV() Method to calculate and return the second deriva-
tive of pressure with respect to temperature and vol-
ume of the bulk according to the selected calculation
methodology.

d2P_dTdV_frozen() Method to calculate and return the second derivative
of pressure with respect to volume and temperature of
the bulk phase, at constant phase fractions and phase
compositions.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the bulk according to the se-
lected calculation methodology.

d2P_dV2_frozen() Method to calculate and return the constant-
temperature second derivative of pressure with
respect to volume of the bulk phase, at constant
phase fractions and phase compositions.

dA_dP() Method to calculate and return the constant-
temperature pressure derivative of Helmholtz
energy.

dA_dP_T() Method to calculate and return the constant-
temperature pressure derivative of Helmholtz
energy.

dA_dP_V() Method to calculate and return the constant-volume
pressure derivative of Helmholtz energy.

dA_dT() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dA_dT_P() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dA_dT_V() Method to calculate and return the constant-volume
temperature derivative of Helmholtz energy.

dA_dV_P() Method to calculate and return the constant-pressure
volume derivative of Helmholtz energy.

dA_dV_T() Method to calculate and return the constant-
temperature volume derivative of Helmholtz energy.

dA_mass_dP() Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
temperature.

dA_mass_dP_T() Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
temperature.

dA_mass_dP_V() Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
volume.

dA_mass_dT() Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant pressure.

continues on next page
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Table 65 – continued from previous page
dA_mass_dT_P() Method to calculate and return the temperature

derivative of mass Helmholtz energy of the phase at
constant pressure.

dA_mass_dT_V() Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant volume.

dA_mass_dV_P() Method to calculate and return the volume derivative
of mass Helmholtz energy of the phase at constant
pressure.

dA_mass_dV_T() Method to calculate and return the volume derivative
of mass Helmholtz energy of the phase at constant
temperature.

dCv_dP_T() Method to calculate the pressure derivative of Cv,
constant volume heat capacity, at constant tempera-
ture.

dCv_dT_P() Method to calculate the temperature derivative of Cv,
constant volume heat capacity, at constant pressure.

dCv_mass_dP_T() Method to calculate and return the pressure derivative
of mass Constant-volume heat capacity of the phase
at constant temperature.

dCv_mass_dT_P() Method to calculate and return the temperature
derivative of mass Constant-volume heat capacity of
the phase at constant pressure.

dG_dP() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dP_T() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dP_V() Method to calculate and return the constant-volume
pressure derivative of Gibbs free energy.

dG_dT() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

dG_dT_P() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

dG_dT_V() Method to calculate and return the constant-volume
temperature derivative of Gibbs free energy.

dG_dV_P() Method to calculate and return the constant-pressure
volume derivative of Gibbs free energy.

dG_dV_T() Method to calculate and return the constant-
temperature volume derivative of Gibbs free energy.

dG_mass_dP() Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
temperature.

dG_mass_dP_T() Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
temperature.

dG_mass_dP_V() Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
volume.

continues on next page

410 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Table 65 – continued from previous page
dG_mass_dT() Method to calculate and return the temperature

derivative of mass Gibbs free energy of the phase at
constant pressure.

dG_mass_dT_P() Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant pressure.

dG_mass_dT_V() Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant volume.

dG_mass_dV_P() Method to calculate and return the volume derivative
of mass Gibbs free energy of the phase at constant
pressure.

dG_mass_dV_T() Method to calculate and return the volume derivative
of mass Gibbs free energy of the phase at constant
temperature.

dH_dP() Method to calculate and return the pressure derivative
of enthalpy of the phase at constant pressure.

dH_dP_T() Method to calculate and return the pressure derivative
of enthalpy of the phase at constant pressure.

dH_dT() Method to calculate and return the constant-
temperature and constant phase-fraction heat
capacity of the bulk phase.

dH_dT_P() Method to calculate and return the temperature
derivative of enthalpy of the phase at constant pres-
sure.

dH_mass_dP() Method to calculate and return the pressure deriva-
tive of mass enthalpy of the phase at constant tem-
perature.

dH_mass_dP_T() Method to calculate and return the pressure deriva-
tive of mass enthalpy of the phase at constant tem-
perature.

dH_mass_dP_V() Method to calculate and return the pressure derivative
of mass enthalpy of the phase at constant volume.

dH_mass_dT() Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
pressure.

dH_mass_dT_P() Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
pressure.

dH_mass_dT_V() Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
volume.

dH_mass_dV_P() Method to calculate and return the volume derivative
of mass enthalpy of the phase at constant pressure.

dH_mass_dV_T() Method to calculate and return the volume derivative
of mass enthalpy of the phase at constant tempera-
ture.

dP_dP_A() Method to calculate and return the pressure derivative
of pressure of the phase at constant Helmholtz energy.

dP_dP_G() Method to calculate and return the pressure derivative
of pressure of the phase at constant Gibbs energy.

continues on next page
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Table 65 – continued from previous page
dP_dP_H() Method to calculate and return the pressure derivative

of pressure of the phase at constant enthalpy.
dP_dP_S() Method to calculate and return the pressure derivative

of pressure of the phase at constant entropy.
dP_dP_U() Method to calculate and return the pressure derivative

of pressure of the phase at constant internal energy.
dP_dT() Method to calculate and return the first temperature

derivative of pressure of the bulk according to the se-
lected calculation methodology.

dP_dT_A() Method to calculate and return the temperature
derivative of pressure of the phase at constant
Helmholtz energy.

dP_dT_G() Method to calculate and return the temperature
derivative of pressure of the phase at constant Gibbs
energy.

dP_dT_H() Method to calculate and return the temperature
derivative of pressure of the phase at constant en-
thalpy.

dP_dT_S() Method to calculate and return the temperature
derivative of pressure of the phase at constant en-
tropy.

dP_dT_U() Method to calculate and return the temperature
derivative of pressure of the phase at constant internal
energy.

dP_dT_frozen() Method to calculate and return the constant-volume
derivative of pressure with respect to temperature of
the bulk phase, at constant phase fractions and phase
compositions.

dP_dV() Method to calculate and return the first volume
derivative of pressure of the bulk according to the se-
lected calculation methodology.

dP_dV_A() Method to calculate and return the volume derivative
of pressure of the phase at constant Helmholtz energy.

dP_dV_G() Method to calculate and return the volume derivative
of pressure of the phase at constant Gibbs energy.

dP_dV_H() Method to calculate and return the volume derivative
of pressure of the phase at constant enthalpy.

dP_dV_S() Method to calculate and return the volume derivative
of pressure of the phase at constant entropy.

dP_dV_U() Method to calculate and return the volume derivative
of pressure of the phase at constant internal energy.

dP_dV_frozen() Method to calculate and return the constant-
temperature derivative of pressure with respect to
volume of the bulk phase, at constant phase fractions
and phase compositions.

dP_drho_A() Method to calculate and return the density derivative
of pressure of the phase at constant Helmholtz energy.

dP_drho_G() Method to calculate and return the density derivative
of pressure of the phase at constant Gibbs energy.

dP_drho_H() Method to calculate and return the density derivative
of pressure of the phase at constant enthalpy.

continues on next page
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Table 65 – continued from previous page
dP_drho_S() Method to calculate and return the density derivative

of pressure of the phase at constant entropy.
dP_drho_U() Method to calculate and return the density derivative

of pressure of the phase at constant internal energy.
dS_dP() Method to calculate and return the pressure derivative

of entropy of the phase at constant pressure.
dS_dP_T() Method to calculate and return the pressure derivative

of entropy of the phase at constant pressure.
dS_dV_P() Method to calculate and return the volume derivative

of entropy of the phase at constant pressure.
dS_dV_T() Method to calculate and return the volume derivative

of entropy of the phase at constant temperature.
dS_mass_dP() Method to calculate and return the pressure derivative

of mass entropy of the phase at constant temperature.
dS_mass_dP_T() Method to calculate and return the pressure derivative

of mass entropy of the phase at constant temperature.
dS_mass_dP_V() Method to calculate and return the pressure derivative

of mass entropy of the phase at constant volume.
dS_mass_dT() Method to calculate and return the temperature

derivative of mass entropy of the phase at constant
pressure.

dS_mass_dT_P() Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
pressure.

dS_mass_dT_V() Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
volume.

dS_mass_dV_P() Method to calculate and return the volume derivative
of mass entropy of the phase at constant pressure.

dS_mass_dV_T() Method to calculate and return the volume derivative
of mass entropy of the phase at constant temperature.

dT_dP_A() Method to calculate and return the pressure derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_dP_G() Method to calculate and return the pressure derivative
of temperature of the phase at constant Gibbs energy.

dT_dP_H() Method to calculate and return the pressure derivative
of temperature of the phase at constant enthalpy.

dT_dP_S() Method to calculate and return the pressure derivative
of temperature of the phase at constant entropy.

dT_dP_U() Method to calculate and return the pressure deriva-
tive of temperature of the phase at constant internal
energy.

dT_dT_A() Method to calculate and return the temperature
derivative of temperature of the phase at constant
Helmholtz energy.

dT_dT_G() Method to calculate and return the temperature
derivative of temperature of the phase at constant
Gibbs energy.

continues on next page
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Table 65 – continued from previous page
dT_dT_H() Method to calculate and return the temperature

derivative of temperature of the phase at constant en-
thalpy.

dT_dT_S() Method to calculate and return the temperature
derivative of temperature of the phase at constant en-
tropy.

dT_dT_U() Method to calculate and return the temperature
derivative of temperature of the phase at constant in-
ternal energy.

dT_dV_A() Method to calculate and return the volume derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_dV_G() Method to calculate and return the volume derivative
of temperature of the phase at constant Gibbs energy.

dT_dV_H() Method to calculate and return the volume derivative
of temperature of the phase at constant enthalpy.

dT_dV_S() Method to calculate and return the volume derivative
of temperature of the phase at constant entropy.

dT_dV_U() Method to calculate and return the volume derivative
of temperature of the phase at constant internal en-
ergy.

dT_drho_A() Method to calculate and return the density derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_drho_G() Method to calculate and return the density derivative
of temperature of the phase at constant Gibbs energy.

dT_drho_H() Method to calculate and return the density derivative
of temperature of the phase at constant enthalpy.

dT_drho_S() Method to calculate and return the density derivative
of temperature of the phase at constant entropy.

dT_drho_U() Method to calculate and return the density derivative
of temperature of the phase at constant internal en-
ergy.

dU_dP() Method to calculate and return the constant-
temperature pressure derivative of internal energy.

dU_dP_T() Method to calculate and return the constant-
temperature pressure derivative of internal energy.

dU_dP_V() Method to calculate and return the constant-volume
pressure derivative of internal energy.

dU_dT() Method to calculate and return the constant-pressure
temperature derivative of internal energy.

dU_dT_P() Method to calculate and return the constant-pressure
temperature derivative of internal energy.

dU_dT_V() Method to calculate and return the constant-volume
temperature derivative of internal energy.

dU_dV_P() Method to calculate and return the constant-pressure
volume derivative of internal energy.

dU_dV_T() Method to calculate and return the constant-
temperature volume derivative of internal energy.

continues on next page
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Table 65 – continued from previous page
dU_mass_dP() Method to calculate and return the pressure deriva-

tive of mass internal energy of the phase at constant
temperature.

dU_mass_dP_T() Method to calculate and return the pressure deriva-
tive of mass internal energy of the phase at constant
temperature.

dU_mass_dP_V() Method to calculate and return the pressure deriva-
tive of mass internal energy of the phase at constant
volume.

dU_mass_dT() Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant pressure.

dU_mass_dT_P() Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant pressure.

dU_mass_dT_V() Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant volume.

dU_mass_dV_P() Method to calculate and return the volume derivative
of mass internal energy of the phase at constant pres-
sure.

dU_mass_dV_T() Method to calculate and return the volume derivative
of mass internal energy of the phase at constant tem-
perature.

dV_dP_A() Method to calculate and return the pressure derivative
of volume of the phase at constant Helmholtz energy.

dV_dP_G() Method to calculate and return the pressure derivative
of volume of the phase at constant Gibbs energy.

dV_dP_H() Method to calculate and return the pressure derivative
of volume of the phase at constant enthalpy.

dV_dP_S() Method to calculate and return the pressure derivative
of volume of the phase at constant entropy.

dV_dP_U() Method to calculate and return the pressure derivative
of volume of the phase at constant internal energy.

dV_dT_A() Method to calculate and return the temperature
derivative of volume of the phase at constant
Helmholtz energy.

dV_dT_G() Method to calculate and return the temperature
derivative of volume of the phase at constant Gibbs
energy.

dV_dT_H() Method to calculate and return the temperature
derivative of volume of the phase at constant en-
thalpy.

dV_dT_S() Method to calculate and return the temperature
derivative of volume of the phase at constant entropy.

dV_dT_U() Method to calculate and return the temperature
derivative of volume of the phase at constant inter-
nal energy.

dV_dV_A() Method to calculate and return the volume derivative
of volume of the phase at constant Helmholtz energy.

continues on next page
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Table 65 – continued from previous page
dV_dV_G() Method to calculate and return the volume derivative

of volume of the phase at constant Gibbs energy.
dV_dV_H() Method to calculate and return the volume derivative

of volume of the phase at constant enthalpy.
dV_dV_S() Method to calculate and return the volume derivative

of volume of the phase at constant entropy.
dV_dV_U() Method to calculate and return the volume derivative

of volume of the phase at constant internal energy.
dV_drho_A() Method to calculate and return the density derivative

of volume of the phase at constant Helmholtz energy.
dV_drho_G() Method to calculate and return the density derivative

of volume of the phase at constant Gibbs energy.
dV_drho_H() Method to calculate and return the density derivative

of volume of the phase at constant enthalpy.
dV_drho_S() Method to calculate and return the density derivative

of volume of the phase at constant entropy.
dV_drho_U() Method to calculate and return the density derivative

of volume of the phase at constant internal energy.
drho_dP_A() Method to calculate and return the pressure derivative

of density of the phase at constant Helmholtz energy.
drho_dP_G() Method to calculate and return the pressure derivative

of density of the phase at constant Gibbs energy.
drho_dP_H() Method to calculate and return the pressure derivative

of density of the phase at constant enthalpy.
drho_dP_S() Method to calculate and return the pressure derivative

of density of the phase at constant entropy.
drho_dP_U() Method to calculate and return the pressure derivative

of density of the phase at constant internal energy.
drho_dT_A() Method to calculate and return the temperature

derivative of density of the phase at constant
Helmholtz energy.

drho_dT_G() Method to calculate and return the temperature
derivative of density of the phase at constant Gibbs
energy.

drho_dT_H() Method to calculate and return the temperature
derivative of density of the phase at constant en-
thalpy.

drho_dT_S() Method to calculate and return the temperature
derivative of density of the phase at constant entropy.

drho_dT_U() Method to calculate and return the temperature
derivative of density of the phase at constant internal
energy.

drho_dV_A() Method to calculate and return the volume derivative
of density of the phase at constant Helmholtz energy.

drho_dV_G() Method to calculate and return the volume derivative
of density of the phase at constant Gibbs energy.

drho_dV_H() Method to calculate and return the volume derivative
of density of the phase at constant enthalpy.

drho_dV_S() Method to calculate and return the volume derivative
of density of the phase at constant entropy.

continues on next page
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Table 65 – continued from previous page
drho_dV_U() Method to calculate and return the volume derivative

of density of the phase at constant internal energy.
drho_drho_A() Method to calculate and return the density derivative

of density of the phase at constant Helmholtz energy.
drho_drho_G() Method to calculate and return the density derivative

of density of the phase at constant Gibbs energy.
drho_drho_H() Method to calculate and return the density derivative

of density of the phase at constant enthalpy.
drho_drho_S() Method to calculate and return the density derivative

of density of the phase at constant entropy.
drho_drho_U() Method to calculate and return the density derivative

of density of the phase at constant internal energy.
isentropic_exponent() Method to calculate and return the real gas isentropic

exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

isentropic_exponent_PT() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃 (1−𝑘)𝑇 𝑘 = const.

isentropic_exponent_PV() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

isentropic_exponent_TV() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑇𝑉 𝑘−1 = const.

isobaric_expansion() Method to calculate and return the isobatic expansion
coefficient of the bulk according to the selected cal-
culation methodology.

isothermal_bulk_modulus() Method to calculate and return the isothermal bulk
modulus of the phase.

k() Calculate and return the thermal conductivity
of the bulk according to the selected thermal
conductivity settings in BulkSettings, the set-
tings in ThermalConductivityGasMixture
and ThermalConductivityLiquidMixture,
and the configured pure-component set-
tings in ThermalConductivityGas and
ThermalConductivityLiquid .

kappa() Method to calculate and return the isothermal com-
pressibility of the bulk according to the selected cal-
culation methodology.

log_zs() Method to calculate and return the log of mole frac-
tions specified.

molar_water_content([phase]) Method to calculate and return the molar water con-
tent; this is the g/mol of the fluid which is coming
from water, [g/mol].

continues on next page
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Table 65 – continued from previous page
mu() Calculate and return the viscosity of the

bulk according to the selected viscos-
ity settings in BulkSettings, the set-
tings in ViscosityGasMixture and
ViscosityLiquidMixture, and the config-
ured pure-component settings in ViscosityGas
and ViscosityLiquid .

nu([phase]) Method to calculate and return the kinematic viscos-
ity of the equilibrium state.

pseudo_Pc([phase]) Method to calculate and return the pseudocritical
pressure calculated using Kay's rule (linear mole
fractions):

pseudo_Tc([phase]) Method to calculate and return the pseudocritical
temperature calculated using Kay's rule (linear mole
fractions):

pseudo_Vc([phase]) Method to calculate and return the pseudocritical vol-
ume calculated using Kay's rule (linear mole frac-
tions):

pseudo_Zc([phase]) Method to calculate and return the pseudocritical
compressibility calculated using Kay's rule (linear
mole fractions):

rho() Method to calculate and return the molar density of
the phase.

rho_mass([phase]) Method to calculate and return mass density of the
phase.

rho_mass_liquid_ref ([phase]) Method to calculate and return the liquid refer-
ence mass density according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

sigma() Calculate and return the surface tension of the
bulk according to the selected surface ten-
sion settings in BulkSettings, the settings in
SurfaceTensionMixture and the configured
pure-component settings in SurfaceTension.

speed_of_sound() Method to calculate and return the molar speed of
sound of the bulk according to the selected calcula-
tion methodology.

speed_of_sound_mass() Method to calculate and return the speed of sound of
the phase.

value(name[, phase]) Method to retrieve a property from a string.
ws([phase]) Method to calculate and return the mass fractions of

the phase, [-]
ws_no_water([phase]) Method to calculate and return the mass fractions of

all species in the phase, normalized to a water-free
basis (the mass fraction of water returned is zero).

zs_no_water([phase]) Method to calculate and return the mole fractions of
all species in the phase, normalized to a water-free
basis (the mole fraction of water returned is zero).

A()
Method to calculate and return the Helmholtz energy of the phase.

𝐴 = 𝑈 − 𝑇𝑆
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Returns
A [float] Helmholtz energy, [J/mol]

API(phase=None)
Method to calculate and return the API of the phase.

API gravity =
141.5

SG
− 131.5

Returns
API [float] API of the fluid [-]

A_dep()
Method to calculate and return the departure Helmholtz energy of the phase.

𝐴𝑑𝑒𝑝 = 𝑈𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

Returns
A_dep [float] Departure Helmholtz energy, [J/mol]

A_formation_ideal_gas(phase=None)
Method to calculate and return the ideal-gas Helmholtz energy of formation of the phase (as if the phase
was an ideal gas).

𝐴𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑈 𝑖𝑔

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇 𝑖𝑔
𝑟𝑒𝑓𝑆

𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

Returns
A_formation_ideal_gas [float] Helmholtz energy of formation of the phase on a reactive

basis as an ideal gas, [J/(mol)]

A_ideal_gas(phase=None)
Method to calculate and return the ideal-gas Helmholtz energy of the phase.

𝐴𝑖𝑔 = 𝑈 𝑖𝑔 − 𝑇𝑆𝑖𝑔

Returns
A_ideal_gas [float] Ideal gas Helmholtz free energy, [J/(mol)]

A_mass(phase=None)
Method to calculate and return mass Helmholtz energy of the phase.

𝐴𝑚𝑎𝑠𝑠 =
1000𝐴𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
A_mass [float] Mass Helmholtz energy, [J/(kg)]

A_reactive()
Method to calculate and return the Helmholtz free energy of the phase on a reactive basis.

𝐴𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑈𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇𝑆𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

Returns
A_reactive [float] Helmholtz free energy of the phase on a reactive basis, [J/(mol)]

Bvirial(phase=None)
Method to calculate and return the B virial coefficient of the phase at its current conditions.
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Returns
Bvirial [float] Virial coefficient, [m^3/mol]

property CASs
CAS registration numbers for each component, [-].

Returns
CASs [list[str]] CAS registration numbers for each component, [-].

property Carcinogens
Status of each component in cancer causing registries, [-].

Returns
Carcinogens [list[dict]] Status of each component in cancer causing registries, [-].

property Ceilings
Ceiling exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Returns
Ceilings [list[tuple[(float, str)]]] Ceiling exposure limits to chemicals (and their units; ppm

or mg/m^3), [various].

Cp()
Method to calculate and return the constant-temperature and constant phase-fraction heat capacity of the
bulk phase. This is a phase-fraction weighted calculation.

𝐶𝑝 =

𝑝∑︁
𝑖

𝐶𝑝,𝑖𝛽𝑖

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

Cp_Cv_ratio()
Method to calculate and return the Cp/Cv ratio of the phase.

𝐶𝑝

𝐶𝑣

Returns
Cp_Cv_ratio [float] Cp/Cv ratio, [-]

Cp_Cv_ratio_ideal_gas(phase=None)
Method to calculate and return the ratio of the ideal-gas heat capacity to its constant-volume heat capacity.

𝐶𝑖𝑔
𝑝

𝐶𝑖𝑔
𝑣

Returns
Cp_Cv_ratio_ideal_gas [float] Cp/Cv for the phase as an ideal gas, [-]

Cp_dep(phase=None)
Method to calculate and return the difference between the actual Cp and the ideal-gas heat capacity 𝐶𝑖𝑔

𝑝 of
the phase.

𝐶𝑑𝑒𝑝
𝑝 = 𝐶𝑝 − 𝐶𝑖𝑔

𝑝

Returns
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Cp_dep [float] Departure ideal gas heat capacity, [J/(mol*K)]

Cp_ideal_gas(phase=None)
Method to calculate and return the ideal-gas heat capacity of the phase.

𝐶𝑖𝑔
𝑝 =

∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖

Returns
Cp [float] Ideal gas heat capacity, [J/(mol*K)]

Cp_mass(phase=None)
Method to calculate and return mass constant pressure heat capacity of the phase.

𝐶𝑝𝑚𝑎𝑠𝑠 =
1000𝐶𝑝𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
Cp_mass [float] Mass heat capacity, [J/(kg*K)]

Cv()
Method to calculate and return the constant-volume heat capacity Cv of the phase.

𝐶𝑣 = 𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

+ 𝐶𝑝

Returns
Cv [float] Constant volume molar heat capacity, [J/(mol*K)]

Cv_dep(phase=None)
Method to calculate and return the difference between the actual Cv and the ideal-gas constant volume heat
capacity 𝐶𝑖𝑔

𝑣 of the phase.

𝐶𝑑𝑒𝑝
𝑣 = 𝐶𝑣 − 𝐶𝑖𝑔

𝑣

Returns
Cv_dep [float] Departure ideal gas constant volume heat capacity, [J/(mol*K)]

Cv_ideal_gas(phase=None)
Method to calculate and return the ideal-gas constant volume heat capacity of the phase.

𝐶𝑖𝑔
𝑣 =

∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖 −𝑅

Returns
Cv [float] Ideal gas constant volume heat capacity, [J/(mol*K)]

Cv_mass(phase=None)
Method to calculate and return mass constant volume heat capacity of the phase.

𝐶𝑣𝑚𝑎𝑠𝑠 =
1000𝐶𝑣𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
Cv_mass [float] Mass constant volume heat capacity, [J/(kg*K)]

property EnthalpySublimations
Wrapper to obtain the list of EnthalpySublimations objects of the associated
PropertyCorrelationsPackage.
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property EnthalpyVaporizations
Wrapper to obtain the list of EnthalpyVaporizations objects of the associated
PropertyCorrelationsPackage.

G()
Method to calculate and return the Gibbs free energy of the phase.

𝐺 = 𝐻 − 𝑇𝑆

Returns
G [float] Gibbs free energy, [J/mol]

property GWPs
Global Warming Potentials for each component (impact/mass chemical)/(impact/mass CO2), [-].

Returns
GWPs [list[float]] Global Warming Potentials for each component (impact/mass chemi-

cal)/(impact/mass CO2), [-].

G_dep()
Method to calculate and return the departure Gibbs free energy of the phase.

𝐺𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

Returns
G_dep [float] Departure Gibbs free energy, [J/mol]

G_formation_ideal_gas(phase=None)
Method to calculate and return the ideal-gas Gibbs free energy of formation of the phase (as if the phase
was an ideal gas).

𝐺𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑖𝑔

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇 𝑖𝑔
𝑟𝑒𝑓𝑆

𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

Returns
G_formation_ideal_gas [float] Gibbs free energy of formation of the phase on a reactive

basis as an ideal gas, [J/(mol)]

G_ideal_gas(phase=None)
Method to calculate and return the ideal-gas Gibbs free energy of the phase.

𝐺𝑖𝑔 = 𝐻𝑖𝑔 − 𝑇𝑆𝑖𝑔

Returns
G_ideal_gas [float] Ideal gas free energy, [J/(mol)]

G_mass(phase=None)
Method to calculate and return mass Gibbs energy of the phase.

𝐺𝑚𝑎𝑠𝑠 =
1000𝐺𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
G_mass [float] Mass Gibbs energy, [J/(kg)]

G_reactive()
Method to calculate and return the Gibbs free energy of the phase on a reactive basis.

𝐺𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇𝑆𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
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Returns
G_reactive [float] Gibbs free energy of the phase on a reactive basis, [J/(mol)]

property Gfgs
Ideal gas standard molar Gibbs free energy of formation for each component, [J/mol].

Returns
Gfgs [list[float]] Ideal gas standard molar Gibbs free energy of formation for each compo-

nent, [J/mol].

property Gfgs_mass
Ideal gas standard Gibbs free energy of formation for each component, [J/kg].

Returns
Gfgs_mass [list[float]] Ideal gas standard Gibbs free energy of formation for each compo-

nent, [J/kg].

H()
Method to calculate and return the constant-temperature and constant phase-fraction enthalpy of the bulk
phase. This is a phase-fraction weighted calculation.

𝐻 =

𝑝∑︁
𝑖

𝐻𝑖𝛽𝑖

Returns
H [float] Molar enthalpy, [J/(mol)]

H_C_ratio(phase=None)
Method to calculate and return the atomic ratio of hydrogen atoms to carbon atoms, based on the current
composition of the phase.

Returns
H_C_ratio [float] H/C ratio on a molar basis, [-]

Notes

None is returned if no species are present that have carbon atoms.

H_C_ratio_mass(phase=None)
Method to calculate and return the mass ratio of hydrogen atoms to carbon atoms, based on the current
composition of the phase.

Returns
H_C_ratio_mass [float] H/C ratio on a mass basis, [-]
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Notes

None is returned if no species are present that have carbon atoms.

H_dep(phase=None)
Method to calculate and return the difference between the actual H and the ideal-gas enthalpy of the phase.

𝐻𝑑𝑒𝑝 = 𝐻 −𝐻𝑖𝑔

Returns
H_dep [float] Departure enthalpy, [J/(mol)]

H_formation_ideal_gas(phase=None)
Method to calculate and return the ideal-gas enthalpy of formation of the phase (as if the phase was an ideal
gas).

𝐻𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =

∑︁
𝑖

𝑧𝑖𝐻𝑓,𝑖

Returns
H_formation_ideal_gas [float] Enthalpy of formation of the phase on a reactive basis as an

ideal gas, [J/mol]

H_ideal_gas(phase=None)
Method to calculate and return the ideal-gas enthalpy of the phase.

𝐻𝑖𝑔 =
∑︁
𝑖

𝑧𝑖𝐻
𝑖𝑔
𝑖

Returns
H [float] Ideal gas enthalpy, [J/(mol)]

H_mass(phase=None)
Method to calculate and return mass enthalpy of the phase.

𝐻𝑚𝑎𝑠𝑠 =
1000𝐻𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
H_mass [float] Mass enthalpy, [J/kg]

H_reactive()
Method to calculate and return the constant-temperature and constant phase-fraction reactive enthalpy of
the bulk phase. This is a phase-fraction weighted calculation.

𝐻reactive =

𝑝∑︁
𝑖

𝐻reactive,𝑖𝛽𝑖

Returns
H_reactive [float] Reactive molar enthalpy, [J/(mol)]

Hc(phase=None)
Method to calculate and return the molar ideal-gas higher heat of combustion of the object, [J/mol]

Returns
Hc [float] Molar higher heat of combustion, [J/(mol)]
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Hc_lower(phase=None)
Method to calculate and return the molar ideal-gas lower heat of combustion of the object, [J/mol]

Returns
Hc_lower [float] Molar lower heat of combustion, [J/(mol)]

Hc_lower_mass(phase=None)
Method to calculate and return the mass ideal-gas lower heat of combustion of the object, [J/mol]

Returns
Hc_lower_mass [float] Mass lower heat of combustion, [J/(kg)]

Hc_lower_normal(phase=None)
Method to calculate and return the volumetric ideal-gas lower heat of combustion of the object using the
normal gas volume, [J/m^3]

Returns
Hc_lower_normal [float] Volumetric (normal) lower heat of combustion, [J/(m^3)]

Hc_lower_standard(phase=None)
Method to calculate and return the volumetric ideal-gas lower heat of combustion of the object using the
standard gas volume, [J/m^3]

Returns
Hc_lower_standard [float] Volumetric (standard) lower heat of combustion, [J/(m^3)]

Hc_mass(phase=None)
Method to calculate and return the mass ideal-gas higher heat of combustion of the object, [J/mol]

Returns
Hc_mass [float] Mass higher heat of combustion, [J/(kg)]

Hc_normal(phase=None)
Method to calculate and return the volumetric ideal-gas higher heat of combustion of the object using the
normal gas volume, [J/m^3]

Returns
Hc_normal [float] Volumetric (normal) higher heat of combustion, [J/(m^3)]

Hc_standard(phase=None)
Method to calculate and return the volumetric ideal-gas higher heat of combustion of the object using the
standard gas volume, [J/m^3]

Returns
Hc_normal [float] Volumetric (standard) higher heat of combustion, [J/(m^3)]

property Hcs
Higher standard molar heats of combustion for each component, [J/mol].

Returns
Hcs [list[float]] Higher standard molar heats of combustion for each component, [J/mol].

property Hcs_lower
Lower standard molar heats of combustion for each component, [J/mol].

Returns
Hcs_lower [list[float]] Lower standard molar heats of combustion for each component,

[J/mol].
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property Hcs_lower_mass
Lower standard heats of combustion for each component, [J/kg].

Returns
Hcs_lower_mass [list[float]] Lower standard heats of combustion for each component,

[J/kg].

property Hcs_mass
Higher standard heats of combustion for each component, [J/kg].

Returns
Hcs_mass [list[float]] Higher standard heats of combustion for each component, [J/kg].

property HeatCapacityGasMixture
Wrapper to obtain the list of HeatCapacityGasMixture objects of the associated
PropertyCorrelationsPackage.

property HeatCapacityGases
Wrapper to obtain the list of HeatCapacityGases objects of the associated
PropertyCorrelationsPackage.

property HeatCapacityLiquidMixture
Wrapper to obtain the list of HeatCapacityLiquidMixture objects of the associated
PropertyCorrelationsPackage.

property HeatCapacityLiquids
Wrapper to obtain the list of HeatCapacityLiquids objects of the associated
PropertyCorrelationsPackage.

property HeatCapacitySolidMixture
Wrapper to obtain the list of HeatCapacitySolidMixture objects of the associated
PropertyCorrelationsPackage.

property HeatCapacitySolids
Wrapper to obtain the list of HeatCapacitySolids objects of the associated
PropertyCorrelationsPackage.

property Hf_STPs
Standard state molar enthalpies of formation for each component, [J/mol].

Returns
Hf_STPs [list[float]] Standard state molar enthalpies of formation for each component,

[J/mol].

property Hf_STPs_mass
Standard state mass enthalpies of formation for each component, [J/kg].

Returns
Hf_STPs_mass [list[float]] Standard state mass enthalpies of formation for each component,

[J/kg].

property Hfgs
Ideal gas standard molar enthalpies of formation for each component, [J/mol].

Returns
Hfgs [list[float]] Ideal gas standard molar enthalpies of formation for each component,

[J/mol].
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property Hfgs_mass
Ideal gas standard enthalpies of formation for each component, [J/kg].

Returns
Hfgs_mass [list[float]] Ideal gas standard enthalpies of formation for each component, [J/kg].

property Hfus_Tms
Molar heats of fusion for each component at their respective melting points, [J/mol].

Returns
Hfus_Tms [list[float]] Molar heats of fusion for each component at their respective melting

points, [J/mol].

property Hfus_Tms_mass
Heats of fusion for each component at their respective melting points, [J/kg].

Returns
Hfus_Tms_mass [list[float]] Heats of fusion for each component at their respective melting

points, [J/kg].

property Hsub_Tts
Heats of sublimation for each component at their respective triple points, [J/mol].

Returns
Hsub_Tts [list[float]] Heats of sublimation for each component at their respective triple

points, [J/mol].

property Hsub_Tts_mass
Heats of sublimation for each component at their respective triple points, [J/kg].

Returns
Hsub_Tts_mass [list[float]] Heats of sublimation for each component at their respective

triple points, [J/kg].

property Hvap_298s
Molar heats of vaporization for each component at 298.15 K, [J/mol].

Returns
Hvap_298s [list[float]] Molar heats of vaporization for each component at 298.15 K, [J/mol].

property Hvap_298s_mass
Heats of vaporization for each component at 298.15 K, [J/kg].

Returns
Hvap_298s_mass [list[float]] Heats of vaporization for each component at 298.15 K, [J/kg].

property Hvap_Tbs
Molar heats of vaporization for each component at their respective normal boiling points, [J/mol].

Returns
Hvap_Tbs [list[float]] Molar heats of vaporization for each component at their respective

normal boiling points, [J/mol].

property Hvap_Tbs_mass
Heats of vaporization for each component at their respective normal boiling points, [J/kg].

Returns
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Hvap_Tbs_mass [list[float]] Heats of vaporization for each component at their respective
normal boiling points, [J/kg].

property IDs
Alias of CASs.

property InChI_Keys
InChI Keys for each component, [-].

Returns
InChI_Keys [list[str]] InChI Keys for each component, [-].

property InChIs
InChI strings for each component, [-].

Returns
InChIs [list[str]] InChI strings for each component, [-].

Joule_Thomson()
Method to calculate and return the Joule-Thomson coefficient of the bulk according to the selected calcu-
lation methodology.

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

Returns
mu_JT [float] Joule-Thomson coefficient [K/Pa]

Ks(phase, phase_ref=None)
Method to calculate and return the K-values of each phase. These are NOT just liquid-vapor K values; these
are thermodynamic K values. The reference phase can be specified with phase_ref, and then the K-values
will be with respect to that phase.

𝐾𝑖 =
𝑧𝑖,phase

𝑧𝑖,ref phase

If no reference phase is provided, the following criteria is used to select one:

• If the flash algorithm provided a reference phase, use that

• Otherwise use the liquid0 phase if one is present

• Otherwise use the solid0 phase if one is present

• Otherwise use the gas phase if one is present

Returns
Ks [list[float]] Equilibrium K values, [-]

property LF
Method to return the liquid fraction of the equilibrium state. If no liquid is present, 0 is always returned.

Returns
LF [float] Liquid molar fraction, [-]

property LFLs
Lower flammability limits for each component, [-].

Returns
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LFLs [list[float]] Lower flammability limits for each component, [-].

MW(phase=None)
Method to calculate and return the molecular weight of the phase.

MW =
∑︁
𝑖

𝑧𝑖MW𝑖

Returns
MW [float] Molecular weight of the phase, [g/mol]

property MWs
Similatiry variables for each component, [g/mol].

Returns
MWs [list[float]] Similatiry variables for each component, [g/mol].

property ODPs
Ozone Depletion Potentials for each component (impact/mass chemical)/(impact/mass CFC-11), [-].

Returns
ODPs [list[float]] Ozone Depletion Potentials for each component (impact/mass chemi-

cal)/(impact/mass CFC-11), [-].

PIP()
Method to calculate and return the phase identification parameter of the phase.

Π = 𝑉

[︃
𝜕2𝑃
𝜕𝑉 𝜕𝑇
𝜕𝑃
𝜕𝑇

−
𝜕2𝑃
𝜕𝑉 2

𝜕𝑃
𝜕𝑉

]︃

Returns
PIP [float] Phase identification parameter, [-]

property PSRK_groups
PSRK subgroup: count groups for each component, [-].

Returns
PSRK_groups [list[dict]] PSRK subgroup: count groups for each component, [-].

P_REF_IG = 101325.0

P_REF_IG_INV = 9.869232667160129e-06

property Parachors
Parachors for each component, [N^0.25*m^2.75/mol].

Returns
Parachors [list[float]] Parachors for each component, [N^0.25*m^2.75/mol].

property Pcs
Critical pressures for each component, [Pa].

Returns
Pcs [list[float]] Critical pressures for each component, [Pa].

property PermittivityLiquids
Wrapper to obtain the list of PermittivityLiquids objects of the associated
PropertyCorrelationsPackage.
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Pmc(phase=None)
Method to calculate and return the mechanical critical pressure of the phase.

Returns
Pmc [float] Mechanical critical pressure, [Pa]

property Psat_298s
Vapor pressures for each component at 298.15 K, [Pa].

Returns
Psat_298s [list[float]] Vapor pressures for each component at 298.15 K, [Pa].

property Pts
Triple point pressures for each component, [Pa].

Returns
Pts [list[float]] Triple point pressures for each component, [Pa].

property PubChems
Pubchem IDs for each component, [-].

Returns
PubChems [list[int]] Pubchem IDs for each component, [-].

property RI_Ts
Temperatures at which the refractive indexes were reported for each component, [K].

Returns
RI_Ts [list[float]] Temperatures at which the refractive indexes were reported for each com-

ponent, [K].

property RIs
Refractive indexes for each component, [-].

Returns
RIs [list[float]] Refractive indexes for each component, [-].

S()
Method to calculate and return the constant-temperature and constant phase-fraction entropy of the bulk
phase. This is a phase-fraction weighted calculation.

𝑆 =

𝑝∑︁
𝑖

𝑆𝑖𝛽𝑖

Returns
S [float] Molar entropy, [J/(mol*K)]

property S0gs
Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component, [J/(mol*K)].

Returns
S0gs [list[float]] Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component,

[J/(mol*K)].

property S0gs_mass
Ideal gas absolute entropies at 298.15 K at 1 atm for each component, [J/(kg*K)].

Returns
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S0gs_mass [list[float]] Ideal gas absolute entropies at 298.15 K at 1 atm for each component,
[J/(kg*K)].

SG(phase=None)
Method to calculate and return the standard liquid specific gravity of the phase, using constant liquid pure
component densities not calculated by the phase object, at 60 °F.

Returns
SG [float] Specific gravity of the liquid, [-]

Notes

The reference density of water is from the IAPWS-95 standard - 999.0170824078306 kg/m^3.

SG_gas(phase=None)
Method to calculate and return the specific gravity of the phase with respect to a gas reference density.

Returns
SG_gas [float] Specific gravity of the gas, [-]

Notes

The reference molecular weight of air used is 28.9586 g/mol.

property STELs
Short term exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Returns
STELs [list[tuple[(float, str)]]] Short term exposure limits to chemicals (and their units; ppm

or mg/m^3), [various].

S_dep(phase=None)
Method to calculate and return the difference between the actual S and the ideal-gas entropy of the phase.

𝑆𝑑𝑒𝑝 = 𝑆 − 𝑆𝑖𝑔

Returns
S_dep [float] Departure entropy, [J/(mol*K)]

S_formation_ideal_gas(phase=None)
Method to calculate and return the ideal-gas entropy of formation of the phase (as if the phase was an ideal
gas).

𝑆𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =

∑︁
𝑖

𝑧𝑖𝑆𝑓,𝑖

Returns
S_formation_ideal_gas [float] Entropy of formation of the phase on a reactive basis as an

ideal gas, [J/(mol*K)]

S_ideal_gas(phase=None)
Method to calculate and return the ideal-gas entropy of the phase.

𝑆𝑖𝑔 =
∑︁
𝑖

𝑧𝑖𝑆
𝑖𝑔
𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−𝑅

∑︁
𝑖

𝑧𝑖 ln(𝑧𝑖)
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Returns
S [float] Ideal gas molar entropy, [J/(mol*K)]

S_mass(phase=None)
Method to calculate and return mass entropy of the phase.

𝑆𝑚𝑎𝑠𝑠 =
1000𝑆𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
S_mass [float] Mass enthalpy, [J/(kg*K)]

S_reactive()
Method to calculate and return the constant-temperature and constant phase-fraction reactive entropy of the
bulk phase. This is a phase-fraction weighted calculation.

𝑆reactive =

𝑝∑︁
𝑖

𝑆reactive,𝑖𝛽𝑖

Returns
S_reactive [float] Reactive molar entropy, [J/(mol*K)]

property Sfgs
Ideal gas standard molar entropies of formation for each component, [J/(mol*K)].

Returns
Sfgs [list[float]] Ideal gas standard molar entropies of formation for each component,

[J/(mol*K)].

property Sfgs_mass
Ideal gas standard entropies of formation for each component, [J/(kg*K)].

Returns
Sfgs_mass [list[float]] Ideal gas standard entropies of formation for each component,

[J/(kg*K)].

property Skins
Whether each compound can be absorbed through the skin or not, [-].

Returns
Skins [list[bool]] Whether each compound can be absorbed through the skin or not, [-].

property StielPolars
Stiel polar factors for each component, [-].

Returns
StielPolars [list[float]] Stiel polar factors for each component, [-].

property Stockmayers
Lennard-Jones Stockmayer parameters (depth of potential-energy minimum over k) for each component,
[K].

Returns
Stockmayers [list[float]] Lennard-Jones Stockmayer parameters (depth of potential-energy

minimum over k) for each component, [K].
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property SublimationPressures
Wrapper to obtain the list of SublimationPressures objects of the associated
PropertyCorrelationsPackage.

property SurfaceTensionMixture
Wrapper to obtain the list of SurfaceTensionMixture objects of the associated
PropertyCorrelationsPackage.

property SurfaceTensions
Wrapper to obtain the list of SurfaceTensions objects of the associated PropertyCorrelationsPackage.

property TWAs
Time-weighted average exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Returns
TWAs [list[tuple[(float, str)]]] Time-weighted average exposure limits to chemicals (and

their units; ppm or mg/m^3), [various].

T_REF_IG = 298.15

T_REF_IG_INV = 0.0033540164346805303

property Tautoignitions
Autoignition temperatures for each component, [K].

Returns
Tautoignitions [list[float]] Autoignition temperatures for each component, [K].

property Tbs
Boiling temperatures for each component, [K].

Returns
Tbs [list[float]] Boiling temperatures for each component, [K].

property Tcs
Critical temperatures for each component, [K].

Returns
Tcs [list[float]] Critical temperatures for each component, [K].

property Tflashs
Flash point temperatures for each component, [K].

Returns
Tflashs [list[float]] Flash point temperatures for each component, [K].

property ThermalConductivityGasMixture
Wrapper to obtain the list of ThermalConductivityGasMixture objects of the associated
PropertyCorrelationsPackage.

property ThermalConductivityGases
Wrapper to obtain the list of ThermalConductivityGases objects of the associated
PropertyCorrelationsPackage.

property ThermalConductivityLiquidMixture
Wrapper to obtain the list of ThermalConductivityLiquidMixture objects of the associated
PropertyCorrelationsPackage.
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property ThermalConductivityLiquids
Wrapper to obtain the list of ThermalConductivityLiquids objects of the associated
PropertyCorrelationsPackage.

Tmc(phase=None)
Method to calculate and return the mechanical critical temperature of the phase.

Returns
Tmc [float] Mechanical critical temperature, [K]

property Tms
Melting temperatures for each component, [K].

Returns
Tms [list[float]] Melting temperatures for each component, [K].

property Tts
Triple point temperatures for each component, [K].

Returns
Tts [list[float]] Triple point temperatures for each component, [K].

U()
Method to calculate and return the internal energy of the phase.

𝑈 = 𝐻 − 𝑃𝑉

Returns
U [float] Internal energy, [J/mol]

property UFLs
Upper flammability limits for each component, [-].

Returns
UFLs [list[float]] Upper flammability limits for each component, [-].

property UNIFAC_Dortmund_groups
UNIFAC_Dortmund_group: count groups for each component, [-].

Returns
UNIFAC_Dortmund_groups [list[dict]] UNIFAC_Dortmund_group: count groups for

each component, [-].

property UNIFAC_Qs
UNIFAC Q parameters for each component, [-].

Returns
UNIFAC_Qs [list[float]] UNIFAC Q parameters for each component, [-].

property UNIFAC_Rs
UNIFAC R parameters for each component, [-].

Returns
UNIFAC_Rs [list[float]] UNIFAC R parameters for each component, [-].

property UNIFAC_groups
UNIFAC_group: count groups for each component, [-].

Returns
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UNIFAC_groups [list[dict]] UNIFAC_group: count groups for each component, [-].

U_dep()
Method to calculate and return the departure internal energy of the phase.

𝑈𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑃𝑉𝑑𝑒𝑝

Returns
U_dep [float] Departure internal energy, [J/mol]

U_formation_ideal_gas(phase=None)
Method to calculate and return the ideal-gas internal energy of formation of the phase (as if the phase was
an ideal gas).

𝑈 𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑖𝑔

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑃 𝑖𝑔
𝑟𝑒𝑓𝑉

𝑖𝑔

Returns
U_formation_ideal_gas [float] Internal energy of formation of the phase on a reactive basis

as an ideal gas, [J/(mol)]

U_ideal_gas(phase=None)
Method to calculate and return the ideal-gas internal energy of the phase.

𝑈 𝑖𝑔 = 𝐻𝑖𝑔 − 𝑃𝑉 𝑖𝑔

Returns
U_ideal_gas [float] Ideal gas internal energy, [J/(mol)]

U_mass(phase=None)
Method to calculate and return mass internal energy of the phase.

𝑈𝑚𝑎𝑠𝑠 =
1000𝑈𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
U_mass [float] Mass internal energy, [J/(kg)]

U_reactive()
Method to calculate and return the internal energy of the phase on a reactive basis.

𝑈𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑃𝑉

Returns
U_reactive [float] Internal energy of the phase on a reactive basis, [J/(mol)]

V()
Method to calculate and return the molar volume of the bulk phase. This is a phase-fraction weighted
calculation.

𝑉 =

𝑝∑︁
𝑖

𝑉𝑖𝛽𝑖

Returns
V [float] Molar volume, [m^3/mol]

property VF
Method to return the vapor fraction of the equilibrium state. If no vapor/gas is present, 0 is always returned.
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Returns
VF [float] Vapor molar fraction, [-]

V_dep()
Method to calculate and return the departure (from ideal gas behavior) molar volume of the phase.

𝑉𝑑𝑒𝑝 = 𝑉 − 𝑅𝑇

𝑃

Returns
V_dep [float] Departure molar volume, [m^3/mol]

V_gas(phase=None)
Method to calculate and return the ideal-gas molar volume of the phase at the chosen reference temperature
and pressure, according to the temperature variable T_gas_ref and pressure variable P_gas_ref of the
thermo.bulk.BulkSettings.

𝑉 𝑖𝑔 =
𝑅𝑇𝑟𝑒𝑓
𝑃𝑟𝑒𝑓

Returns
V_gas [float] Ideal gas molar volume at the reference temperature and pressure, [m^3/mol]

V_gas_normal(phase=None)
Method to calculate and return the ideal-gas molar volume of the phase at the normal temperature and
pressure, according to the temperature variable T_normal and pressure variable P_normal of the thermo.
bulk.BulkSettings.

𝑉 𝑖𝑔 =
𝑅𝑇𝑛𝑜𝑟𝑚
𝑃𝑛𝑜𝑟𝑚

Returns
V_gas_normal [float] Ideal gas molar volume at normal temperature and pressure,

[m^3/mol]

V_gas_standard(phase=None)
Method to calculate and return the ideal-gas molar volume of the phase at the standard temperature and pres-
sure, according to the temperature variable T_standard and pressure variable P_standard of the thermo.
bulk.BulkSettings.

𝑉 𝑖𝑔 =
𝑅𝑇𝑠𝑡𝑑
𝑃𝑠𝑡𝑑

Returns
V_gas_standard [float] Ideal gas molar volume at standard temperature and pressure,

[m^3/mol]

V_ideal_gas(phase=None)
Method to calculate and return the ideal-gas molar volume of the phase.

𝑉 𝑖𝑔 =
𝑅𝑇

𝑃

Returns
V [float] Ideal gas molar volume, [m^3/mol]
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V_iter(phase=None, force=False)
Method to calculate and return the volume of the phase in a way suitable for a TV resolution to converge
on the same pressure. This often means the return value of this method is an mpmath mpf. This dummy
method simply returns the implemented V method.

Returns
V [float or mpf] Molar volume, [m^3/mol]

V_liquid_ref(phase=None)
Method to calculate and return the liquid reference molar volume according to the temperature variable
T_liquid_volume_ref of thermo.bulk.BulkSettings and the composition of the phase.

𝑉 =
∑︁
𝑖

𝑧𝑖𝑉𝑖

Returns
V_liquid_ref [float] Liquid molar volume at the reference condition, [m^3/mol]

V_liquids_ref()
Method to calculate and return the liquid reference molar volumes according to the temperature variable
T_liquid_volume_ref of thermo.bulk.BulkSettings.

Returns
V_liquids_ref [list[float]] Liquid molar volumes at the reference condition, [m^3/mol]

V_mass(phase=None)
Method to calculate and return the specific volume of the phase.

𝑉𝑚𝑎𝑠𝑠 =
1000 · 𝑉𝑀
𝑀𝑊

Returns
V_mass [float] Specific volume of the phase, [m^3/kg]

property Van_der_Waals_areas
Unnormalized Van der Waals areas for each component, [m^2/mol].

Returns
Van_der_Waals_areas [list[float]] Unnormalized Van der Waals areas for each component,

[m^2/mol].

property Van_der_Waals_volumes
Unnormalized Van der Waals volumes for each component, [m^3/mol].

Returns
Van_der_Waals_volumes [list[float]] Unnormalized Van der Waals volumes for each com-

ponent, [m^3/mol].

property VaporPressures
Wrapper to obtain the list of VaporPressures objects of the associated PropertyCorrelationsPackage.

property Vcs
Critical molar volumes for each component, [m^3/mol].

Returns
Vcs [list[float]] Critical molar volumes for each component, [m^3/mol].
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Vfgs(phase=None)
Method to calculate and return the ideal-gas volume fractions of the components of the phase. This is the
same as the mole fractions.

Returns
Vfgs [list[float]] Ideal-gas volume fractions of the components of the phase, [-]

Vfls(phase=None)
Method to calculate and return the ideal-liquid volume fractions of the components of the phase, us-
ing the standard liquid densities at the temperature variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

Returns
Vfls [list[float]] Ideal-liquid volume fractions of the components of the phase, [-]

property ViscosityGasMixture
Wrapper to obtain the list of ViscosityGasMixture objects of the associated
PropertyCorrelationsPackage.

property ViscosityGases
Wrapper to obtain the list of ViscosityGases objects of the associated PropertyCorrelationsPackage.

property ViscosityLiquidMixture
Wrapper to obtain the list of ViscosityLiquidMixture objects of the associated
PropertyCorrelationsPackage.

property ViscosityLiquids
Wrapper to obtain the list of ViscosityLiquids objects of the associated PropertyCorrelationsPackage.

Vmc(phase=None)
Method to calculate and return the mechanical critical volume of the phase.

Returns
Vmc [float] Mechanical critical volume, [m^3/mol]

property Vmg_STPs
Gas molar volumes for each component at STP; metastable if normally another state, [m^3/mol].

Returns
Vmg_STPs [list[float]] Gas molar volumes for each component at STP; metastable if nor-

mally another state, [m^3/mol].

property Vml_60Fs
Liquid molar volumes for each component at 60 °F, [m^3/mol].

Returns
Vml_60Fs [list[float]] Liquid molar volumes for each component at 60 °F, [m^3/mol].

property Vml_STPs
Liquid molar volumes for each component at STP, [m^3/mol].

Returns
Vml_STPs [list[float]] Liquid molar volumes for each component at STP, [m^3/mol].

property Vml_Tms
Liquid molar volumes for each component at their respective melting points, [m^3/mol].

Returns
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Vml_Tms [list[float]] Liquid molar volumes for each component at their respective melting
points, [m^3/mol].

property Vms_Tms
Solid molar volumes for each component at their respective melting points, [m^3/mol].

Returns
Vms_Tms [list[float]] Solid molar volumes for each component at their respective melting

points, [m^3/mol].

property VolumeGasMixture
Wrapper to obtain the list of VolumeGasMixture objects of the associated
PropertyCorrelationsPackage.

property VolumeGases
Wrapper to obtain the list of VolumeGases objects of the associated PropertyCorrelationsPackage.

property VolumeLiquidMixture
Wrapper to obtain the list of VolumeLiquidMixture objects of the associated
PropertyCorrelationsPackage.

property VolumeLiquids
Wrapper to obtain the list of VolumeLiquids objects of the associated PropertyCorrelationsPackage.

property VolumeSolidMixture
Wrapper to obtain the list of VolumeSolidMixture objects of the associated
PropertyCorrelationsPackage.

property VolumeSolids
Wrapper to obtain the list of VolumeSolids objects of the associated PropertyCorrelationsPackage.

Wobbe_index(phase=None)
Method to calculate and return the molar Wobbe index of the object, [J/mol].

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index [float] Molar Wobbe index, [J/(mol)]

Wobbe_index_lower(phase=None)

Method to calculate and return the molar lower Wobbe index of the object, [J/mol].

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower [float] Molar lower Wobbe index, [J/(mol)]

Wobbe_index_lower_mass(phase=None)
Method to calculate and return the lower mass Wobbe index of the object, [J/kg].

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower_mass [float] Mass lower Wobbe index, [J/(kg)]
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Wobbe_index_lower_normal(phase=None)
Method to calculate and return the volumetric normal lower Wobbe index of the object, [J/m^3]. The
normal gas volume is used in this calculation.

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower_normal [float] Volumetric normal lower Wobbe index, [J/(m^3)]

Wobbe_index_lower_standard(phase=None)
Method to calculate and return the volumetric standard lower Wobbe index of the object, [J/m^3]. The
standard gas volume is used in this calculation.

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower_standard [float] Volumetric standard lower Wobbe index, [J/(m^3)]

Wobbe_index_mass(phase=None)
Method to calculate and return the mass Wobbe index of the object, [J/kg].

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_mass [float] Mass Wobbe index, [J/(kg)]

Wobbe_index_normal(phase=None)
Method to calculate and return the volumetric normal Wobbe index of the object, [J/m^3]. The normal gas
volume is used in this calculation.

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index [float] Volumetric normal Wobbe index, [J/(m^3)]

Wobbe_index_standard(phase=None)
Method to calculate and return the volumetric standard Wobbe index of the object, [J/m^3]. The standard
gas volume is used in this calculation.

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_standard [float] Volumetric standard Wobbe index, [J/(m^3)]

Z()
Method to calculate and return the compressibility factor of the phase.

𝑍 =
𝑃𝑉

𝑅𝑇

Returns
Z [float] Compressibility factor, [-]
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property Zcs
Critical compressibilities for each component, [-].

Returns
Zcs [list[float]] Critical compressibilities for each component, [-].

Zmc(phase=None)
Method to calculate and return the mechanical critical compressibility of the phase.

Returns
Zmc [float] Mechanical critical compressibility, [-]

alpha(phase=None)
Method to calculate and return the thermal diffusivity of the equilibrium state.

𝛼 =
𝑘

𝜌𝐶𝑝

Returns
alpha [float] Thermal diffusivity, [m^2/s]

atom_fractions(phase=None)
Method to calculate and return the atomic composition of the phase; returns a dictionary of atom fraction
(by count), containing only those elements who are present.

Returns
atom_fractions [dict[str: float]] Atom fractions, [-]

atom_mass_fractions(phase=None)
Method to calculate and return the atomic mass fractions of the phase; returns a dictionary of atom fraction
(by mass), containing only those elements who are present.

Returns
atom_mass_fractions [dict[str: float]] Atom mass fractions, [-]

property atomss
Breakdown of each component into its elements and their counts, as a dict, [-].

Returns
atomss [list[dict]] Breakdown of each component into its elements and their counts, as a dict,

[-].

property betas_liquids
Method to calculate and return the fraction of the liquid phase that each liquid phase is, by molar phase
fraction. If the system is VLLL with phase fractions of 0.125 vapor, and [.25, .125, .5] for the three liquids
phases respectively, the return value would be [0.28571428, 0.142857142, 0.57142857].

Returns
betas_liquids [list[float]] Molar phase fractions of the overall liquid phase, [-]

property betas_mass
Method to calculate and return the mass fraction of all of the phases in the system.

Returns
betas_mass [list[float]] Mass phase fractions of all the phases, ordered vapor, liquid, then

solid , [-]
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property betas_mass_liquids
Method to calculate and return the fraction of the liquid phase that each liquid phase is, by mass phase
fraction. If the system is VLLL with mass phase fractions of 0.125 vapor, and [.25, .125, .5] for the three
liquids phases respectively, the return value would be [0.28571428, 0.142857142, 0.57142857].

Returns
betas_mass_liquids [list[float]] Mass phase fractions of the overall liquid phase, [-]

property betas_mass_states
Method to return the mass phase fractions of each of the three fundamental types of phases.

Returns
betas_mass_states [list[float, 3]] List containing the mass phase fraction of gas, liquid, and

solid, [-]

property betas_states
Method to return the molar phase fractions of each of the three fundamental types of phases.

Returns
betas_states [list[float, 3]] List containing the molar phase fraction of gas, liquid, and solid,

[-]

property betas_volume
Method to calculate and return the volume fraction of all of the phases in the system.

Returns
betas_volume [list[float]] Volume phase fractions of all the phases, ordered vapor, liquid,

then solid , [-]

property betas_volume_liquids
Method to calculate and return the fraction of the liquid phase that each liquid phase is, by volume phase
fraction. If the system is VLLL with volume phase fractions of 0.125 vapor, and [.25, .125, .5] for the three
liquids phases respectively, the return value would be [0.28571428, 0.142857142, 0.57142857].

Returns
betas_volume_liquids [list[float]] Volume phase fractions of the overall liquid phase, [-]

property betas_volume_states
Method to return the volume phase fractions of each of the three fundamental types of phases.

Returns
betas_volume_states [list[float, 3]] List containing the volume phase fraction of gas, liquid,

and solid, [-]

property charges
Charge number (valence) for each component, [-].

Returns
charges [list[float]] Charge number (valence) for each component, [-].

property conductivities
Electrical conductivities for each component, [S/m].

Returns
conductivities [list[float]] Electrical conductivities for each component, [S/m].

property conductivity_Ts
Temperatures at which the electrical conductivities for each component were measured, [K].
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Returns
conductivity_Ts [list[float]] Temperatures at which the electrical conductivities for each

component were measured, [K].

d2P_dT2()
Method to calculate and return the second temperature derivative of pressure of the bulk according to the
selected calculation methodology.

Returns
d2P_dT2 [float] Second temperature derivative of pressure, [Pa/K^2]

d2P_dT2_frozen()
Method to calculate and return the second constant-volume derivative of pressure with respect to tempera-
ture of the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction
weighted calculation. (︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑖,𝑉𝑖,𝛽𝑖,𝑧𝑠𝑖

Returns
d2P_dT2_frozen [float] Frozen constant-volume second derivative of pressure with respect

to temperature of the bulk phase, [Pa/K^2]

d2P_dTdV()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the bulk according to the selected calculation methodology.

Returns
d2P_dTdV [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_dTdV_frozen()
Method to calculate and return the second derivative of pressure with respect to volume and temperature of
the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction weighted
calculation. (︂

𝜕2𝑃

𝜕𝑉 𝜕𝑇

)︂
𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕2𝑃

𝜕𝑉 𝜕𝑇

)︂
𝑖,𝛽𝑖,𝑧𝑠𝑖

Returns
d2P_dTdV_frozen [float] Frozen second derivative of pressure with respect to volume and

temperature of the bulk phase, [Pa*mol^2/m^6]

d2P_dV2()
Method to calculate and return the second volume derivative of pressure of the bulk according to the selected
calculation methodology.

Returns
d2P_dV2 [float] Second volume derivative of pressure, [Pa*mol^2/m^6]

d2P_dV2_frozen()
Method to calculate and return the constant-temperature second derivative of pressure with respect to vol-
ume of the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction
weighted calculation. (︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑖,𝑇,𝛽𝑖,𝑧𝑠𝑖
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Returns
d2P_dV2_frozen [float] Frozen constant-temperature second derivative of pressure with re-

spect to volume of the bulk phase, [Pa*mol^2/m^6]

dA_dP()
Method to calculate and return the constant-temperature pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

Returns
dA_dP [float] Constant-temperature pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dP_T()
Method to calculate and return the constant-temperature pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

Returns
dA_dP [float] Constant-temperature pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dP_V()
Method to calculate and return the constant-volume pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑉

− 𝑉 − 𝑆

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

− 𝑇

(︂
𝜕𝑆

𝜕𝑃

)︂
𝑉

Returns
dA_dP_V [float] Constant-volume pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dT()
Method to calculate and return the constant-pressure temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

Returns
dA_dT [float] Constant-pressure temperature derivative of Helmholtz energy, [J/(mol*K)]

dA_dT_P()
Method to calculate and return the constant-pressure temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

Returns
dA_dT [float] Constant-pressure temperature derivative of Helmholtz energy, [J/(mol*K)]

dA_dT_V()
Method to calculate and return the constant-volume temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

− 𝑉

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

− 𝑇

(︂
𝜕𝑆

𝜕𝑇

)︂
𝑉

− 𝑆

Returns
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dA_dT_V [float] Constant-volume temperature derivative of Helmholtz energy, [J/(mol*K)]

dA_dV_P()
Method to calculate and return the constant-pressure volume derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝐴

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dA_dV_P [float] Constant-pressure volume derivative of Helmholtz energy, [J/(m^3)]

dA_dV_T()
Method to calculate and return the constant-temperature volume derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝐴

𝜕𝑃

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
dA_dV_T [float] Constant-temperature volume derivative of Helmholtz energy, [J/(m^3)]

dA_mass_dP()
Method to calculate and return the pressure derivative of mass Helmholtz energy of the phase at constant
temperature.

(︂
𝜕𝐴mass

𝜕𝑃

)︂
𝑇

Returns
dA_mass_dP [float] The pressure derivative of mass Helmholtz energy of the phase at con-

stant temperature, [J/mol/Pa]

dA_mass_dP_T()
Method to calculate and return the pressure derivative of mass Helmholtz energy of the phase at constant
temperature.

(︂
𝜕𝐴mass

𝜕𝑃

)︂
𝑇

Returns
dA_mass_dP_T [float] The pressure derivative of mass Helmholtz energy of the phase at

constant temperature, [J/mol/Pa]

dA_mass_dP_V()
Method to calculate and return the pressure derivative of mass Helmholtz energy of the phase at constant
volume.

(︂
𝜕𝐴mass

𝜕𝑃

)︂
𝑉

Returns
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dA_mass_dP_V [float] The pressure derivative of mass Helmholtz energy of the phase at
constant volume, [J/mol/Pa]

dA_mass_dT()
Method to calculate and return the temperature derivative of mass Helmholtz energy of the phase at constant
pressure.

(︂
𝜕𝐴mass

𝜕𝑇

)︂
𝑃

Returns
dA_mass_dT [float] The temperature derivative of mass Helmholtz energy of the phase at

constant pressure, [J/mol/K]

dA_mass_dT_P()
Method to calculate and return the temperature derivative of mass Helmholtz energy of the phase at constant
pressure.

(︂
𝜕𝐴mass

𝜕𝑇

)︂
𝑃

Returns
dA_mass_dT_P [float] The temperature derivative of mass Helmholtz energy of the phase

at constant pressure, [J/mol/K]

dA_mass_dT_V()
Method to calculate and return the temperature derivative of mass Helmholtz energy of the phase at constant
volume.

(︂
𝜕𝐴mass

𝜕𝑇

)︂
𝑉

Returns
dA_mass_dT_V [float] The temperature derivative of mass Helmholtz energy of the phase

at constant volume, [J/mol/K]

dA_mass_dV_P()
Method to calculate and return the volume derivative of mass Helmholtz energy of the phase at constant
pressure.

(︂
𝜕𝐴mass

𝜕𝑉

)︂
𝑃

Returns
dA_mass_dV_P [float] The volume derivative of mass Helmholtz energy of the phase at

constant pressure, [J/mol/m^3/mol]
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dA_mass_dV_T()
Method to calculate and return the volume derivative of mass Helmholtz energy of the phase at constant
temperature.

(︂
𝜕𝐴mass

𝜕𝑉

)︂
𝑇

Returns
dA_mass_dV_T [float] The volume derivative of mass Helmholtz energy of the phase at

constant temperature, [J/mol/m^3/mol]

dCv_dP_T()
Method to calculate the pressure derivative of Cv, constant volume heat capacity, at constant temperature.(︂

𝜕𝐶𝑣

𝜕𝑃

)︂
𝑇

= −𝑇 dPdTV (𝑃 )
𝑑

𝑑𝑃
dVdTP (𝑃 ) − 𝑇 dVdTP (𝑃 )

𝑑

𝑑𝑃
dPdTV (𝑃 ) +

𝑑

𝑑𝑃
Cp (𝑃 )

Returns
dCv_dP_T [float] Pressure derivative of constant volume heat capacity at constant temper-

ature, [J/mol/K/Pa]

Notes

Requires d2V_dTdP, d2P_dTdP, and d2H_dTdP.

dCv_dT_P()
Method to calculate the temperature derivative of Cv, constant volume heat capacity, at constant pressure.(︂
𝜕𝐶𝑣

𝜕𝑇

)︂
𝑃

= −
𝑇 dPdTV

2 (𝑇 ) 𝑑
𝑑𝑇 dPdVT (𝑇 )

dPdVT
2 (𝑇 )

+
2𝑇 dPdTV (𝑇 ) 𝑑

𝑑𝑇 dPdTV (𝑇 )

dPdVT (𝑇 )
+

dPdTV
2 (𝑇 )

dPdVT (𝑇 )
+

𝑑

𝑑𝑇
Cp (𝑇 )

Returns
dCv_dT_P [float] Temperature derivative of constant volume heat capacity at constant pres-

sure, [J/mol/K^2]

Notes

Requires d2P_dT2_PV, d2P_dVdT_TP, and d2H_dT2.

dCv_mass_dP_T()
Method to calculate and return the pressure derivative of mass Constant-volume heat capacity of the phase
at constant temperature.

(︂
𝜕𝐶𝑣mass

𝜕𝑃

)︂
𝑇

Returns
dCv_mass_dP_T [float] The pressure derivative of mass Constant-volume heat capacity of

the phase at constant temperature, [J/(mol*K)/Pa]
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dCv_mass_dT_P()
Method to calculate and return the temperature derivative of mass Constant-volume heat capacity of the
phase at constant pressure.

(︂
𝜕𝐶𝑣mass

𝜕𝑇

)︂
𝑃

Returns
dCv_mass_dT_P [float] The temperature derivative of mass Constant-volume heat capacity

of the phase at constant pressure, [J/(mol*K)/K]

dG_dP()
Method to calculate and return the constant-temperature pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dG_dP [float] Constant-temperature pressure derivative of Gibbs free energy, [J/(mol*Pa)]

dG_dP_T()
Method to calculate and return the constant-temperature pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dG_dP [float] Constant-temperature pressure derivative of Gibbs free energy, [J/(mol*Pa)]

dG_dP_V()
Method to calculate and return the constant-volume pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑉

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑉

− 𝑆

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑉

Returns
dG_dP_V [float] Constant-volume pressure derivative of Gibbs free energy, [J/(mol*Pa)]

dG_dT()
Method to calculate and return the constant-pressure temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dG_dT [float] Constant-pressure temperature derivative of Gibbs free energy, [J/(mol*K)]

dG_dT_P()
Method to calculate and return the constant-pressure temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
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dG_dT [float] Constant-pressure temperature derivative of Gibbs free energy, [J/(mol*K)]

dG_dT_V()
Method to calculate and return the constant-volume temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑉

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑉

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

Returns
dG_dT_V [float] Constant-volume temperature derivative of Gibbs free energy, [J/(mol*K)]

dG_dV_P()
Method to calculate and return the constant-pressure volume derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝐺

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dG_dV_P [float] Constant-pressure volume derivative of Gibbs free energy, [J/(m^3)]

dG_dV_T()
Method to calculate and return the constant-temperature volume derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝐺

𝜕𝑃

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
dG_dV_T [float] Constant-temperature volume derivative of Gibbs free energy, [J/(m^3)]

dG_mass_dP()
Method to calculate and return the pressure derivative of mass Gibbs free energy of the phase at constant
temperature.

(︂
𝜕𝐺mass

𝜕𝑃

)︂
𝑇

Returns
dG_mass_dP [float] The pressure derivative of mass Gibbs free energy of the phase at con-

stant temperature, [J/mol/Pa]

dG_mass_dP_T()
Method to calculate and return the pressure derivative of mass Gibbs free energy of the phase at constant
temperature.

(︂
𝜕𝐺mass

𝜕𝑃

)︂
𝑇

Returns
dG_mass_dP_T [float] The pressure derivative of mass Gibbs free energy of the phase at

constant temperature, [J/mol/Pa]

dG_mass_dP_V()
Method to calculate and return the pressure derivative of mass Gibbs free energy of the phase at constant
volume.
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(︂
𝜕𝐺mass

𝜕𝑃

)︂
𝑉

Returns
dG_mass_dP_V [float] The pressure derivative of mass Gibbs free energy of the phase at

constant volume, [J/mol/Pa]

dG_mass_dT()
Method to calculate and return the temperature derivative of mass Gibbs free energy of the phase at constant
pressure.

(︂
𝜕𝐺mass

𝜕𝑇

)︂
𝑃

Returns
dG_mass_dT [float] The temperature derivative of mass Gibbs free energy of the phase at

constant pressure, [J/mol/K]

dG_mass_dT_P()
Method to calculate and return the temperature derivative of mass Gibbs free energy of the phase at constant
pressure.

(︂
𝜕𝐺mass

𝜕𝑇

)︂
𝑃

Returns
dG_mass_dT_P [float] The temperature derivative of mass Gibbs free energy of the phase

at constant pressure, [J/mol/K]

dG_mass_dT_V()
Method to calculate and return the temperature derivative of mass Gibbs free energy of the phase at constant
volume.

(︂
𝜕𝐺mass

𝜕𝑇

)︂
𝑉

Returns
dG_mass_dT_V [float] The temperature derivative of mass Gibbs free energy of the phase

at constant volume, [J/mol/K]

dG_mass_dV_P()
Method to calculate and return the volume derivative of mass Gibbs free energy of the phase at constant
pressure.

(︂
𝜕𝐺mass

𝜕𝑉

)︂
𝑃
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Returns
dG_mass_dV_P [float] The volume derivative of mass Gibbs free energy of the phase at

constant pressure, [J/mol/m^3/mol]

dG_mass_dV_T()
Method to calculate and return the volume derivative of mass Gibbs free energy of the phase at constant
temperature.

(︂
𝜕𝐺mass

𝜕𝑉

)︂
𝑇

Returns
dG_mass_dV_T [float] The volume derivative of mass Gibbs free energy of the phase at

constant temperature, [J/mol/m^3/mol]

dH_dP()
Method to calculate and return the pressure derivative of enthalpy of the phase at constant pressure.

Returns
dH_dP_T [float] Pressure derivative of enthalpy, [J/(mol*Pa)]

dH_dP_T()
Method to calculate and return the pressure derivative of enthalpy of the phase at constant pressure.

Returns
dH_dP_T [float] Pressure derivative of enthalpy, [J/(mol*Pa)]

dH_dT()
Method to calculate and return the constant-temperature and constant phase-fraction heat capacity of the
bulk phase. This is a phase-fraction weighted calculation.

𝐶𝑝 =

𝑝∑︁
𝑖

𝐶𝑝,𝑖𝛽𝑖

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

dH_dT_P()
Method to calculate and return the temperature derivative of enthalpy of the phase at constant pressure.

Returns
dH_dT_P [float] Temperature derivative of enthalpy, [J/(mol*K)]

dH_mass_dP()
Method to calculate and return the pressure derivative of mass enthalpy of the phase at constant temperature.

(︂
𝜕𝐻mass

𝜕𝑃

)︂
𝑇

Returns
dH_mass_dP [float] The pressure derivative of mass enthalpy of the phase at constant tem-

perature, [J/mol/Pa]
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dH_mass_dP_T()
Method to calculate and return the pressure derivative of mass enthalpy of the phase at constant temperature.

(︂
𝜕𝐻mass

𝜕𝑃

)︂
𝑇

Returns
dH_mass_dP_T [float] The pressure derivative of mass enthalpy of the phase at constant

temperature, [J/mol/Pa]

dH_mass_dP_V()
Method to calculate and return the pressure derivative of mass enthalpy of the phase at constant volume.

(︂
𝜕𝐻mass

𝜕𝑃

)︂
𝑉

Returns
dH_mass_dP_V [float] The pressure derivative of mass enthalpy of the phase at constant

volume, [J/mol/Pa]

dH_mass_dT()
Method to calculate and return the temperature derivative of mass enthalpy of the phase at constant pressure.

(︂
𝜕𝐻mass

𝜕𝑇

)︂
𝑃

Returns
dH_mass_dT [float] The temperature derivative of mass enthalpy of the phase at constant

pressure, [J/mol/K]

dH_mass_dT_P()
Method to calculate and return the temperature derivative of mass enthalpy of the phase at constant pressure.

(︂
𝜕𝐻mass

𝜕𝑇

)︂
𝑃

Returns
dH_mass_dT_P [float] The temperature derivative of mass enthalpy of the phase at constant

pressure, [J/mol/K]

dH_mass_dT_V()
Method to calculate and return the temperature derivative of mass enthalpy of the phase at constant volume.

(︂
𝜕𝐻mass

𝜕𝑇

)︂
𝑉

Returns
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dH_mass_dT_V [float] The temperature derivative of mass enthalpy of the phase at constant
volume, [J/mol/K]

dH_mass_dV_P()
Method to calculate and return the volume derivative of mass enthalpy of the phase at constant pressure.

(︂
𝜕𝐻mass

𝜕𝑉

)︂
𝑃

Returns
dH_mass_dV_P [float] The volume derivative of mass enthalpy of the phase at constant

pressure, [J/mol/m^3/mol]

dH_mass_dV_T()
Method to calculate and return the volume derivative of mass enthalpy of the phase at constant temperature.

(︂
𝜕𝐻mass

𝜕𝑉

)︂
𝑇

Returns
dH_mass_dV_T [float] The volume derivative of mass enthalpy of the phase at constant

temperature, [J/mol/m^3/mol]

dP_dP_A()
Method to calculate and return the pressure derivative of pressure of the phase at constant Helmholtz energy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝐴

Returns
dP_dP_A [float] The pressure derivative of pressure of the phase at constant Helmholtz en-

ergy, [Pa/Pa]

dP_dP_G()
Method to calculate and return the pressure derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝐺

Returns
dP_dP_G [float] The pressure derivative of pressure of the phase at constant Gibbs energy,

[Pa/Pa]

dP_dP_H()
Method to calculate and return the pressure derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝐻
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Returns
dP_dP_H [float] The pressure derivative of pressure of the phase at constant enthalpy,

[Pa/Pa]

dP_dP_S()
Method to calculate and return the pressure derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝑆

Returns
dP_dP_S [float] The pressure derivative of pressure of the phase at constant entropy, [Pa/Pa]

dP_dP_U()
Method to calculate and return the pressure derivative of pressure of the phase at constant internal energy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝑈

Returns
dP_dP_U [float] The pressure derivative of pressure of the phase at constant internal energy,

[Pa/Pa]

dP_dT()
Method to calculate and return the first temperature derivative of pressure of the bulk according to the
selected calculation methodology.

Returns
dP_dT [float] First temperature derivative of pressure, [Pa/K]

dP_dT_A()
Method to calculate and return the temperature derivative of pressure of the phase at constant Helmholtz
energy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝐴

Returns
dP_dT_A [float] The temperature derivative of pressure of the phase at constant Helmholtz

energy, [Pa/K]

dP_dT_G()
Method to calculate and return the temperature derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝐺

Returns
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dP_dT_G [float] The temperature derivative of pressure of the phase at constant Gibbs en-
ergy, [Pa/K]

dP_dT_H()
Method to calculate and return the temperature derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝐻

Returns
dP_dT_H [float] The temperature derivative of pressure of the phase at constant enthalpy,

[Pa/K]

dP_dT_S()
Method to calculate and return the temperature derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑆

Returns
dP_dT_S [float] The temperature derivative of pressure of the phase at constant entropy,

[Pa/K]

dP_dT_U()
Method to calculate and return the temperature derivative of pressure of the phase at constant internal
energy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑈

Returns
dP_dT_U [float] The temperature derivative of pressure of the phase at constant internal

energy, [Pa/K]

dP_dT_frozen()
Method to calculate and return the constant-volume derivative of pressure with respect to temperature of
the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction weighted
calculation. (︂

𝜕𝑃

𝜕𝑇

)︂
𝑉,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑖,𝑉𝑖,𝛽𝑖,𝑧𝑠𝑖

Returns
dP_dT_frozen [float] Frozen constant-volume derivative of pressure with respect to temper-

ature of the bulk phase, [Pa/K]

dP_dV()
Method to calculate and return the first volume derivative of pressure of the bulk according to the selected
calculation methodology.
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Returns
dP_dV [float] First volume derivative of pressure, [Pa*mol/m^3]

dP_dV_A()
Method to calculate and return the volume derivative of pressure of the phase at constant Helmholtz energy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝐴

Returns
dP_dV_A [float] The volume derivative of pressure of the phase at constant Helmholtz en-

ergy, [Pa/m^3/mol]

dP_dV_G()
Method to calculate and return the volume derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝐺

Returns
dP_dV_G [float] The volume derivative of pressure of the phase at constant Gibbs energy,

[Pa/m^3/mol]

dP_dV_H()
Method to calculate and return the volume derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝐻

Returns
dP_dV_H [float] The volume derivative of pressure of the phase at constant enthalpy,

[Pa/m^3/mol]

dP_dV_S()
Method to calculate and return the volume derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑆

Returns
dP_dV_S [float] The volume derivative of pressure of the phase at constant entropy,

[Pa/m^3/mol]

dP_dV_U()
Method to calculate and return the volume derivative of pressure of the phase at constant internal energy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑈
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Returns
dP_dV_U [float] The volume derivative of pressure of the phase at constant internal energy,

[Pa/m^3/mol]

dP_dV_frozen()
Method to calculate and return the constant-temperature derivative of pressure with respect to volume of
the bulk phase, at constant phase fractions and phase compositions. This is a molar phase-fraction weighted
calculation. (︂

𝜕𝑃

𝜕𝑉

)︂
𝑇,𝛽,𝑧𝑠

=

phases∑︁
𝑖

𝛽𝑖

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑖,𝑇,𝛽𝑖,𝑧𝑠𝑖

Returns
dP_dV_frozen [float] Frozen constant-temperature derivative of pressure with respect to

volume of the bulk phase, [Pa*mol/m^3]

dP_drho_A()
Method to calculate and return the density derivative of pressure of the phase at constant Helmholtz energy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝐴

Returns
dP_drho_A [float] The density derivative of pressure of the phase at constant Helmholtz

energy, [Pa/mol/m^3]

dP_drho_G()
Method to calculate and return the density derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝐺

Returns
dP_drho_G [float] The density derivative of pressure of the phase at constant Gibbs energy,

[Pa/mol/m^3]

dP_drho_H()
Method to calculate and return the density derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝐻

Returns
dP_drho_H [float] The density derivative of pressure of the phase at constant enthalpy,

[Pa/mol/m^3]

dP_drho_S()
Method to calculate and return the density derivative of pressure of the phase at constant entropy.
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(︂
𝜕𝑃

𝜕𝜌

)︂
𝑆

Returns
dP_drho_S [float] The density derivative of pressure of the phase at constant entropy,

[Pa/mol/m^3]

dP_drho_U()
Method to calculate and return the density derivative of pressure of the phase at constant internal energy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝑈

Returns
dP_drho_U [float] The density derivative of pressure of the phase at constant internal energy,

[Pa/mol/m^3]

dS_dP()
Method to calculate and return the pressure derivative of entropy of the phase at constant pressure.

Returns
dS_dP_T [float] Pressure derivative of entropy, [J/(mol*K*Pa)]

dS_dP_T()
Method to calculate and return the pressure derivative of entropy of the phase at constant pressure.

Returns
dS_dP_T [float] Pressure derivative of entropy, [J/(mol*K*Pa)]

dS_dV_P()
Method to calculate and return the volume derivative of entropy of the phase at constant pressure.

Returns
dS_dV_P [float] Volume derivative of entropy, [J/(K*m^3)]

dS_dV_T()
Method to calculate and return the volume derivative of entropy of the phase at constant temperature.

Returns
dS_dV_T [float] Volume derivative of entropy, [J/(K*m^3)]

dS_mass_dP()
Method to calculate and return the pressure derivative of mass entropy of the phase at constant temperature.

(︂
𝜕𝑆mass

𝜕𝑃

)︂
𝑇

Returns
dS_mass_dP [float] The pressure derivative of mass entropy of the phase at constant tem-

perature, [J/(mol*K)/Pa]
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dS_mass_dP_T()
Method to calculate and return the pressure derivative of mass entropy of the phase at constant temperature.

(︂
𝜕𝑆mass

𝜕𝑃

)︂
𝑇

Returns
dS_mass_dP_T [float] The pressure derivative of mass entropy of the phase at constant tem-

perature, [J/(mol*K)/Pa]

dS_mass_dP_V()
Method to calculate and return the pressure derivative of mass entropy of the phase at constant volume.

(︂
𝜕𝑆mass

𝜕𝑃

)︂
𝑉

Returns
dS_mass_dP_V [float] The pressure derivative of mass entropy of the phase at constant vol-

ume, [J/(mol*K)/Pa]

dS_mass_dT()
Method to calculate and return the temperature derivative of mass entropy of the phase at constant pressure.

(︂
𝜕𝑆mass

𝜕𝑇

)︂
𝑃

Returns
dS_mass_dT [float] The temperature derivative of mass entropy of the phase at constant

pressure, [J/(mol*K)/K]

dS_mass_dT_P()
Method to calculate and return the temperature derivative of mass entropy of the phase at constant pressure.

(︂
𝜕𝑆mass

𝜕𝑇

)︂
𝑃

Returns
dS_mass_dT_P [float] The temperature derivative of mass entropy of the phase at constant

pressure, [J/(mol*K)/K]

dS_mass_dT_V()
Method to calculate and return the temperature derivative of mass entropy of the phase at constant volume.

(︂
𝜕𝑆mass

𝜕𝑇

)︂
𝑉

Returns
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dS_mass_dT_V [float] The temperature derivative of mass entropy of the phase at constant
volume, [J/(mol*K)/K]

dS_mass_dV_P()
Method to calculate and return the volume derivative of mass entropy of the phase at constant pressure.

(︂
𝜕𝑆mass

𝜕𝑉

)︂
𝑃

Returns
dS_mass_dV_P [float] The volume derivative of mass entropy of the phase at constant pres-

sure, [J/(mol*K)/m^3/mol]

dS_mass_dV_T()
Method to calculate and return the volume derivative of mass entropy of the phase at constant temperature.

(︂
𝜕𝑆mass

𝜕𝑉

)︂
𝑇

Returns
dS_mass_dV_T [float] The volume derivative of mass entropy of the phase at constant tem-

perature, [J/(mol*K)/m^3/mol]

dT_dP_A()
Method to calculate and return the pressure derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐴

Returns
dT_dP_A [float] The pressure derivative of temperature of the phase at constant Helmholtz

energy, [K/Pa]

dT_dP_G()
Method to calculate and return the pressure derivative of temperature of the phase at constant Gibbs energy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐺

Returns
dT_dP_G [float] The pressure derivative of temperature of the phase at constant Gibbs en-

ergy, [K/Pa]

dT_dP_H()
Method to calculate and return the pressure derivative of temperature of the phase at constant enthalpy.
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(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

Returns
dT_dP_H [float] The pressure derivative of temperature of the phase at constant enthalpy,

[K/Pa]

dT_dP_S()
Method to calculate and return the pressure derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

Returns
dT_dP_S [float] The pressure derivative of temperature of the phase at constant entropy,

[K/Pa]

dT_dP_U()
Method to calculate and return the pressure derivative of temperature of the phase at constant internal
energy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑈

Returns
dT_dP_U [float] The pressure derivative of temperature of the phase at constant internal

energy, [K/Pa]

dT_dT_A()
Method to calculate and return the temperature derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝐴

Returns
dT_dT_A [float] The temperature derivative of temperature of the phase at constant

Helmholtz energy, [K/K]

dT_dT_G()
Method to calculate and return the temperature derivative of temperature of the phase at constant Gibbs
energy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝐺
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Returns
dT_dT_G [float] The temperature derivative of temperature of the phase at constant Gibbs

energy, [K/K]

dT_dT_H()
Method to calculate and return the temperature derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝐻

Returns
dT_dT_H [float] The temperature derivative of temperature of the phase at constant en-

thalpy, [K/K]

dT_dT_S()
Method to calculate and return the temperature derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝑆

Returns
dT_dT_S [float] The temperature derivative of temperature of the phase at constant entropy,

[K/K]

dT_dT_U()
Method to calculate and return the temperature derivative of temperature of the phase at constant internal
energy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝑈

Returns
dT_dT_U [float] The temperature derivative of temperature of the phase at constant internal

energy, [K/K]

dT_dV_A()
Method to calculate and return the volume derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝐴

Returns
dT_dV_A [float] The volume derivative of temperature of the phase at constant Helmholtz

energy, [K/m^3/mol]

dT_dV_G()
Method to calculate and return the volume derivative of temperature of the phase at constant Gibbs energy.
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(︂
𝜕𝑇

𝜕𝑉

)︂
𝐺

Returns
dT_dV_G [float] The volume derivative of temperature of the phase at constant Gibbs en-

ergy, [K/m^3/mol]

dT_dV_H()
Method to calculate and return the volume derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝐻

Returns
dT_dV_H [float] The volume derivative of temperature of the phase at constant enthalpy,

[K/m^3/mol]

dT_dV_S()
Method to calculate and return the volume derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑆

Returns
dT_dV_S [float] The volume derivative of temperature of the phase at constant entropy,

[K/m^3/mol]

dT_dV_U()
Method to calculate and return the volume derivative of temperature of the phase at constant internal energy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑈

Returns
dT_dV_U [float] The volume derivative of temperature of the phase at constant internal

energy, [K/m^3/mol]

dT_drho_A()
Method to calculate and return the density derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝐴

Returns
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dT_drho_A [float] The density derivative of temperature of the phase at constant Helmholtz
energy, [K/mol/m^3]

dT_drho_G()
Method to calculate and return the density derivative of temperature of the phase at constant Gibbs energy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝐺

Returns
dT_drho_G [float] The density derivative of temperature of the phase at constant Gibbs

energy, [K/mol/m^3]

dT_drho_H()
Method to calculate and return the density derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝐻

Returns
dT_drho_H [float] The density derivative of temperature of the phase at constant enthalpy,

[K/mol/m^3]

dT_drho_S()
Method to calculate and return the density derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝑆

Returns
dT_drho_S [float] The density derivative of temperature of the phase at constant entropy,

[K/mol/m^3]

dT_drho_U()
Method to calculate and return the density derivative of temperature of the phase at constant internal energy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝑈

Returns
dT_drho_U [float] The density derivative of temperature of the phase at constant internal

energy, [K/mol/m^3]

dU_dP()
Method to calculate and return the constant-temperature pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑇

= −𝑃
(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

− 𝑉 +

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇
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Returns
dU_dP [float] Constant-temperature pressure derivative of internal energy, [J/(mol*Pa)]

dU_dP_T()
Method to calculate and return the constant-temperature pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑇

= −𝑃
(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

− 𝑉 +

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dU_dP [float] Constant-temperature pressure derivative of internal energy, [J/(mol*Pa)]

dU_dP_V()
Method to calculate and return the constant-volume pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑉

− 𝑉

Returns
dU_dP_V [float] Constant-volume pressure derivative of internal energy, [J/(mol*Pa)]

dU_dT()
Method to calculate and return the constant-pressure temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑃

= −𝑃
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

+

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dU_dT [float] Constant-pressure temperature derivative of internal energy, [J/(mol*K)]

dU_dT_P()
Method to calculate and return the constant-pressure temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑃

= −𝑃
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

+

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dU_dT [float] Constant-pressure temperature derivative of internal energy, [J/(mol*K)]

dU_dT_V()
Method to calculate and return the constant-volume temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

− 𝑉

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Returns
dU_dT_V [float] Constant-volume temperature derivative of internal energy, [J/(mol*K)]

dU_dV_P()
Method to calculate and return the constant-pressure volume derivative of internal energy.(︂

𝜕𝑈

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dU_dV_P [float] Constant-pressure volume derivative of internal energy, [J/(m^3)]
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dU_dV_T()
Method to calculate and return the constant-temperature volume derivative of internal energy.(︂

𝜕𝑈

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
dU_dV_T [float] Constant-temperature volume derivative of internal energy, [J/(m^3)]

dU_mass_dP()
Method to calculate and return the pressure derivative of mass internal energy of the phase at constant
temperature.

(︂
𝜕𝑈mass

𝜕𝑃

)︂
𝑇

Returns
dU_mass_dP [float] The pressure derivative of mass internal energy of the phase at constant

temperature, [J/mol/Pa]

dU_mass_dP_T()
Method to calculate and return the pressure derivative of mass internal energy of the phase at constant
temperature.

(︂
𝜕𝑈mass

𝜕𝑃

)︂
𝑇

Returns
dU_mass_dP_T [float] The pressure derivative of mass internal energy of the phase at con-

stant temperature, [J/mol/Pa]

dU_mass_dP_V()
Method to calculate and return the pressure derivative of mass internal energy of the phase at constant
volume.

(︂
𝜕𝑈mass

𝜕𝑃

)︂
𝑉

Returns
dU_mass_dP_V [float] The pressure derivative of mass internal energy of the phase at con-

stant volume, [J/mol/Pa]

dU_mass_dT()
Method to calculate and return the temperature derivative of mass internal energy of the phase at constant
pressure.

(︂
𝜕𝑈mass

𝜕𝑇

)︂
𝑃
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Returns
dU_mass_dT [float] The temperature derivative of mass internal energy of the phase at con-

stant pressure, [J/mol/K]

dU_mass_dT_P()
Method to calculate and return the temperature derivative of mass internal energy of the phase at constant
pressure.

(︂
𝜕𝑈mass

𝜕𝑇

)︂
𝑃

Returns
dU_mass_dT_P [float] The temperature derivative of mass internal energy of the phase at

constant pressure, [J/mol/K]

dU_mass_dT_V()
Method to calculate and return the temperature derivative of mass internal energy of the phase at constant
volume.

(︂
𝜕𝑈mass

𝜕𝑇

)︂
𝑉

Returns
dU_mass_dT_V [float] The temperature derivative of mass internal energy of the phase at

constant volume, [J/mol/K]

dU_mass_dV_P()
Method to calculate and return the volume derivative of mass internal energy of the phase at constant
pressure.

(︂
𝜕𝑈mass

𝜕𝑉

)︂
𝑃

Returns
dU_mass_dV_P [float] The volume derivative of mass internal energy of the phase at con-

stant pressure, [J/mol/m^3/mol]

dU_mass_dV_T()
Method to calculate and return the volume derivative of mass internal energy of the phase at constant
temperature.

(︂
𝜕𝑈mass

𝜕𝑉

)︂
𝑇

Returns
dU_mass_dV_T [float] The volume derivative of mass internal energy of the phase at con-

stant temperature, [J/mol/m^3/mol]
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dV_dP_A()
Method to calculate and return the pressure derivative of volume of the phase at constant Helmholtz energy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝐴

Returns
dV_dP_A [float] The pressure derivative of volume of the phase at constant Helmholtz en-

ergy, [m^3/mol/Pa]

dV_dP_G()
Method to calculate and return the pressure derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝐺

Returns
dV_dP_G [float] The pressure derivative of volume of the phase at constant Gibbs energy,

[m^3/mol/Pa]

dV_dP_H()
Method to calculate and return the pressure derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝐻

Returns
dV_dP_H [float] The pressure derivative of volume of the phase at constant enthalpy,

[m^3/mol/Pa]

dV_dP_S()
Method to calculate and return the pressure derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑆

Returns
dV_dP_S [float] The pressure derivative of volume of the phase at constant entropy,

[m^3/mol/Pa]

dV_dP_U()
Method to calculate and return the pressure derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑈

Returns
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dV_dP_U [float] The pressure derivative of volume of the phase at constant internal energy,
[m^3/mol/Pa]

dV_dT_A()
Method to calculate and return the temperature derivative of volume of the phase at constant Helmholtz
energy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝐴

Returns
dV_dT_A [float] The temperature derivative of volume of the phase at constant Helmholtz

energy, [m^3/mol/K]

dV_dT_G()
Method to calculate and return the temperature derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝐺

Returns
dV_dT_G [float] The temperature derivative of volume of the phase at constant Gibbs en-

ergy, [m^3/mol/K]

dV_dT_H()
Method to calculate and return the temperature derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝐻

Returns
dV_dT_H [float] The temperature derivative of volume of the phase at constant enthalpy,

[m^3/mol/K]

dV_dT_S()
Method to calculate and return the temperature derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑆

Returns
dV_dT_S [float] The temperature derivative of volume of the phase at constant entropy,

[m^3/mol/K]

dV_dT_U()
Method to calculate and return the temperature derivative of volume of the phase at constant internal energy.
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(︂
𝜕𝑉

𝜕𝑇

)︂
𝑈

Returns
dV_dT_U [float] The temperature derivative of volume of the phase at constant internal

energy, [m^3/mol/K]

dV_dV_A()
Method to calculate and return the volume derivative of volume of the phase at constant Helmholtz energy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝐴

Returns
dV_dV_A [float] The volume derivative of volume of the phase at constant Helmholtz en-

ergy, [m^3/mol/m^3/mol]

dV_dV_G()
Method to calculate and return the volume derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝐺

Returns
dV_dV_G [float] The volume derivative of volume of the phase at constant Gibbs energy,

[m^3/mol/m^3/mol]

dV_dV_H()
Method to calculate and return the volume derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝐻

Returns
dV_dV_H [float] The volume derivative of volume of the phase at constant enthalpy,

[m^3/mol/m^3/mol]

dV_dV_S()
Method to calculate and return the volume derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝑆

Returns
dV_dV_S [float] The volume derivative of volume of the phase at constant entropy,

[m^3/mol/m^3/mol]
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dV_dV_U()
Method to calculate and return the volume derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝑈

Returns
dV_dV_U [float] The volume derivative of volume of the phase at constant internal energy,

[m^3/mol/m^3/mol]

dV_drho_A()
Method to calculate and return the density derivative of volume of the phase at constant Helmholtz energy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝐴

Returns
dV_drho_A [float] The density derivative of volume of the phase at constant Helmholtz

energy, [m^3/mol/mol/m^3]

dV_drho_G()
Method to calculate and return the density derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝐺

Returns
dV_drho_G [float] The density derivative of volume of the phase at constant Gibbs energy,

[m^3/mol/mol/m^3]

dV_drho_H()
Method to calculate and return the density derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝐻

Returns
dV_drho_H [float] The density derivative of volume of the phase at constant enthalpy,

[m^3/mol/mol/m^3]

dV_drho_S()
Method to calculate and return the density derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝑆

Returns
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dV_drho_S [float] The density derivative of volume of the phase at constant entropy,
[m^3/mol/mol/m^3]

dV_drho_U()
Method to calculate and return the density derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝑈

Returns
dV_drho_U [float] The density derivative of volume of the phase at constant internal energy,

[m^3/mol/mol/m^3]

property dipoles
Dipole moments for each component, [debye].

Returns
dipoles [list[float]] Dipole moments for each component, [debye].

drho_dP_A()
Method to calculate and return the pressure derivative of density of the phase at constant Helmholtz energy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝐴

Returns
drho_dP_A [float] The pressure derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/Pa]

drho_dP_G()
Method to calculate and return the pressure derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝐺

Returns
drho_dP_G [float] The pressure derivative of density of the phase at constant Gibbs energy,

[mol/m^3/Pa]

drho_dP_H()
Method to calculate and return the pressure derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝐻

Returns
drho_dP_H [float] The pressure derivative of density of the phase at constant enthalpy,

[mol/m^3/Pa]
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drho_dP_S()
Method to calculate and return the pressure derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝑆

Returns
drho_dP_S [float] The pressure derivative of density of the phase at constant entropy,

[mol/m^3/Pa]

drho_dP_U()
Method to calculate and return the pressure derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝑈

Returns
drho_dP_U [float] The pressure derivative of density of the phase at constant internal energy,

[mol/m^3/Pa]

drho_dT_A()
Method to calculate and return the temperature derivative of density of the phase at constant Helmholtz
energy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝐴

Returns
drho_dT_A [float] The temperature derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/K]

drho_dT_G()
Method to calculate and return the temperature derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝐺

Returns
drho_dT_G [float] The temperature derivative of density of the phase at constant Gibbs

energy, [mol/m^3/K]

drho_dT_H()
Method to calculate and return the temperature derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝐻

7.12. Equilibrium State (thermo.equilibrium) 473



thermo Documentation, Release 0.2.20

Returns
drho_dT_H [float] The temperature derivative of density of the phase at constant enthalpy,

[mol/m^3/K]

drho_dT_S()
Method to calculate and return the temperature derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝑆

Returns
drho_dT_S [float] The temperature derivative of density of the phase at constant entropy,

[mol/m^3/K]

drho_dT_U()
Method to calculate and return the temperature derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝑈

Returns
drho_dT_U [float] The temperature derivative of density of the phase at constant internal

energy, [mol/m^3/K]

drho_dV_A()
Method to calculate and return the volume derivative of density of the phase at constant Helmholtz energy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝐴

Returns
drho_dV_A [float] The volume derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/m^3/mol]

drho_dV_G()
Method to calculate and return the volume derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝐺

Returns
drho_dV_G [float] The volume derivative of density of the phase at constant Gibbs energy,

[mol/m^3/m^3/mol]

drho_dV_H()
Method to calculate and return the volume derivative of density of the phase at constant enthalpy.
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(︂
𝜕𝜌

𝜕𝑉

)︂
𝐻

Returns
drho_dV_H [float] The volume derivative of density of the phase at constant enthalpy,

[mol/m^3/m^3/mol]

drho_dV_S()
Method to calculate and return the volume derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝑆

Returns
drho_dV_S [float] The volume derivative of density of the phase at constant entropy,

[mol/m^3/m^3/mol]

drho_dV_U()
Method to calculate and return the volume derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝑈

Returns
drho_dV_U [float] The volume derivative of density of the phase at constant internal energy,

[mol/m^3/m^3/mol]

drho_drho_A()
Method to calculate and return the density derivative of density of the phase at constant Helmholtz energy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝐴

Returns
drho_drho_A [float] The density derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/mol/m^3]

drho_drho_G()
Method to calculate and return the density derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝐺

Returns
drho_drho_G [float] The density derivative of density of the phase at constant Gibbs energy,

[mol/m^3/mol/m^3]
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drho_drho_H()
Method to calculate and return the density derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝐻

Returns
drho_drho_H [float] The density derivative of density of the phase at constant enthalpy,

[mol/m^3/mol/m^3]

drho_drho_S()
Method to calculate and return the density derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝑆

Returns
drho_drho_S [float] The density derivative of density of the phase at constant entropy,

[mol/m^3/mol/m^3]

drho_drho_U()
Method to calculate and return the density derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝑈

Returns
drho_drho_U [float] The density derivative of density of the phase at constant internal en-

ergy, [mol/m^3/mol/m^3]

property economic_statuses
Status of each component in in relation to import and export from various regions, [-].

Returns
economic_statuses [list[dict]] Status of each component in in relation to import and export

from various regions, [-].

flashed = True

property formulas
Formulas of each component, [-].

Returns
formulas [list[str]] Formulas of each component, [-].

property heaviest_liquid
The liquid-like phase with the highest mass density, [-]

Returns
heaviest_liquid [Phase or None] Phase with the highest mass density or None if there are no

liquid like phases, [-]
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isentropic_exponent()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

𝑘 = −𝑉
𝑃

𝐶𝑝

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
k_PV [float] Isentropic exponent of a real fluid, [-]

isentropic_exponent_PT()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑃 (1−𝑘)𝑇 𝑘 = const.

𝑘 =
1

1 − 𝑃
𝐶𝑝

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃

Returns
k_PT [float] Isentropic exponent of a real fluid, [-]

isentropic_exponent_PV()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

𝑘 = −𝑉
𝑃

𝐶𝑝

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
k_PV [float] Isentropic exponent of a real fluid, [-]

isentropic_exponent_TV()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑇𝑉 𝑘−1 = const.

𝑘 = 1 +
𝑉

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Returns
k_TV [float] Isentropic exponent of a real fluid, [-]

isobaric_expansion()
Method to calculate and return the isobatic expansion coefficient of the bulk according to the selected
calculation methodology.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Returns
beta [float] Isobaric coefficient of a thermal expansion, [1/K]

isothermal_bulk_modulus()
Method to calculate and return the isothermal bulk modulus of the phase.

𝐾𝑇 = −𝑉
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
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isothermal_bulk_modulus [float] Isothermal bulk modulus, [Pa]

k()
Calculate and return the thermal conductivity of the bulk according to the selected thermal
conductivity settings in BulkSettings, the settings in ThermalConductivityGasMixture
and ThermalConductivityLiquidMixture, and the configured pure-component settings in
ThermalConductivityGas and ThermalConductivityLiquid .

Returns
k [float] Thermal Conductivity of bulk phase calculated with mixing rules, [Pa*s]

kappa()
Method to calculate and return the isothermal compressibility of the bulk according to the selected calcu-
lation methodology.

𝜅 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Returns
kappa [float] Isothermal coefficient of compressibility, [1/Pa]

property legal_statuses
Status of each component in in relation to import and export rules from various regions, [-].

Returns
legal_statuses [list[dict]] Status of each component in in relation to import and export rules

from various regions, [-].

property lightest_liquid
The liquid-like phase with the lowest mass density, [-]

Returns
lightest_liquid [Phase or None] Phase with the lowest mass density or None if there are no

liquid like phases, [-]

liquid_bulk = None

property logPs
Octanol-water partition coefficients for each component, [-].

Returns
logPs [list[float]] Octanol-water partition coefficients for each component, [-].

log_zs()
Method to calculate and return the log of mole fractions specified. These are used in calculating entropy
and in many other formulas.

ln 𝑧𝑖

Returns
log_zs [list[float]] Log of mole fractions, [-]

max_liquid_phases = 1

molar_water_content(phase=None)
Method to calculate and return the molar water content; this is the g/mol of the fluid which is coming from
water, [g/mol].

water content = MW𝐻2𝑂𝑤𝐻2𝑂
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Returns
molar_water_content [float] Molar water content, [g/mol]

property molecular_diameters
Lennard-Jones molecular diameters for each component, [angstrom].

Returns
molecular_diameters [list[float]] Lennard-Jones molecular diameters for each component,

[angstrom].

mu()
Calculate and return the viscosity of the bulk according to the selected viscosity settings in BulkSettings,
the settings in ViscosityGasMixture and ViscosityLiquidMixture, and the configured pure-
component settings in ViscosityGas and ViscosityLiquid .

Returns
mu [float] Viscosity of bulk phase calculated with mixing rules, [Pa*s]

property names
Names for each component, [-].

Returns
names [list[str]] Names for each component, [-].

nu(phase=None)
Method to calculate and return the kinematic viscosity of the equilibrium state.

𝜈 =
𝜇

𝜌

Returns
nu [float] Kinematic viscosity, [m^2/s]

property omegas
Acentric factors for each component, [-].

Returns
omegas [list[float]] Acentric factors for each component, [-].

property phase
Method to calculate and return a string representing the phase of the mixture. The return string uses ‘V’
to represent the gas phase, ‘L’ to represent a liquid phase, and ‘S’ to represent a solid phase (always in that
order).

A state with three liquids, two solids, and a gas would return ‘VLLLSS’.

Returns
phase [str] Phase string, [-]

property phase_STPs
Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].

Returns
phase_STPs [list[str]] Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].
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pseudo_Pc(phase=None)
Method to calculate and return the pseudocritical pressure calculated using Kay’s rule (linear mole frac-
tions):

𝑃𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑃𝑐,𝑖

Returns
pseudo_Pc [float] Pseudocritical pressure of the phase, [Pa]

pseudo_Tc(phase=None)
Method to calculate and return the pseudocritical temperature calculated using Kay’s rule (linear mole
fractions):

𝑇𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑇𝑐,𝑖

Returns
pseudo_Tc [float] Pseudocritical temperature of the phase, [K]

pseudo_Vc(phase=None)
Method to calculate and return the pseudocritical volume calculated using Kay’s rule (linear mole frac-
tions):

𝑉𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑉𝑐,𝑖

Returns
pseudo_Vc [float] Pseudocritical volume of the phase, [m^3/mol]

pseudo_Zc(phase=None)
Method to calculate and return the pseudocritical compressibility calculated using Kay’s rule (linear mole
fractions):

𝑍𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑍𝑐,𝑖

Returns
pseudo_Zc [float] Pseudocritical compressibility of the phase, [-]

property quality
Method to return the mass vapor fraction of the equilibrium state. If no vapor/gas is present, 0 is always
returned. This is normally called the quality.

Returns
quality [float] Vapor mass fraction, [-]

reacted = False

rho()
Method to calculate and return the molar density of the phase.

𝜌 = 𝑓𝑟𝑎𝑐1𝑉

Returns
rho [float] Molar density, [mol/m^3]
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rho_mass(phase=None)
Method to calculate and return mass density of the phase.

𝜌 =
𝑀𝑊

1000 · 𝑉𝑀

Returns
rho_mass [float] Mass density, [kg/m^3]

rho_mass_liquid_ref(phase=None)
Method to calculate and return the liquid reference mass density according to the temperature variable
T_liquid_volume_ref of thermo.bulk.BulkSettings and the composition of the phase.

Returns
rho_mass_liquid_ref [float] Liquid mass density at the reference condition, [kg/m^3]

property rhocs
Molar densities at the critical point for each component, [mol/m^3].

Returns
rhocs [list[float]] Molar densities at the critical point for each component, [mol/m^3].

property rhocs_mass
Densities at the critical point for each component, [kg/m^3].

Returns
rhocs_mass [list[float]] Densities at the critical point for each component, [kg/m^3].

property rhog_STPs
Molar gas densities at STP for each component; metastable if normally another state, [mol/m^3].

Returns
rhog_STPs [list[float]] Molar gas densities at STP for each component; metastable if nor-

mally another state, [mol/m^3].

property rhog_STPs_mass
Gas densities at STP for each component; metastable if normally another state, [kg/m^3].

Returns
rhog_STPs_mass [list[float]] Gas densities at STP for each component; metastable if nor-

mally another state, [kg/m^3].

property rhol_60Fs
Liquid molar densities for each component at 60 °F, [mol/m^3].

Returns
rhol_60Fs [list[float]] Liquid molar densities for each component at 60 °F, [mol/m^3].

property rhol_60Fs_mass
Liquid mass densities for each component at 60 °F, [kg/m^3].

Returns
rhol_60Fs_mass [list[float]] Liquid mass densities for each component at 60 °F, [kg/m^3].

property rhol_STPs
Molar liquid densities at STP for each component, [mol/m^3].

Returns
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rhol_STPs [list[float]] Molar liquid densities at STP for each component, [mol/m^3].

property rhol_STPs_mass
Liquid densities at STP for each component, [kg/m^3].

Returns
rhol_STPs_mass [list[float]] Liquid densities at STP for each component, [kg/m^3].

property rhos_Tms
Solid molar densities for each component at their respective melting points, [mol/m^3].

Returns
rhos_Tms [list[float]] Solid molar densities for each component at their respective melting

points, [mol/m^3].

property rhos_Tms_mass
Solid mass densities for each component at their melting point, [kg/m^3].

Returns
rhos_Tms_mass [list[float]] Solid mass densities for each component at their melting point,

[kg/m^3].

sigma()
Calculate and return the surface tension of the bulk according to the selected surface tension settings in
BulkSettings, the settings in SurfaceTensionMixture and the configured pure-component settings in
SurfaceTension.

Returns
sigma [float] Surface tension of bulk phase calculated with mixing rules, [N/m]

Notes

A value is only returned if all phases in the bulk are liquids; this property is for a liquid-ideal gas calculation,
not the interfacial tension between two liquid phases.

property sigma_STPs
Liquid-air surface tensions at 298.15 K and the higher of 101325 Pa or the saturation pressure, [N/m].

Returns
sigma_STPs [list[float]] Liquid-air surface tensions at 298.15 K and the higher of 101325

Pa or the saturation pressure, [N/m].

property sigma_Tbs
Liquid-air surface tensions at the normal boiling point and 101325 Pa, [N/m].

Returns
sigma_Tbs [list[float]] Liquid-air surface tensions at the normal boiling point and 101325

Pa, [N/m].

property sigma_Tms
Liquid-air surface tensions at the melting point and 101325 Pa, [N/m].

Returns
sigma_Tms [list[float]] Liquid-air surface tensions at the melting point and 101325 Pa,

[N/m].
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property similarity_variables
Similarity variables for each component, [mol/g].

Returns
similarity_variables [list[float]] Similarity variables for each component, [mol/g].

property smiless
SMILES identifiers for each component, [-].

Returns
smiless [list[str]] SMILES identifiers for each component, [-].

solid_bulk = None

property solubility_parameters
Solubility parameters for each component at 298.15 K, [Pa^0.5].

Returns
solubility_parameters [list[float]] Solubility parameters for each component at 298.15 K,

[Pa^0.5].

speed_of_sound()
Method to calculate and return the molar speed of sound of the bulk according to the selected calculation
methodology.

𝑤 =

[︂
−𝑉 2

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
A similar expression based on molar density is:

𝑤 =

[︂(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
Returns

w [float] Speed of sound for a real gas, [m*kg^0.5/(s*mol^0.5)]

speed_of_sound_mass()
Method to calculate and return the speed of sound of the phase.

𝑤 =

[︂
−𝑉 2 1000

𝑀𝑊

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
Returns

w [float] Speed of sound for a real gas, [m/s]

value(name, phase=None)
Method to retrieve a property from a string. This more or less wraps getattr, but also allows for the property
to be returned for a specific phase if phase is provided.

name could be a python property like ‘Tms’ or a callable method like ‘H’; and if the property is on a per-
phase basis like ‘betas_mass’, a phase object can be provided as the second argument and only the value
for that phase will be returned.

Parameters
name [str] String representing the property, [-]

phase [thermo.phase.Phase, optional] Phase to retrieve the property for only (if speci-
fied), [-]
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Returns
value [various] Value specified, [various]

property water_index
The index of the component water in the components. None if water is not present. Water is recognized by
its CAS number.

Returns
water_index [int] The index of the component water, [-]

property water_phase
The liquid-like phase with the highest water mole fraction, [-]

Returns
water_phase [Phase or None] Phase with the highest water mole fraction or None if there

are no liquid like phases with water, [-]

property water_phase_index
The liquid-like phase with the highest mole fraction of water, [-]

Returns
water_phase_index [int] Index into the attribute EquilibriumState.liquids which

refers to the liquid-like phase with the highest water mole fraction, [-]

ws(phase=None)
Method to calculate and return the mass fractions of the phase, [-]

Returns
ws [list[float]] Mass fractions, [-]

ws_no_water(phase=None)
Method to calculate and return the mass fractions of all species in the phase, normalized to a water-free
basis (the mass fraction of water returned is zero).

Returns
ws_no_water [list[float]] Mass fractions on a water free basis, [-]

zs_no_water(phase=None)
Method to calculate and return the mole fractions of all species in the phase, normalized to a water-free
basis (the mole fraction of water returned is zero).

Returns
zs_no_water [list[float]] Mole fractions on a water free basis, [-]

7.13 Flash Calculations (thermo.flash)

This module contains classes and functions for performing flash calculations.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Main Interfaces

– Pure Components

– Vapor-Liquid Systems
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– Vapor and Multiple Liquid Systems

– Base Flash Class

• Specific Flash Algorithms

7.13.1 Main Interfaces

Pure Components

class thermo.flash.FlashPureVLS(constants, correlations, gas, liquids, solids,
settings=<thermo.bulk.BulkSettings object>)

Bases: thermo.flash.flash_base.Flash

Class for performing flash calculations on pure-component systems. This class is subtantially more robust than
using multicomponent algorithms on pure species. It is also faster. All parameters are also attributes.

The minimum information that is needed in addition to the Phase objects is:

• MW

• Vapor pressure curve if including liquids

• Sublimation pressure curve if including solids

• Functioning enthalpy models for each phase

Parameters
constants [ChemicalConstantsPackage object] Package of chemical constants; these are

used as boundaries at times, initial guesses other times, and in all cases these properties
are accessible as attributes of the resulting EquilibriumState object, [-]

correlations [PropertyCorrelationsPackage] Package of chemical T-dependent proper-
ties; these are used as boundaries at times, for initial guesses other times, and in all cases
these properties are accessible as attributes of the resulting EquilibriumState object, [-]

gas [Phase object] A single phase which can represent the gas phase, [-]

liquids [list[Phase]] A list of phases for representing the liquid phase; normally only one liquid
phase is present for a pure-component system, but multiple liquids are allowed for the re-
ally weird cases like having both parahydrogen and orthohydrogen. The liquid phase which
calculates a lower Gibbs free energy is always used. [-]

solids [list[Phase]] A list of phases for representing the solid phase; it is very common for
multiple solid forms of a compound to exist. For water ice, the list is very long - normally
ice is in phase Ih but other phases are Ic, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII,
XIV, XV, XVI, Square ice, and Amorphous ice. It is less common for there to be published,
reliable, thermodynamic models for these different phases; for water there is the IAPWS-06
model for Ih, and another model here for phases Ih, Ic, II, III, IV, V, VI, IX, XI, XII. [-]

settings [BulkSettings object] Object containing settings for calculating bulk and transport
properties, [-]
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Notes

The algorithms in this object are mostly from [1] and [2]. They all boil down to newton methods with analytical
derivatives. The phase with the lowest Gibbs energy is the most stable if there are multiple solutions.

Phase input combinations which have specific simplifying assumptions (and thus more speed) are:

• a CEOSLiquid and a CEOSGas with the same (consistent) parameters

• a CEOSGas with the IGMIX eos and a GibbsExcessLiquid

• a IAPWS95Liquid and a IAPWS95Gas

• a CoolPropLiquid and a CoolPropGas

Additional information that can be provided in the ChemicalConstantsPackage object and
PropertyCorrelationsPackage object that may help convergence is:

• Tc, Pc, omega, Tb, and atoms

• Gas heat capacity correlations

• Liquid molar volume correlations

• Heat of vaporization correlations

References

[1], [2]

Examples

Create all the necessary objects using all of the default parameters for decane and do a flash at 300 K and 1 bar:

>>> from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CEOSGas,␣
→˓FlashPureVLS
>>> constants, correlations = ChemicalConstantsPackage.from_IDs(['decane'])
>>> eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
>>> liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,␣
→˓eos_kwargs=eos_kwargs)
>>> gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
>>> flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid],␣
→˓solids=[])
>>> print(flasher.flash(T=300, P=1e5))
<EquilibriumState, T=300.0000, P=100000.0000, zs=[1.0], betas=[1.0], phases=[
→˓<CEOSLiquid, T=300 K, P=100000 Pa>]>

Working with steam:

>>> from thermo import FlashPureVLS, IAPWS95Liquid, IAPWS95Gas, iapws_constants,␣
→˓iapws_correlations
>>> liquid = IAPWS95Liquid(T=300, P=1e5, zs=[1])
>>> gas = IAPWS95Gas(T=300, P=1e5, zs=[1])
>>> flasher = FlashPureVLS(iapws_constants, iapws_correlations, gas, [liquid], [])
>>> PT = flasher.flash(T=800.0, P=1e7)
>>> PT.rho_mass()

(continues on next page)
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(continued from previous page)

29.1071839176
>>> print(flasher.flash(T=600, VF=.5))
<EquilibriumState, T=600.0000, P=12344824.3572, zs=[1.0], betas=[0.5, 0.5], phases=[
→˓<IAPWS95Gas, T=600 K, P=1.23448e+07 Pa>, <IAPWS95Liquid, T=600 K, P=1.23448e+07␣
→˓Pa>]>
>>> print(flasher.flash(T=600.0, H=50802))
<EquilibriumState, T=600.0000, P=10000469.1288, zs=[1.0], betas=[1.0], phases=[
→˓<IAPWS95Gas, T=600 K, P=1.00005e+07 Pa>]>
>>> print(flasher.flash(P=1e7, S=104.))
<EquilibriumState, T=599.6790, P=10000000.0000, zs=[1.0], betas=[1.0], phases=[
→˓<IAPWS95Gas, T=599.679 K, P=1e+07 Pa>]>
>>> print(flasher.flash(V=.00061, U=55850))
<EquilibriumState, T=800.5922, P=10144789.0899, zs=[1.0], betas=[1.0], phases=[
→˓<IAPWS95Gas, T=800.592 K, P=1.01448e+07 Pa>]>

Attributes
VL_IG_hack [bool] Whether or not to trust the saturation curve of the liquid phase; applied

automatically to the GibbsExcessLiquid phase if there is a single liquid only, [-]

VL_EOS_hacks [bool] Whether or not to trust the saturation curve of the EOS liquid phase;
applied automatically to the CEOSLiquid phase if there is a single liquid only, [-]

TPV_HSGUA_guess_maxiter [int] Maximum number of iterations to try when converging a
shortcut model for flashes with one (T, P, V ) spec and one (H, S, G, U, A) spec, [-]

TPV_HSGUA_guess_xtol [float] Convergence tolerance in the iteration variable when converg-
ing a shortcut model for flashes with one (T, P, V ) spec and one (H, S, G, U, A) spec, [-]

TPV_HSGUA_maxiter [int] Maximum number of iterations to try when converging a flashes
with one (T, P, V ) spec and one (H, S, G, U, A) spec; this is on a per-phase basis, so if there
is a liquid and a gas phase, the maximum number of iterations that could end up being tried
would be twice this, [-]

TPV_HSGUA_xtol [float] Convergence tolerance in the iteration variable dimension when con-
verging a flash with one (T, P, V ) spec and one (H, S, G, U, A) spec, [-]

TVF_maxiter [int] Maximum number of iterations to try when converging a flashes with a
temperature and vapor fraction specification, [-]

TVF_xtol [float] Convergence tolerance in the temperature dimension when converging a
flashes with a temperature and vapor fraction specification, [-]

PVF_maxiter [int] Maximum number of iterations to try when converging a flashes with a pres-
sure and vapor fraction specification, [-]

PVF_xtol [float] Convergence tolerance in the pressure dimension when converging a flashes
with a pressure and vapor fraction specification, [-]

TSF_maxiter [int] Maximum number of iterations to try when converging a flashes with a tem-
perature and solid fraction specification, [-]

TSF_xtol [float] Convergence tolerance in the temperature dimension when converging a flashes
with a temperature and solid fraction specification, [-]

PSF_maxiter [int] Maximum number of iterations to try when converging a flashes with a pres-
sure and solid fraction specification, [-]
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PSF_xtol [float] Convergence tolerance in the pressure dimension when converging a flashes
with a pressure and solid fraction specification, [-]

Vapor-Liquid Systems

class thermo.flash.FlashVL(constants, correlations, gas, liquid, settings=<thermo.bulk.BulkSettings object>)
Bases: thermo.flash.flash_base.Flash

Class for performing flash calculations on one and two phase vapor and liquid multicomponent systems. Use
FlashVLN for systems which can have multiple liquid phases.

The minimum information that is needed in addition to the Phase objects is:

• MWs

• Vapor pressure curve

• Functioning enthalpy models for each phase

Parameters
constants [ChemicalConstantsPackage object] Package of chemical constants; these are

used as boundaries at times, initial guesses other times, and in all cases these properties
are accessible as attributes of the resulting EquilibriumState object, [-]

correlations [PropertyCorrelationsPackage] Package of chemical T-dependent proper-
ties; these are used as boundaries at times, for initial guesses other times, and in all cases
these properties are accessible as attributes of the resulting EquilibriumState object, [-]

gas [Phase object] A single phase which can represent the gas phase, [-]

liquid [Phase] A single phase which can represent the liquid phase, [-]

settings [BulkSettings object] Object containing settings for calculating bulk and transport
properties, [-]

Notes

The algorithms in this object are mostly from [1], [2] and [3]. Sequential substitution without acceleration is
used by default to converge two-phase systems.

Quasi-newton methods are used by default to converge bubble and dew point calculations.

Flashes with one (T, P, V ) spec and one (H, S, G, U, A) spec are solved by a 1D search over PT flashes.

Additional information that can be provided in the ChemicalConstantsPackage object and
PropertyCorrelationsPackage object that may help convergence is:

• Tc, Pc, omega, Tb, and atoms

• Gas heat capacity correlations

• Liquid molar volume correlations

• Heat of vaporization correlations

Warning: If this flasher is used on systems that can form two or more liquid phases, and the flash specs
are in that region, there is no guarantee which solution is returned. Sometimes it is almost random, jumping
back and forth and providing nasty discontinuities.
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Examples

For the system methane-ethane-nitrogen with a composition [0.965, 0.018, 0.017], calculate the vapor fraction
of the system and equilibrium phase compositions at 110 K and 1 bar. Use the Peng-Robinson equation of state
and the chemsep sample interaction parameter database.

>>> from thermo import ChemicalConstantsPackage, CEOSGas, CEOSLiquid, PRMIX, FlashVL
>>> from thermo.interaction_parameters import IPDB
>>> constants, properties = ChemicalConstantsPackage.from_IDs(['methane', 'ethane',
→˓'nitrogen'])
>>> kijs = IPDB.get_ip_asymmetric_matrix('ChemSep PR', constants.CASs, 'kij')
>>> kijs
[[0.0, -0.0059, 0.0289], [-0.0059, 0.0, 0.0533], [0.0289, 0.0533, 0.0]]
>>> eos_kwargs = {'Pcs': constants.Pcs, 'Tcs': constants.Tcs, 'omegas': constants.
→˓omegas, 'kijs': kijs}
>>> gas = CEOSGas(PRMIX, eos_kwargs=eos_kwargs, HeatCapacityGases=properties.
→˓HeatCapacityGases)
>>> liquid = CEOSLiquid(PRMIX, eos_kwargs=eos_kwargs, HeatCapacityGases=properties.
→˓HeatCapacityGases)
>>> flasher = FlashVL(constants, properties, liquid=liquid, gas=gas)
>>> zs = [0.965, 0.018, 0.017]
>>> PT = flasher.flash(T=110.0, P=1e5, zs=zs)
>>> PT.VF, PT.gas.zs, PT.liquid0.zs
(0.10365, [0.881788, 2.6758e-05, 0.11818], [0.97462, 0.02007, 0.005298])

A few more flashes with the same system to showcase the functionality of the flash interface:

>>> flasher.flash(P=1e5, VF=1, zs=zs).T
133.6
>>> flasher.flash(T=133, VF=0, zs=zs).P
518367.4
>>> flasher.flash(P=PT.P, H=PT.H(), zs=zs).T
110.0
>>> flasher.flash(P=PT.P, S=PT.S(), zs=zs).T
110.0
>>> flasher.flash(T=PT.T, H=PT.H(), zs=zs).T
110.0
>>> flasher.flash(T=PT.T, S=PT.S(), zs=zs).T
110.0

Attributes
PT_SS_MAXITER [int] Maximum number of sequential substitution iterations to try when

converging a two-phase solution, [-]

PT_SS_TOL [float] Convergence tolerance in sequential substitution [-]

PT_SS_POLISH [bool] When set to True, flashes which are very near a vapor fraction of 0 or
1 are converged to a higher tolerance to ensure the solution is correct; without this, a flash
might converge to a vapor fraction of -1e-7 and be called single phase, but with this the
correct solution may be found to be 1e-8 and will be correctly returned as two phase.[-]
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PT_SS_POLISH_VF [float] What tolerance to a vapor fraction of 0 or 1; this is an absolute
vapor fraction value, [-]

PT_SS_POLISH_MAXITER [int] Maximum number of sequential substitution iterations to
try when converging a two-phase solution that has been detected to be very sensitive, with a
vapor fraction near 0 or 1 [-]

PT_SS_POLISH_TOL [float] Convergence tolerance in sequential substitution when converg-
ing a two-phase solution that has been detected to be very sensitive, with a vapor fraction
near 0 or 1 [-]

PT_STABILITY_MAXITER [int] Maximum number of iterations to try when converging a
stability test, [-]

PT_STABILITY_XTOL [float] Convergence tolerance in the stability test [-]

DEW_BUBBLE_VF_K_COMPOSITION_INDEPENDENT_XTOL [float] Convergence
tolerance in Newton solver for bubble, dew, and vapor fraction spec flashes when both the
liquid and gas model’s K values do not dependent on composition, [-]

DEW_BUBBLE_QUASI_NEWTON_XTOL [float] Convergence tolerance in quasi-Newton
bubble and dew point flashes, [-]

DEW_BUBBLE_QUASI_NEWTON_MAXITER [int] Maximum number of iterations to use
in quasi-Newton bubble and dew point flashes, [-]

DEW_BUBBLE_NEWTON_XTOL [float] Convergence tolerance in Newton bubble and dew
point flashes, [-]

DEW_BUBBLE_NEWTON_MAXITER [int] Maximum number of iterations to use in New-
ton bubble and dew point flashes, [-]

TPV_HSGUA_BISECT_XTOL [float] Tolerance in the iteration variable when converging a
flash with one (T, P, V ) spec and one (H, S, G, U, A) spec using a bisection-type solver, [-]

TPV_HSGUA_BISECT_YTOL [float] Absolute tolerance in the (H, S, G, U, A) spec when
converging a flash with one (T, P, V ) spec and one (H, S, G, U, A) spec using a bisection-
type solver, [-]

TPV_HSGUA_BISECT_YTOL_ONLY [bool] When True, the
TPV_HSGUA_BISECT_XTOL setting is ignored and the flash is considered converged once
TPV_HSGUA_BISECT_YTOL is satisfied, [-]

TPV_HSGUA_NEWTON_XTOL [float] Tolerance in the iteration variable when converging
a flash with one (T, P, V ) spec and one (H, S, G, U, A) spec using a full newton solver, [-]

TPV_HSGUA_NEWTON_MAXITER [float] Maximum number of iterations when converg-
ing a flash with one (T, P, V ) spec and one (H, S, G, U, A) spec using full newton solver,
[-]

TPV_HSGUA_SECANT_MAXITER [float] Maximum number of iterations when converging
a flash with one (T, P, V ) spec and one (H, S, G, U, A) spec using a secant solver, [-]

HSGUA_NEWTON_ANALYTICAL_JAC [bool] Whether or not to calculate the full newton
jacobian analytically or numerically; this would need to be set to False if the phase objects
used in the flash do not have complete analytical derivatives implemented, [-]
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Vapor and Multiple Liquid Systems

class thermo.flash.FlashVLN(constants, correlations, liquids, gas, solids=None,
settings=<thermo.bulk.BulkSettings object>)

Bases: thermo.flash.flash_vl.FlashVL

Class for performing flash calculations on multiphase vapor-liquid systems. This rigorous class does not make
any assumptions and will search for up to the maximum amount of liquid phases specified by the user. Vapor
and each liquid phase do not need to use a consistent thermodynamic model.

The minimum information that is needed in addition to the Phase objects is:

• MWs

• Vapor pressure curve

• Functioning enthalpy models for each phase

Parameters
constants [ChemicalConstantsPackage object] Package of chemical constants; these are

used as boundaries at times, initial guesses other times, and in all cases these properties
are accessible as attributes of the resulting EquilibriumState object, [-]

correlations [PropertyCorrelationsPackage] Package of chemical T-dependent proper-
ties; these are used as boundaries at times, for initial guesses other times, and in all cases
these properties are accessible as attributes of the resulting EquilibriumState object, [-]

gas [Phase object] A single phase which can represent the gas phase, [-]

liquids [list[Phase]] A list of phase objects that can represent the liquid phases; if working with
a VLL system with a consistent model, specify the same liquid phase twice; the length of
this list is the maximum number of liquid phases that will be searched for, [-]

solids [list[Phase]] Not used, [-]

settings [BulkSettings object] Object containing settings for calculating bulk and transport
properties, [-]

Notes

The algorithms in this object are mostly from [1], [2] and [3]. Sequential substitution without acceleration is
used by default to converge multiphase systems.

Additional information that can be provided in the ChemicalConstantsPackage object and
PropertyCorrelationsPackage object that may help convergence is:

• Tc, Pc, omega, Tb, and atoms

• Gas heat capacity correlations

• Liquid molar volume correlations

• Heat of vaporization correlations
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Examples

A three-phase flash of butanol, water, and ethanol with the SRK EOS without BIPs:

>>> from thermo import ChemicalConstantsPackage, CEOSGas, CEOSLiquid, SRKMIX,␣
→˓FlashVLN, PropertyCorrelationsPackage, HeatCapacityGas
>>> constants = ChemicalConstantsPackage(Tcs=[563.0, 647.14, 514.0], Pcs=[4414000.0,
→˓ 22048320.0, 6137000.0], omegas=[0.59, 0.344, 0.635], MWs=[74.1216, 18.01528, 46.
→˓06844], CASs=['71-36-3', '7732-18-5', '64-17-5'])
>>> properties = PropertyCorrelationsPackage(constants=constants,
... HeatCapacityGases=[HeatCapacityGas(poly_
→˓fit=(50.0, 1000.0, [-3.787200194613107e-20, 1.7692887427654656e-16, -3.
→˓445247207129205e-13, 3.612771874320634e-10, -2.1953250181084466e-07, 7.
→˓707135849197655e-05, -0.014658388538054169, 1.5642629364740657, -7.
→˓614560475001724])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [5.
→˓543665000518528e-22, -2.403756749600872e-18, 4.2166477594350336e-15, -3.
→˓7965208514613565e-12, 1.823547122838406e-09, -4.3747690853614695e-07, 5.
→˓437938301211039e-05, -0.003220061088723078, 33.32731489750759])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [-1.
→˓162767978165682e-20, 5.4975285700787494e-17, -1.0861242757337942e-13, 1.
→˓1582703354362728e-10, -7.160627710867427e-08, 2.5392014654765875e-05, -0.
→˓004732593693568646, 0.5072291035198603, 20.037826650765965])),], )
>>> eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
>>> gas = CEOSGas(SRKMIX, eos_kwargs, HeatCapacityGases=properties.
→˓HeatCapacityGases)
>>> liq = CEOSLiquid(SRKMIX, eos_kwargs, HeatCapacityGases=properties.
→˓HeatCapacityGases)
>>> flashN = FlashVLN(constants, properties, liquids=[liq, liq], gas=gas)
>>> res = flashN.flash(T=361, P=1e5, zs=[.25, 0.7, .05])
>>> res.phase_count
3

Attributes
SS_NP_MAXITER [int] Maximum number of sequential substitution iterations to try when

converging a three or more phase solution, [-]

SS_NP_TOL [float] Convergence tolerance in sequential substitution for a three or more phase
solution [-]

SS_NP_TRIVIAL_TOL [float] Tolerance at which to quick a three-phase flash because it is
converging to the trivial solution, [-]

SS_STAB_AQUEOUS_CHECK [bool] If True, the first three-phase stability check will be on
water (if it is present) as it forms a three-phase solution more than any other component, [-]

DOUBLE_CHECK_2P [bool] This parameter should be set to True if any issues in the solution
are noticed. It can slow down two-phase solution. It ensures that all potential vapor-liquid
and liquid-liquid phase pairs are searched for stability, instead of testing first for a vapor-
liquid solution and then moving on to a three phase flash if an instability is detected, [-]
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Base Flash Class

class thermo.flash.Flash
Bases: object

Base class for performing flash calculations. All Flash objects need to inherit from this, and common methods
can be added to it.

Methods

flash ([zs, T, P, VF, SF, V, H, S, G, U, A, ...]) Method to perform a flash calculation and return the
result as an EquilibriumState object.

plot_TP(zs[, Tmin, Tmax, pts, branches, ...]) Method to create a plot of the phase envelope as can
be calculated from a series of temperature & vapor
fraction spec flashes.

flash(zs=None, T=None, P=None, VF=None, SF=None, V=None, H=None, S=None, G=None, U=None,
A=None, solution=None, hot_start=None, retry=False, dest=None)

Method to perform a flash calculation and return the result as an EquilibriumState object. This generic
interface allows flashes with any combination of valid specifications; if a flash is unimplemented and error
will be raised.

Parameters
zs [list[float], optional] Mole fractions of each component, required unless there is only one

component, [-]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

VF [float, optional] Vapor fraction, [-]

SF [float, optional] Solid fraction, [-]

V [float, optional] Molar volume of the overall bulk, [m^3/mol]

H [float, optional] Molar enthalpy of the overall bulk, [J/mol]

S [float, optional] Molar entropy of the overall bulk, [J/(mol*K)]

G [float, optional] Molar Gibbs free energy of the overall bulk, [J/mol]

U [float, optional] Molar internal energy of the overall bulk, [J/mol]

A [float, optional] Molar Helmholtz energy of the overall bulk, [J/mol]

solution [str or int, optional] When multiple solutions exist, if more than one is found they
will be sorted by T (and then P) increasingly; this number will index into the multiple
solution array. Negative indexing is supported. ‘high’ is an alias for 0, and ‘low’ an alias
for -1. Setting this parameter may make a flash slower because in some cases more checks
are performed. [-]

hot_start [EquilibriumState] A previously converged flash or initial guessed state from
which the flash can begin; this parameter can save time in some cases, [-]

retry [bool] Usually for flashes like UV or PH, there are multiple sets of possible iteration
variables. For the UV case, the prefered iteration variable is P, so each iteration a PV
solve is done on the phase; but equally the flash can be done iterating on T, where a TV
solve is done on the phase each iteration. Depending on the tolerances, the flash type, the
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thermodynamic consistency of the phase, and other factors, it is possible the flash can fail.
If retry is set to True, the alternate variable set will be iterated as a backup if the first flash
fails. [-]

dest [None or EquilibriumState or EquilibriumStream] What type of object the flash
result is set into; leave as None to obtain the normal EquilibriumState results, [-]

Returns
results [EquilibriumState] Equilibrium object containing the state of the phases after the

flash calculation [-]

Notes

Warning: Not all flash specifications have a unique solution. Not all flash specifications will con-
verge, whether from a bad model, bad inputs, or simply a lack of convergence by the implemented
algorithms. You are welcome to submit these cases to the author but the library is provided AS IS, with
NO SUPPORT.

Warning: Convergence of a flash may be impaired by providing hot_start. If reliability is desired, do
not use this parameter.

Warning: The most likely thermodynamic methods to converge are thermodynamically consistent
ones. This means e.g. an ideal liquid and an ideal gas; or an equation of state for both phases. Mixing
thermodynamic models increases the possibility of multiple solutions, discontinuities, and other not-fun
issues for the algorithms.

plot_TP(zs, Tmin=None, Tmax=None, pts=50, branches=None, ignore_errors=True, values=False,
show=True, hot=True)

Method to create a plot of the phase envelope as can be calculated from a series of temperature & vapor frac-
tion spec flashes. By default vapor fractions of 0 and 1 are plotted; additional vapor fraction specifications
can be specified in the branches argument as a list.

Parameters
zs [list[float]] Mole fractions of the feed, [-]

Tmin [float, optional] Minimum temperature to begin the plot, [K]

Tmax [float, optional] Maximum temperature to end the plot, [K]

pts [int, optional] The number of points to calculated for each vapor fraction value, [-]

branches [list[float], optional] Extra vapor fraction values to plot, [-]

ignore_errors [bool, optional] Whether to fail on a calculation failure or to ignore the bad
point, [-]

values [bool, optional] If True, the calculated values will be returned instead of plotted, [-]

show [bool, optional] If False, the plot will be returned instead of shown, [-]

hot [bool, optional] Whether to restart the next flash from the previous flash or not (intended
to speed the call when True), [-]
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Returns
Ts [list[float]] Temperatures, [K]

P_dews, P_bubbles, branch_Ps

7.13.2 Specific Flash Algorithms

It is recommended to use the Flash classes, which are designed to have generic interfaces. The implemented specific
flash algorithms may be changed in the future, but reading their source code may be helpful for instructive purposes.

7.14 Functional Group Identification (thermo.functional_groups)

This module contains various methods for identifying functional groups in molecules. This functionality requires the
RDKit library to work.

For submitting pull requests, please use the GitHub issue tracker.

• Specific molecule matching functions

• Hydrocarbon Groups

• Oxygen Groups

• Nitrogen Groups

• Sulfur Groups

• Silicon Groups

• Boron Groups

• Phosphorus Groups

• Halogen Groups

• Organometalic Groups

• Other Groups

• Utility functions

• Functions using group identification

7.14.1 Specific molecule matching functions

thermo.functional_groups.is_organic(mol, restrict_atoms=None, organic_smiles=frozenset({'C', 'CO',
'NC(N)=O', 'O=C(OC(=O)C(F)(F)F)C(F)(F)F'}),
inorganic_smiles=frozenset({'BrC(Br)(Br)Br', 'C#N', 'ClC(Cl)(Cl)Cl',
'FC(F)(F)F', 'IC(I)(I)I', 'O=C(Cl)Cl', 'O=C(F)F', 'O=C(O)O',
'O=C=O', 'O=C=S', 'S=C=S', '[C-]#[O+]'}))

Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is organic. The definition of organic
vs. inorganic compounds is arabitrary. The rules implemented here are fairly complex.

• If a compound has an C-C bond, a C=C bond, a carbon triple bond, a carbon attatched however to a hydro-
gen, a carbon in a ring, or an amide group.
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• If a compound is in the list of canonical smiles organic_smiles, either the defaults in the library or those
provided as an input to the function, the molecule is considered organic.

• If a compound is in the list of canonical smiles inorganic_smiles, either the defaults in the library or those
provided as an input to the function, the molecule is considered inorganic.

• If restrict_atoms is provided and atoms are present in the molecule that are restricted, the compound is
considered restricted.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

restrict_atoms [Iterable[str]] Atoms that cannot be found in an organic molecule, [-]

organic_smiles [Iterable[str]] Smiles that are hardcoded to be organic, [-]

inorganic_smiles [Iterable[str]] Smiles that are hardcoded to be inorganic, [-]

Returns
is_organic [bool] Whether or not the compound is a organic or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_organic(MolFromSmiles("CC(C)C(C)C(C)C"))
True

thermo.functional_groups.is_inorganic(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is inorganic.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_inorganic [bool] Whether or not the compound is inorganic or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_inorganic(MolFromSmiles("O=[Zr].Cl.Cl"))
True

7.14.2 Hydrocarbon Groups

thermo.functional_groups.is_alkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an alkane, also refered to as a
paraffin. All bonds in the molecule must be single carbon-carbon or carbon-hydrogen.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alkane [bool] Whether or not the compound is an alkane or not, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_alkane(MolFromSmiles("CCC"))
True

thermo.functional_groups.is_cycloalkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a cycloalkane, also refered to as
a naphthenes.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_cycloalkane [bool] Whether or not the compound is a cycloalkane or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_cycloalkane(MolFromSmiles('C1CCCCCCCCC1'))
True

thermo.functional_groups.is_branched_alkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a branched alkane, also refered to
as an isoparaffin. All bonds in the molecule must be single carbon-carbon or carbon-hydrogen.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_branched_alkane [bool] Whether or not the compound is a branched alkane or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_branched_alkane(MolFromSmiles("CC(C)C(C)C(C)C"))
True

thermo.functional_groups.is_alkene(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an alkene. Alkenes are also refered
to as olefins.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alkene [bool] Whether or not the compound is a alkene or not, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_alkene(MolFromSmiles('C=C'))
True

thermo.functional_groups.is_alkyne(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an alkyne.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alkyne [bool] Whether or not the compound is a alkyne or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_alkyne(MolFromSmiles('CC#C'))
True

thermo.functional_groups.is_aromatic(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is aromatic.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_aromatic [bool] Whether or not the compound is aromatic or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_aromatic(MolFromSmiles('CC1=CC=CC=C1C'))
True

7.14.3 Oxygen Groups

thermo.functional_groups.is_alcohol(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule any alcohol functional groups.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alcohol [bool] Whether or not the compound is an alcohol, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_alcohol(MolFromSmiles('CCO'))
True

thermo.functional_groups.is_polyol(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a polyol (more than 1 alcohol
functional groups).

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_polyol [bool] Whether or not the compound is a polyol, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_polyol(MolFromSmiles('C(C(CO)O)O'))
True

thermo.functional_groups.is_ketone(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a ketone.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_ketone [bool] Whether or not the compound is a ketone, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_ketone(MolFromSmiles('C1CCC(=O)CC1'))
True

thermo.functional_groups.is_aldehyde(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an aldehyde.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_aldehyde [bool] Whether or not the compound is an aldehyde, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_aldehyde(MolFromSmiles('C=O'))
True

thermo.functional_groups.is_carboxylic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carboxylic acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carboxylic_acid [bool] Whether or not the compound is a carboxylic acid, [-].

Examples

Butyric acid (butter)

>>> from rdkit.Chem import MolFromSmiles
>>> is_carboxylic_acid(MolFromSmiles('CCCC(=O)O'))
True

thermo.functional_groups.is_ether(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an ether.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_ether [bool] Whether or not the compound is an ether, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_ether(MolFromSmiles('CC(C)OC(C)C'))
True

thermo.functional_groups.is_phenol(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a phenol.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_phenol [bool] Whether or not the compound is a phenol, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_phenol(MolFromSmiles('CC(=O)NC1=CC=C(C=C1)O'))
True

thermo.functional_groups.is_ester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an ester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_ester [bool] Whether or not the compound is an ester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_ester(MolFromSmiles('CCOC(=O)C'))
True

thermo.functional_groups.is_anhydride(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an anhydride.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_anhydride [bool] Whether or not the compound is an anhydride, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_anhydride(MolFromSmiles('C1=CC(=O)OC1=O'))
True

thermo.functional_groups.is_acyl_halide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a acyl halide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_acyl_halide [bool] Whether or not the compound is a acyl halide, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_acyl_halide(MolFromSmiles('C(CCC(=O)Cl)CC(=O)Cl'))
True

thermo.functional_groups.is_carbonate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carbonate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carbonate [bool] Whether or not the compound is a carbonate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carbonate(MolFromSmiles('C(=O)(OC(Cl)(Cl)Cl)OC(Cl)(Cl)Cl'))
True

thermo.functional_groups.is_carboxylate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carboxylate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carboxylate [bool] Whether or not the compound is a carboxylate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carboxylate(MolFromSmiles('CC(=O)[O-].[Na+]'))
True

thermo.functional_groups.is_hydroperoxide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a hydroperoxide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_hydroperoxide [bool] Whether or not the compound is a hydroperoxide, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_hydroperoxide(MolFromSmiles('CC(C)(C)OO'))
True

thermo.functional_groups.is_peroxide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a peroxide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_peroxide [bool] Whether or not the compound is a peroxide, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_peroxide(MolFromSmiles('CC(C)(C)OOC(C)(C)C'))
True

thermo.functional_groups.is_orthoester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a orthoester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_orthoester [bool] Whether or not the compound is a orthoester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_orthoester(MolFromSmiles('CCOC(C)(OCC)OCC'))
True

thermo.functional_groups.is_methylenedioxy(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a methylenedioxy.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_methylenedioxy [bool] Whether or not the compound is a methylenedioxy, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_methylenedioxy(MolFromSmiles('C1OC2=CC=CC=C2O1'))
True

thermo.functional_groups.is_orthocarbonate_ester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a orthocarbonate ester .

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_orthocarbonate_ester [bool] Whether or not the compound is a orthocarbonate ester , [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_orthocarbonate_ester (MolFromSmiles('COC(OC)(OC)OC')
True

thermo.functional_groups.is_carboxylic_anhydride(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carboxylic anhydride .

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carboxylic_anhydride [bool] Whether or not the compound is a carboxylic anhydride, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carboxylic_anhydride (MolFromSmiles('CCCC(=O)OC(=O)CCC')
True

7.14.4 Nitrogen Groups

thermo.functional_groups.is_amide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule has a amide RC(=O)NRR group.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_amide [bool] Whether or not the compound is a amide or not, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_amide(MolFromSmiles('CN(C)C=O'))
True

thermo.functional_groups.is_amidine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule has a amidine RC(NR)NR2 group.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_amidine [bool] Whether or not the compound is a amidine or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_amidine(MolFromSmiles('C1=CC(=CC=C1C(=N)N)OCCCCCOC2=CC=C(C=C2)C(=N)N'))
True

thermo.functional_groups.is_amine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a amine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_amine [bool] Whether or not the compound is a amine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_amine(MolFromSmiles('CN'))
True

thermo.functional_groups.is_primary_amine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a primary amine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_primary_amine [bool] Whether or not the compound is a primary amine, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_primary_amine(MolFromSmiles('CN'))
True

thermo.functional_groups.is_secondary_amine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a secondary amine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_secondary_amine [bool] Whether or not the compound is a secondary amine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_secondary_amine(MolFromSmiles('CNC'))
True

thermo.functional_groups.is_tertiary_amine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a tertiary amine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_tertiary_amine [bool] Whether or not the compound is a tertiary amine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_tertiary_amine(MolFromSmiles('CN(C)C'))
True

thermo.functional_groups.is_quat(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a quat.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_quat [bool] Whether or not the compound is a quat, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_quat(MolFromSmiles('CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC.[Cl-]'))
True

thermo.functional_groups.is_imine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a imine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_imine [bool] Whether or not the compound is a imine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_imine(MolFromSmiles('C1=CC=C(C=C1)C(=N)C2=CC=CC=C2'))
True

thermo.functional_groups.is_primary_ketimine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a primary ketimine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_primary_ketimine [bool] Whether or not the compound is a primary ketimine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_primary_ketimine(MolFromSmiles('C1=CC=C(C=C1)C(=N)C2=CC=CC=C2'))
True

thermo.functional_groups.is_secondary_ketimine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a secondary ketimine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_secondary_ketimine [bool] Whether or not the compound is a secondary ketimine, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_secondary_ketimine(MolFromSmiles(
→˓'CC(C)CC(=NC1=CC=C(C=C1)CC2=CC=C(C=C2)N=C(C)CC(C)C)C'))
True

thermo.functional_groups.is_primary_aldimine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a primary aldimine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_primary_aldimine [bool] Whether or not the compound is a primary aldimine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_primary_aldimine(MolFromSmiles('CC=N'))
True

thermo.functional_groups.is_secondary_aldimine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a secondary aldimine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_secondary_aldimine [bool] Whether or not the compound is a secondary aldimine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_secondary_aldimine(MolFromSmiles( 'C1=CC=C(C=C1)/C=N\\O'))
True

thermo.functional_groups.is_imide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a imide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_imide [bool] Whether or not the compound is a imide, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_imide(MolFromSmiles('C1=CC=C2C(=C1)C(=O)NC2=O'))
True

thermo.functional_groups.is_azide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a azide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_azide [bool] Whether or not the compound is a azide, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_azide(MolFromSmiles('C1=CC=C(C=C1)N=[N+]=[N-]'))
True

thermo.functional_groups.is_azo(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a azo.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_azo [bool] Whether or not the compound is a azo, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_azo(MolFromSmiles('C1=CC=C(C=C1)N=NC2=CC=CC=C2'))
True

thermo.functional_groups.is_cyanate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a cyanate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_cyanate [bool] Whether or not the compound is a cyanate, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_cyanate(MolFromSmiles('COC#N'))
True

thermo.functional_groups.is_isocyanate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a isocyanate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_isocyanate [bool] Whether or not the compound is a isocyanate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_isocyanate(MolFromSmiles('CN=C=O'))
True

thermo.functional_groups.is_nitrate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a nitrate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_nitrate [bool] Whether or not the compound is a nitrate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_nitrate(MolFromSmiles('CCCCCO[N+](=O)[O-]'))
True

thermo.functional_groups.is_nitrile(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a nitrile.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_nitrile [bool] Whether or not the compound is a nitrile, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_nitrile(MolFromSmiles('CC#N'))
True

thermo.functional_groups.is_isonitrile(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a isonitrile.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_isonitrile [bool] Whether or not the compound is a isonitrile, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_isonitrile(MolFromSmiles('C[N+]#[C-]'))
True

thermo.functional_groups.is_nitrite(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a nitrite.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_nitrite [bool] Whether or not the compound is a nitrite, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_nitrite(MolFromSmiles('CC(C)CCON=O'))
True

thermo.functional_groups.is_nitro(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a nitro.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_nitro [bool] Whether or not the compound is a nitro, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_nitro(MolFromSmiles('C[N+](=O)[O-]'))
True

thermo.functional_groups.is_nitroso(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a nitroso.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_nitroso [bool] Whether or not the compound is a nitroso, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_nitroso(MolFromSmiles('C1=CC=C(C=C1)N=O'))
True

thermo.functional_groups.is_oxime(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a oxime.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_oxime [bool] Whether or not the compound is a oxime, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_oxime(MolFromSmiles('CC(=NO)C'))
True

thermo.functional_groups.is_pyridyl(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a pyridyl.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_pyridyl [bool] Whether or not the compound is a pyridyl, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_pyridyl(MolFromSmiles('CN1CCC[C@H]1C1=CC=CN=C1'))
True

thermo.functional_groups.is_carbamate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carbamate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carbamate [bool] Whether or not the compound is a carbamate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carbamate(MolFromSmiles('CC(C)OC(=O)NC1=CC(=CC=C1)Cl'))
True

7.14.5 Sulfur Groups

thermo.functional_groups.is_mercaptan(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule has a mercaptan R-SH group. This
is also called a thiol.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_mercaptan [bool] Whether or not the compound is a mercaptan or not, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_mercaptan(MolFromSmiles("CS"))
True

thermo.functional_groups.is_sulfide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a sulfide. This group excludes
disulfides.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_sulfide [bool] Whether or not the compound is a sulfide, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_sulfide(MolFromSmiles('CSC'))
True

thermo.functional_groups.is_disulfide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a disulfide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_disulfide [bool] Whether or not the compound is a disulfide, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_disulfide(MolFromSmiles('CSSC'))
True

thermo.functional_groups.is_sulfoxide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a sulfoxide.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_sulfoxide [bool] Whether or not the compound is a sulfoxide, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_sulfoxide(MolFromSmiles('CS(=O)C'))
True

thermo.functional_groups.is_sulfone(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a sulfone.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_sulfone [bool] Whether or not the compound is a sulfone, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_sulfone(MolFromSmiles('CS(=O)(=O)C'))
True

thermo.functional_groups.is_sulfinic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a sulfinic acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_sulfinic_acid [bool] Whether or not the compound is a sulfinic acid, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_sulfinic_acid(MolFromSmiles('O=S(O)CCN'))
True

thermo.functional_groups.is_sulfonic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a sulfonic acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_sulfonic_acid [bool] Whether or not the compound is a sulfonic acid, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_sulfonic_acid(MolFromSmiles('OS(=O)(=O)c1ccccc1'))
True

thermo.functional_groups.is_sulfonate_ester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a sulfonate ester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_sulfonate_ester [bool] Whether or not the compound is a sulfonate ester, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_sulfonate_ester(MolFromSmiles('COS(=O)(=O)C(F)(F)F'))
True

thermo.functional_groups.is_thiocyanate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a thiocyanate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_thiocyanate [bool] Whether or not the compound is a thiocyanate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_thiocyanate(MolFromSmiles('C1=CC=C(C=C1)SC#N'))
True

thermo.functional_groups.is_isothiocyanate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a isothiocyanate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_isothiocyanate [bool] Whether or not the compound is a isothiocyanate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_isothiocyanate(MolFromSmiles('C=CCN=C=S'))
True

thermo.functional_groups.is_thioketone(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a thioketone.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_thioketone [bool] Whether or not the compound is a thioketone, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_thioketone(MolFromSmiles('C1=CC=C(C=C1)C(=S)C2=CC=CC=C2'))
True

thermo.functional_groups.is_thial(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a thial.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_thial [bool] Whether or not the compound is a thial, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_thial(MolFromSmiles('CC=S'))
True

thermo.functional_groups.is_carbothioic_s_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a Carbothioic S-acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carbothioic_s_acid [bool] Whether or not the compound is a Carbothioic S-acid, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carbothioic_s_acid(MolFromSmiles('C1=CC=C(C=C1)C(=O)S'))
True

thermo.functional_groups.is_carbothioic_o_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a Carbothioic S-acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carbothioic_o_acid [bool] Whether or not the compound is a Carbothioic S-acid, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carbothioic_o_acid(MolFromSmiles('OC(=S)c1ccccc1O'))
True

thermo.functional_groups.is_thiolester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a thiolester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_thiolester [bool] Whether or not the compound is a thiolester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_thiolester(MolFromSmiles('CSC(=O)C=C'))
True

thermo.functional_groups.is_thionoester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a thionoester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_thionoester [bool] Whether or not the compound is a thionoester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_thionoester(MolFromSmiles('CCOC(=S)S'))
True

thermo.functional_groups.is_carbodithioic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carbodithioic acid .

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carbodithioic_acid [bool] Whether or not the compound is a carbodithioic acid , [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carbodithioic_acid(MolFromSmiles('C1=CC=C(C=C1)C(=S)S'))
True

thermo.functional_groups.is_carbodithio(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a carbodithio.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_carbodithio [bool] Whether or not the compound is a carbodithio, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_carbodithio(MolFromSmiles('C(=S)(N)SSC(=S)N'))
True

7.14.6 Silicon Groups

thermo.functional_groups.is_siloxane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a siloxane.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_siloxane [bool] Whether or not the compound is a siloxane, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_siloxane(MolFromSmiles('C[Si]1(O[Si](O[Si](O[Si](O1)(C)C)(C)C)(C)C)C'))
True

thermo.functional_groups.is_silyl_ether(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule any silyl ether functional groups.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_silyl_ether [bool] Whether or not the compound is an silyl ether, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_silyl_ether(MolFromSmiles('C[Si](C)(C)OS(=O)(=O)C(F)(F)F'))
True

7.14.7 Boron Groups

thermo.functional_groups.is_boronic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule has any boronic acid functional
groups.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_boronic_acid [bool] Whether or not the compound is an boronic acid, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_boronic_acid(MolFromSmiles('B(C)(O)O'))
True

thermo.functional_groups.is_boronic_ester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a boronic ester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_boronic_ester [bool] Whether or not the compound is a boronic ester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_boronic_ester(MolFromSmiles('B(C)(OC(C)C)OC(C)C'))
True

thermo.functional_groups.is_borinic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a borinic acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_borinic_acid [bool] Whether or not the compound is a borinic acid, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_borinic_acid(MolFromSmiles('BO'))
True

thermo.functional_groups.is_borinic_ester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a borinic ester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_borinic_ester [bool] Whether or not the compound is a borinic ester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_borinic_ester(MolFromSmiles('B(C1=CC=CC=C1)(C2=CC=CC=C2)OCCN'))
True

7.14.8 Phosphorus Groups

thermo.functional_groups.is_phosphine(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a phosphine.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_phosphine [bool] Whether or not the compound is a phosphine, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_phosphine(MolFromSmiles('CCCPC'))
True

thermo.functional_groups.is_phosphonic_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a phosphonic_acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_phosphonic_acid [bool] Whether or not the compound is a phosphonic_acid, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_phosphonic_acid(MolFromSmiles('C1=CC=C(C=C1)CP(=O)(O)O'))
True

thermo.functional_groups.is_phosphodiester(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a phosphodiester.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_phosphodiester [bool] Whether or not the compound is a phosphodiester, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_phosphodiester(MolFromSmiles('C(COP(=O)(O)OCC(C(=O)O)N)N=C(N)N'))
True

thermo.functional_groups.is_phosphate(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a phosphate.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_phosphate [bool] Whether or not the compound is a phosphate, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_phosphate(MolFromSmiles(
→˓'C1=CN(C(=O)N=C1N)[C@H]2[C@@H]([C@@H]([C@H](O2)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O)O
→˓'))
True

7.14.9 Halogen Groups

thermo.functional_groups.is_haloalkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a haloalkane.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_haloalkane [bool] Whether or not the compound is a haloalkane, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_haloalkane(MolFromSmiles('CCCl'))
True

thermo.functional_groups.is_fluoroalkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a fluoroalkane.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_fluoroalkane [bool] Whether or not the compound is a fluoroalkane, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_fluoroalkane(MolFromSmiles('CF'))
True

thermo.functional_groups.is_chloroalkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a chloroalkane.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_chloroalkane [bool] Whether or not the compound is a chloroalkane, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_chloroalkane(MolFromSmiles('CCl'))
True

thermo.functional_groups.is_bromoalkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a bromoalkane.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_bromoalkane [bool] Whether or not the compound is a bromoalkane, [-].
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Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_bromoalkane(MolFromSmiles('CBr'))
True

thermo.functional_groups.is_iodoalkane(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is a iodoalkane.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_iodoalkane [bool] Whether or not the compound is a iodoalkane, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_iodoalkane(MolFromSmiles('CI'))
True

7.14.10 Organometalic Groups

thermo.functional_groups.is_alkyllithium(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule any alkyllithium functional groups.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alkyllithium [bool] Whether or not the compound is an alkyllithium, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_alkyllithium(MolFromSmiles('[Li+].[CH3-]'))
True

thermo.functional_groups.is_alkylaluminium(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule any alkylaluminium functional
groups.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alkylaluminium [bool] Whether or not the compound is an alkylaluminium, [-].
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>>> from rdkit.Chem import MolFromSmiles
>>> is_alkylaluminium(MolFromSmiles('CC[Al](CC)CC'))
True

thermo.functional_groups.is_alkylmagnesium_halide(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule any alkylmagnesium_halide func-
tional groups.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_alkylmagnesium_halide [bool] Whether or not the compound is an alkylmagnesium_halide,

[-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_alkylmagnesium_halide(MolFromSmiles('C1=CC=[C-]C=C1.[Mg+2].[Br-]'))
True

7.14.11 Other Groups

thermo.functional_groups.is_acid(mol)
Given a rdkit.Chem.rdchem.Mol object, returns whether or not the molecule is an acid.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
is_acid [bool] Whether or not the compound is a acid, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> is_acid(MolFromSmiles('CC(=O)O'))
True
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7.14.12 Utility functions

thermo.functional_groups.count_ring_ring_attatchments(mol)
Given a rdkit.Chem.rdchem.Mol object, count the number of times a ring in the molecule is bonded with another
ring in the molecule.

An easy explanation is cubane - each edge of the cube is a ring uniquely bonding with another ring; so this
function returns twelve.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

Returns
ring_ring_attatchments [bool] The number of ring-ring bonds, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> count_ring_ring_attatchments(MolFromSmiles('C12C3C4C1C5C2C3C45'))
12

thermo.functional_groups.count_rings_attatched_to_rings(mol, allow_neighbors=True,
atom_rings=None)

Given a rdkit.Chem.rdchem.Mol object, count the number of rings in the molecule that are attatched to another
ring. if allow_neighbors is True, any bond to another atom that is part of a ring is allowed; if it is False, the rings
have to share a wall.

Parameters
mol [rdkit.Chem.rdchem.Mol] Molecule [-]

allow_neighbors [bool] Whether or not to count neighboring rings or just ones sharing a wall,
[-]

atom_rings [rdkit.Chem.rdchem.RingInfo, optional] Internal parameter, used for performance
only

Returns
rings_attatched_to_rings [bool] The number of rings bonded to other rings, [-].

Examples

>>> from rdkit.Chem import MolFromSmiles
>>> count_rings_attatched_to_rings(MolFromSmiles('C12C3C4C1C5C2C3C45'))
6
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7.14.13 Functions using group identification

thermo.functional_groups.BVirial_Tsonopoulos_extended_ab(Tc, Pc, dipole, smiles)
Calculates the of a and b parameters of the Tsonopoulos (extended) second virial coefficient prediction method.
These parameters account for polarity. This function uses rdkit to identify the component type of the molecule.

Parameters
Tc [float] Critical temperature of fluid [K]

Pc [float] Critical pressure of the fluid [Pa]

dipole [float] dipole moment, optional, [Debye]

Returns
a [float] Fit parameter matched to one of the supported chemical classes.

b [float] Fit parameter matched to one of the supported chemical classes.

Notes

To calculate a or b, the following rules are used:

For ‘simple’ or ‘normal’ fluids:

𝑎 = 0

𝑏 = 0

For ‘ketone’, ‘aldehyde’, ‘alkyl nitrile’, ‘ether’, ‘carboxylic acid’, or ‘ester’ types of chemicals:

𝑎 = −2.14 × 10−4𝜇𝑟 − 4.308 × 10−21(𝜇𝑟)8

𝑏 = 0

For ‘alkyl halide’, ‘mercaptan’, ‘sulfide’, or ‘disulfide’ types of chemicals:

𝑎 = −2.188 × 10−4(𝜇𝑟)4 − 7.831 × 10−21(𝜇𝑟)8

𝑏 = 0

For ‘alkanol’ types of chemicals (except methanol):

𝑎 = 0.0878

𝑏 = 0.00908 + 0.0006957𝜇𝑟

For methanol:

𝑎 = 0.0878

𝑏 = 0.0525

For water:

𝑎 = −0.0109

𝑏 = 0

If required, the form of dipole moment used in the calculation of some types of a and b values is as follows:

𝜇𝑟 = 100000
𝜇2(𝑃𝑐/101325.0)

𝑇𝑐2
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References

[1], [2]

7.15 Heat Capacity (thermo.heat_capacity)

This module contains implementations of TDependentProperty representing liquid, vapor, and solid heat capacity.
A variety of estimation and data methods are available as included in the chemicals library. Additionally liquid, vapor,
and solid mixture heat capacity predictor objects are implemented subclassing MixtureProperty.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Liquid Heat Capacity

• Pure Gas Heat Capacity

• Pure Solid Heat Capacity

• Mixture Liquid Heat Capacity

• Mixture Gas Heat Capacity

• Mixture Solid Heat Capacity

7.15.1 Pure Liquid Heat Capacity

class thermo.heat_capacity.HeatCapacityLiquid(CASRN='', MW=None, similarity_variable=None,
Tc=None, omega=None, Cpgm=None,
extrapolation='linear', **kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with liquid heat capacity as a function of temperature. Consists of seven coefficient-based
methods, two constant methods, one tabular source, two CSP methods based on gas heat capacity, one simple
estimator, and the external library CoolProp.

Parameters
CASRN [str, optional] The CAS number of the chemical

MW [float, optional] Molecular weight, [g/mol]

similarity_variable [float, optional] similarity variable, n_atoms/MW, [mol/g]

Tc [float, optional] Critical temperature, [K]

omega [float, optional] Acentric factor, [-]

Cpgm [float or callable, optional] Idea-gas molar heat capacity at T or callable for the same,
[J/mol/K]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]
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See also:

chemicals.heat_capacity.Zabransky_quasi_polynomial

chemicals.heat_capacity.Zabransky_cubic

chemicals.heat_capacity.Rowlinson_Poling

chemicals.heat_capacity.Rowlinson_Bondi

chemicals.heat_capacity.Dadgostar_Shaw

chemicals.heat_capacity.Shomate

Notes

A string holding each method’s name is assigned to the following variables in this module, intended
as the most convenient way to refer to a method. To iterate over all methods, use the list stored in
heat_capacity_liquid_methods.

ZABRANSKY_SPLINE, ZABRANSKY_QUASIPOLYNOMIAL, ZABRANSKY_SPLINE_C, and
ZABRANSKY_QUASIPOLYNOMIAL_C:

Rigorous expressions developed in [1] following critical evaluation of the available data. The
spline methods use the form described in Zabransky_cubic over short ranges with varying co-
efficients to obtain a wider range. The quasi-polynomial methods use the form described in
Zabransky_quasi_polynomial, more suitable for extrapolation, and over then entire range. Re-
spectively, there is data available for 588, 146, 51, and 26 chemicals. ‘C’ denotes constant- pressure
data available from more precise experiments. The others are heat capacity values averaged over a
temperature changed.

ZABRANSKY_SPLINE_SAT and ZABRANSKY_QUASIPOLYNOMIAL_SAT:

Rigorous expressions developed in [1] following critical evaluation of the available data. The
spline method use the form described in Zabransky_cubic over short ranges with varying co-
efficients to obtain a wider range. The quasi-polynomial method use the form described in
Zabransky_quasi_polynomial, more suitable for extrapolation, and over their entire range. Re-
spectively, there is data available for 203, and 16 chemicals. Note that these methods are for the
saturation curve!

VDI_TABULAR:

Tabular data up to the critical point available in [5]. Note that this data is along the saturation curve.

ROWLINSON_POLING:

CSP method described in Rowlinson_Poling. Requires a ideal gas heat capacity value at the same
temperature as it is to be calculated.

ROWLINSON_BONDI:
CSP method described in Rowlinson_Bondi. Requires a ideal gas heat capacity value at the same
temperature as it is to be calculated.

COOLPROP:

CoolProp external library; with select fluids from its library. Range is limited to that of the equations
of state it uses, as described in [3]. Very slow.

DADGOSTAR_SHAW:

A basic estimation method using the similarity variable concept; requires only molecular structure,
so is very convenient. See Dadgostar_Shaw for details.
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POLING_CONST:

Constant values in [2] at 298.15 K; available for 245 liquids.

CRCSTD:

Constant values tabulated in [4] at 298.15 K; data is available for 433 liquids.

WEBBOOK_SHOMATE: Shomate form coefficients from [6] for ~200 compounds.

References

[1], [2], [3], [4], [5], [6]

Examples

>>> CpLiquid = HeatCapacityLiquid(CASRN='142-82-5', MW=100.2, similarity_variable=0.
→˓2295, Tc=540.2, omega=0.3457, Cpgm=165.2)

Methods

calculate(T, method) Method to calculate heat capacity of a liquid at tem-
perature T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate heat capacity of a liquid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate heat capacity, [K]

method [str] Name of the method to use

Returns
Cp [float] Heat capacity of the liquid at T, [J/mol/K]

name = 'Liquid heat capacity'

property_max = 10000.0
Maximum valid of Heat capacity; arbitrarily set. For fluids very near the critical point, this value can be
obscenely high.

property_min = 1
Allow very low heat capacities; arbitrarily set; liquid heat capacity should always be somewhat substantial.

ranked_methods = ['ZABRANSKY_SPLINE', 'ZABRANSKY_QUASIPOLYNOMIAL',
'ZABRANSKY_SPLINE_C', 'ZABRANSKY_QUASIPOLYNOMIAL_C', 'ZABRANSKY_SPLINE_SAT',
'ZABRANSKY_QUASIPOLYNOMIAL_SAT', 'WEBBOOK_SHOMATE', 'VDI_TABULAR', 'COOLPROP',
'DADGOSTAR_SHAW', 'ROWLINSON_POLING', 'ROWLINSON_BONDI', 'POLING_CONST', 'CRCSTD']

Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods.
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For the CSP method Rowlinson_Poling, the model is considered valid for all temperatures. The simple
method Dadgostar_Shaw is considered valid for all temperatures. For tabular data, extrapolation outside
of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is considered
valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'J/mol/K'

thermo.heat_capacity.heat_capacity_liquid_methods = ['ZABRANSKY_SPLINE',
'ZABRANSKY_QUASIPOLYNOMIAL', 'ZABRANSKY_SPLINE_C', 'ZABRANSKY_QUASIPOLYNOMIAL_C',
'ZABRANSKY_SPLINE_SAT', 'ZABRANSKY_QUASIPOLYNOMIAL_SAT', 'WEBBOOK_SHOMATE',
'VDI_TABULAR', 'ROWLINSON_POLING', 'ROWLINSON_BONDI', 'COOLPROP', 'DADGOSTAR_SHAW',
'POLING_CONST', 'CRCSTD']

Holds all methods available for the HeatCapacityLiquid class, for use in iterating over them.

7.15.2 Pure Gas Heat Capacity

class thermo.heat_capacity.HeatCapacityGas(CASRN='', MW=None, similarity_variable=None,
extrapolation='linear', iscyclic_aliphatic=False, **kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with gas heat capacity as a function of temperature. Consists of three coefficient-based meth-
ods, two constant methods, one tabular source, one simple estimator, one group-contribution estimator, one
component specific method, and the external library CoolProp.

Parameters
CASRN [str, optional] The CAS number of the chemical

MW [float, optional] Molecular weight, [g/mol]

similarity_variable [float, optional] similarity variable, n_atoms/MW, [mol/g]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.heat_capacity.TRCCp

chemicals.heat_capacity.Shomate

chemicals.heat_capacity.Lastovka_Shaw

chemicals.heat_capacity.Rowlinson_Poling
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chemicals.heat_capacity.Rowlinson_Bondi

thermo.joback.Joback

Notes

A string holding each method’s name is assigned to the following variables in this module, intended
as the most convenient way to refer to a method. To iterate over all methods, use the list stored in
heat_capacity_gas_methods.

TRCIG: A rigorous expression derived in [1] for modeling gas heat capacity. Coefficients for 1961 chemicals
are available.

POLING_POLY: Simple polynomials in [2] not suitable for extrapolation. Data is available for 308 chemicals.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [3]. The heat capacity and enthalpy are implemented analytically
and fairly fast; the entropy integral has no analytical integral and so is numerical. CoolProp’s amazing
coefficient collection is used directly in Python.

LASTOVKA_SHAW: A basic estimation method using the similarity variable concept; requires only molecu-
lar structure, so is very convenient. See Lastovka_Shaw for details.

CRCSTD: Constant values tabulated in [4] at 298.15 K; data is available for 533 gases.

POLING_CONST: Constant values in [2] at 298.15 K; available for 348 gases.

VDI_TABULAR: Tabular data up to the critical point available in [5]. Note that this data is along the saturation
curve.

WEBBOOK_SHOMATE: Shomate form coefficients from [6] for ~700 compounds.

JOBACK: An estimation method for organic substances in [7]

References

[1], [2], [3], [4], [5], [6], [7]

Examples

>>> CpGas = HeatCapacityGas(CASRN='142-82-5', MW=100.2, similarity_variable=0.2295)
>>> CpGas(700)
317.244

Methods

calculate(T, method) Method to calculate surface tension of a liquid at tem-
perature T with a given method.

test_method_validity(T, method) Method to test the validity of a specified method for
a given temperature.

calculate(T, method)
Method to calculate surface tension of a liquid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.
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Parameters
T [float] Temperature at which to calculate heat capacity, [K]

method [str] Method name to use

Returns
Cp [float] Calculated heat capacity, [J/mol/K]

name = 'gas heat capacity'

property_max = 10000.0
Maximum valid of Heat capacity; arbitrarily set. For fluids very near the critical point, this value can be
obscenely high.

property_min = 0
Heat capacities have a minimum value of 0 at 0 K.

ranked_methods = ['TRCIG', 'WEBBOOK_SHOMATE', 'POLING_POLY', 'COOLPROP', 'JOBACK',
'LASTOVKA_SHAW', 'CRCSTD', 'POLING_CONST', 'VDI_TABULAR']

Default rankings of the available methods.

test_method_validity(T, method)
Method to test the validity of a specified method for a given temperature.

‘TRC’ and ‘Poling’ both have minimum and maimum temperatures. The constant temperatures in POL-
ING_CONST and CRCSTD are considered valid for 50 degrees around their specified temperatures.
Lastovka_Shaw is considered valid for the whole range of temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to determine the validity of the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a specifid method is valid

units = 'J/mol/K'

thermo.heat_capacity.heat_capacity_gas_methods = ['COOLPROP', 'TRCIG', 'WEBBOOK_SHOMATE',
'POLING_POLY', 'LASTOVKA_SHAW', 'CRCSTD', 'POLING_CONST', 'JOBACK', 'VDI_TABULAR']

Holds all methods available for the HeatCapacityGas class, for use in iterating over them.

7.15.3 Pure Solid Heat Capacity

class thermo.heat_capacity.HeatCapacitySolid(CASRN='', similarity_variable=None, MW=None,
extrapolation='linear', **kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with solid heat capacity as a function of temperature. Consists of two temperature-dependent
expressions, one constant value source, and one simple estimator.

Parameters
similarity_variable [float, optional] similarity variable, n_atoms/MW, [mol/g]

MW [float, optional] Molecular weight, [g/mol]

CASRN [str, optional] The CAS number of the chemical
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load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.heat_capacity.Lastovka_solid

chemicals.heat_capacity.Shomate

Notes

A string holding each method’s name is assigned to the following variables in this module, intended
as the most convenient way to refer to a method. To iterate over all methods, use the list stored in
heat_capacity_solid_methods.

PERRY151: Simple polynomials with vaious exponents selected for each expression. Coefficients are in units
of calories/mol/K. The full expression is:

𝐶𝑝 = 𝑎+ 𝑏𝑇 + 𝑐/𝑇 2 + 𝑑𝑇 2

Data is available for 284 solids, from [2].

CRCSTD: Values tabulated in [1] at 298.15 K; data is available for 529 solids.

LASTOVKA_S: A basic estimation method using the similarity variable concept; requires only molecular
structure, so is very convenient. See Lastovka_solid for details.

WEBBOOK_SHOMATE: Shomate form coefficients from [3] for ~300 compounds.

References

[1], [2], [3]

Examples

>>> CpSolid = HeatCapacitySolid(CASRN='142-82-5', MW=100.2, similarity_variable=0.
→˓2295)
>>> CpSolid(200)
131.205824

534 Chapter 7. API Reference

https://chemicals.readthedocs.io/chemicals.heat_capacity.html#chemicals.heat_capacity.Lastovka_solid
https://chemicals.readthedocs.io/chemicals.heat_capacity.html#chemicals.heat_capacity.Shomate
https://chemicals.readthedocs.io/chemicals.heat_capacity.html#chemicals.heat_capacity.Lastovka_solid


thermo Documentation, Release 0.2.20

Methods

calculate(T, method) Method to calculate heat capacity of a solid at tem-
perature T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate heat capacity of a solid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate heat capacity, [K]

method [str] Name of the method to use

Returns
Cp [float] Heat capacity of the solid at T, [J/mol/K]

name = 'solid heat capacity'

property_max = 10000.0
Maximum value of Heat capacity; arbitrarily set.

property_min = 0
Heat capacities have a minimum value of 0 at 0 K.

ranked_methods = ['WEBBOOK_SHOMATE', 'PERRY151', 'CRCSTD', 'LASTOVKA_S']
Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is set;
if it is, the extrapolation is considered valid for all temperatures. For the Lastovka_solid method, it is
considered valid under 10000K.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'J/mol/K'

thermo.heat_capacity.heat_capacity_solid_methods = ['WEBBOOK_SHOMATE', 'PERRY151',
'CRCSTD', 'LASTOVKA_S']

Holds all methods available for the HeatCapacitySolid class, for use in iterating over them.
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7.15.4 Mixture Liquid Heat Capacity

class thermo.heat_capacity.HeatCapacityLiquidMixture(MWs=[], CASs=[], HeatCapacityLiquids=[])
Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with liquid heat capacity of a mixture as a function of temperature, pressure, and composition.
Consists only of mole weighted averaging, and the Laliberte method for aqueous electrolyte solutions.

Parameters
MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

CASs [str, optional] The CAS numbers of all species in the mixture

HeatCapacityLiquids [list[HeatCapacityLiquid], optional] HeatCapacityLiquid objects cre-
ated for all species in the mixture [-]

Notes

To iterate over all methods, use the list stored in heat_capacity_liquid_mixture_methods.

LALIBERTE: Electrolyte model equation with coefficients; see thermo.electrochem.
Laliberte_heat_capacity for more details.

LINEAR: Mixing rule described in mixing_simple.

Methods

calculate(T, P, zs, ws, method) Method to calculate heat capacity of a liquid mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the heat capacity above.

Tmin
Minimum temperature at which no method can calculate the heat capacity under.

calculate(T, P, zs, ws, method)
Method to calculate heat capacity of a liquid mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
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Cplm [float] Molar heat capacity of the liquid mixture at the given conditions, [J/mol]

name = 'Liquid heat capacity'

property_max = 10000.0
Maximum valid of Heat capacity; arbitrarily set. For fluids very near the critical point, this value can be
obscenely high.

property_min = 1
Allow very low heat capacities; arbitrarily set; liquid heat capacity should always be somewhat substantial.

ranked_methods = ['LALIBERTE', 'LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'J/mol'

thermo.heat_capacity.heat_capacity_liquid_mixture_methods = ['LALIBERTE', 'LINEAR']
Holds all methods available for the HeatCapacityLiquidMixture class, for use in iterating over them.

7.15.5 Mixture Gas Heat Capacity

class thermo.heat_capacity.HeatCapacityGasMixture(CASs=[], HeatCapacityGases=[], MWs=[])
Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with the gas heat capacity of a mixture as a function of temperature, pressure, and composition.
Consists only of mole weighted averaging.

Parameters
CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

HeatCapacityGases [list[HeatCapacityGas], optional] HeatCapacityGas objects created for all
species in the mixture [-]

MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]
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Notes

To iterate over all methods, use the list stored in heat_capacity_gas_mixture_methods.

LINEAR: Mixing rule described in mixing_simple.

Methods

calculate(T, P, zs, ws, method) Method to calculate heat capacity of a gas mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the heat capacity above.

Tmin
Minimum temperature at which no method can calculate the heat capacity under.

calculate(T, P, zs, ws, method)
Method to calculate heat capacity of a gas mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
Cpgm [float] Molar heat capacity of the gas mixture at the given conditions, [J/mol]

name = 'Gas heat capacity'

property_max = 10000.0
Maximum valid of Heat capacity; arbitrarily set. For fluids very near the critical point, this value can be
obscenely high.

property_min = 0
Heat capacities have a minimum value of 0 at 0 K.

ranked_methods = ['LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]
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zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'J/mol'

thermo.heat_capacity.heat_capacity_gas_mixture_methods = ['LINEAR']
Holds all methods available for the HeatCapacityGasMixture class, for use in iterating over them.

7.15.6 Mixture Solid Heat Capacity

class thermo.heat_capacity.HeatCapacitySolidMixture(CASs=[], HeatCapacitySolids=[], MWs=[])
Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with solid heat capacity of a mixture as a function of temperature, pressure, and composition.
Consists only of mole weighted averaging.

Parameters
CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

HeatCapacitySolids [list[HeatCapacitySolid], optional] HeatCapacitySolid objects created for
all species in the mixture [-]

MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

Notes

To iterate over all methods, use the list stored in heat_capacity_solid_mixture_methods.

LINEAR: Mixing rule described in mixing_simple.

Methods

calculate(T, P, zs, ws, method) Method to calculate heat capacity of a solid mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the heat capacity above.

Tmin
Minimum temperature at which no method can calculate the heat capacity under.

calculate(T, P, zs, ws, method)
Method to calculate heat capacity of a solid mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
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T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
Cpsm [float] Molar heat capacity of the solid mixture at the given conditions, [J/mol]

name = 'Solid heat capacity'

property_max = 10000.0
Maximum value of Heat capacity; arbitrarily set.

property_min = 0
Heat capacities have a minimum value of 0 at 0 K.

ranked_methods = ['LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'J/mol'

thermo.heat_capacity.heat_capacity_solid_mixture_methods = ['LINEAR']
Holds all methods available for the HeatCapacitySolidMixture class, for use in iterating over them.

7.16 Interfacial/Surface Tension (thermo.interface)

This module contains implementations of TDependentProperty representing liquid-air surface tension. A variety of
estimation and data methods are available as included in the chemicals library. Additionally a liquid mixture surface
tension predictor objects are implemented subclassing MixtureProperty.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Liquid Surface Tension

• Mixture Liquid Heat Capacity
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7.16.1 Pure Liquid Surface Tension

class thermo.interface.SurfaceTension(MW=None, Tb=None, Tc=None, Pc=None, Vc=None, Zc=None,
omega=None, StielPolar=None, Hvap_Tb=None, CASRN='',
Vml=None, Cpl=None, extrapolation='DIPPR106_AB', **kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with surface tension as a function of temperature. Consists of three coefficient-based methods
and four data sources, one source of tabular information, five corresponding-states estimators, and one substance-
specific method.

Parameters
Tb [float, optional] Boiling point, [K]

MW [float, optional] Molecular weight, [g/mol]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Vc [float, optional] Critical volume, [m^3/mol]

Zc [float, optional] Critical compressibility

omega [float, optional] Acentric factor, [-]

StielPolar [float, optional] Stiel polar factor

Hvap_Tb [float] Mass enthalpy of vaporization at the normal boiling point [kg/m^3]

CASRN [str, optional] The CAS number of the chemical

Vml [float or callable, optional] Liquid molar volume at a given temperature and pressure or
callable for the same, [m^3/mol]

Cpl [float or callable, optional] Molar heat capacity of the fluid at a pressure and temperature or
or callable for the same, [J/mol/K]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.interface.REFPROP_sigma

chemicals.interface.Somayajulu

chemicals.interface.Jasper

chemicals.interface.Brock_Bird

chemicals.interface.Sastri_Rao

chemicals.interface.Pitzer

chemicals.interface.Zuo_Stenby

chemicals.interface.Miqueu

chemicals.interface.Aleem
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chemicals.interface.sigma_IAPWS

Notes

To iterate over all methods, use the list stored in surface_tension_methods.

*IAPWS: The IAPWS formulation for water, REFPROP_sigma

STREFPROP: The REFPROP coefficient-based method, documented in the function REFPROP_sigma for 115
fluids from [5].

SOMAYAJULU and SOMAYAJULU2: The Somayajulu coefficient-based method, documented in the func-
tion Somayajulu. Both methods have data for 64 fluids. The first data set if from [1], and the second from
[2]. The later, revised coefficients should be used prefered.

JASPER: Fit with a single temperature coefficient from Jaspen (1972) as documented in the function Jasper.
Data for 522 fluids is available, as shown in [4] but originally in [3].

BROCK_BIRD: CSP method documented in Brock_Bird. Most popular estimation method; from 1955.

SASTRI_RAO: CSP method documented in Sastri_Rao. Second most popular estimation method; from
1995.

PITZER: CSP method documented in Pitzer_sigma; from 1958.

ZUO_STENBY: CSP method documented in Zuo_Stenby; from 1997.

MIQUEU: CSP method documented in Miqueu.

ALEEM: CSP method documented in Aleem.

VDI_TABULAR: Tabular data in [6] along the saturation curve; interpolation is as set by the user or the default.

References

[1], [2], [3], [4], [5], [6]

Methods

calculate(T, method) Method to calculate surface tension of a liquid at tem-
perature T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate surface tension of a liquid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate surface tension, [K]

method [str] Name of the method to use

Returns
sigma [float] Surface tension of the liquid at T, [N/m]

name = 'Surface tension'
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property_max = 4.0
Maximum valid value of surface tension. Set to roughly twice that of cobalt at its melting point.

property_min = 0
Mimimum valid value of surface tension. This occurs at the critical point exactly.

ranked_methods = ['IAPWS', 'REFPROP', 'SOMAYAJULU2', 'SOMAYAJULU', 'VDI_PPDS',
'VDI_TABULAR', 'JASPER', 'MIQUEU', 'BROCK_BIRD', 'SASTRI_RAO', 'PITZER',
'ZUO_STENBY', 'Aleem']

Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
CSP methods, the models are considered valid from 0 K to the critical point. For tabular data, extrapolation
outside of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is
considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'N/m'

thermo.interface.surface_tension_methods = ['IAPWS', 'REFPROP', 'SOMAYAJULU2',
'SOMAYAJULU', 'VDI_PPDS', 'VDI_TABULAR', 'JASPER', 'MIQUEU', 'BROCK_BIRD', 'SASTRI_RAO',
'PITZER', 'ZUO_STENBY', 'Aleem']

Holds all methods available for the SurfaceTension class, for use in iterating over them.

7.16.2 Mixture Liquid Heat Capacity

class thermo.interface.SurfaceTensionMixture(MWs=[], Tbs=[], Tcs=[], CASs=[], SurfaceTensions=[],
VolumeLiquids=[], **kwargs)

Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with surface tension of a mixture as a function of temperature, pressure, and composition.
Consists of two mixing rules specific to surface tension, and mole weighted averaging.

Prefered method is Winterfeld_Scriven_Davis which requires mole fractions, pure component surface ten-
sions, and the molar density of each pure component. Diguilio_Teja is of similar accuracy, but requires the
surface tensions of pure components at their boiling points, as well as boiling points and critical points and mole
fractions. An ideal mixing rule based on mole fractions, LINEAR, is also available and is still relatively accurate.

Parameters
MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

Tbs [list[float], optional] Boiling points of all species in the mixture, [K]

Tcs [list[float], optional] Critical temperatures of all species in the mixture, [K]

CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

SurfaceTensions [list[SurfaceTension], optional] SurfaceTension objects created for all species
in the mixture [-]
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VolumeLiquids [list[VolumeLiquid], optional] VolumeLiquid objects created for all species in
the mixture [-]

correct_pressure_pure [bool, optional] Whether to try to use the better pressure-corrected pure
component models or to use only the T-only dependent pure species models, [-]

See also:

chemicals.interface.Winterfeld_Scriven_Davis

chemicals.interface.Diguilio_Teja

Notes

To iterate over all methods, use the list stored in surface_tension_mixture_methods.

WINTERFELDSCRIVENDAVIS: Mixing rule described in Winterfeld_Scriven_Davis.

DIGUILIOTEJA: Mixing rule described in Diguilio_Teja.

LINEAR: Mixing rule described in mixing_simple.

References

[1]

Methods

calculate(T, P, zs, ws, method) Method to calculate surface tension of a liquid mix-
ture at temperature T, pressure P, mole fractions zs
and weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate surface tension of a liquid mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
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sigma [float] Surface tension of the liquid at given conditions, [N/m]

name = 'Surface tension'

property_max = 4.0
Maximum valid value of surface tension. Set to roughly twice that of cobalt at its melting point.

property_min = 0
Mimimum valid value of surface tension. This occurs at the critical point exactly.

ranked_methods = ['Winterfeld, Scriven, and Davis (1978)', 'Diguilio and Teja
(1988)', 'LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'N/m'

thermo.interface.surface_tension_mixture_methods = ['Winterfeld, Scriven, and Davis
(1978)', 'Diguilio and Teja (1988)', 'LINEAR']

Holds all methods available for the SurfaceTensionMixture class, for use in iterating over them.

7.17 Interaction Parameters (thermo.interaction_parameters)

This module contains a small database of interaction parameters. Only two data sets are currently included, both from
ChemSep. If you would like to add parameters to this project please make a referenced compilation of values and
submit them on GitHub.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

class thermo.interaction_parameters.InteractionParameterDB
Basic database framework for interaction parameters.

Methods

get_ip_asymmetric_matrix(name, CASs, ip[,
T])

Get a table of interaction parameters from a specified
source for the specified parameters.

get_ip_automatic(CASs, ip_type, ip) Get an interaction parameter for the first table con-
taining the value.

get_ip_specific(name, CASs, ip) Get an interaction parameter from a table.
continues on next page
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Table 75 – continued from previous page
get_ip_symmetric_matrix(name, CASs, ip[, T]) Get a table of interaction parameters from a specified

source for the specified parameters.
get_tables_with_type(ip_type) Get a list of tables which have a type of a parameter.
has_ip_specific(name, CASs, ip) Check if a bip exists in a table.
load_json(file, name) Load a json file from disk containing interaction co-

efficients.
validate_table(name) Basic method which checks that all CAS numbers are

valid, and that all elements of the data have non-nan
values.

get_ip_asymmetric_matrix(name, CASs, ip, T=298.15)
Get a table of interaction parameters from a specified source for the specified parameters.

Parameters
name [str] Name of the data table, [-]

CASs [Iterable[str]] CAS numbers; they do not need to be sorted, [-]

ip [str] Name of the parameter to retrieve, [-]

T [float, optional] Temperature of the system, [-]

Returns
values [list[list[float]]] Interaction parameters specified by ip, [-]

Examples

>>> from thermo.interaction_parameters import IPDB
>>> IPDB.get_ip_symmetric_matrix(name='ChemSep NRTL', CASs=['64-17-5', '7732-18-
→˓5', '67-56-1'], ip='alphaij')
[[0.0, 0.2937, 0.3009], [0.2937, 0.0, 0.2999], [0.3009, 0.2999, 0.0]]

get_ip_automatic(CASs, ip_type, ip)
Get an interaction parameter for the first table containing the value.

Parameters
CASs [Iterable[str]] CAS numbers; they do not need to be sorted, [-]

ip_type [str] Name of the parameter type, [-]

ip [str] Name of the parameter to retrieve, [-]

Returns
value [float] Interaction parameter specified by ip, [-]
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Examples

>>> from thermo.interaction_parameters import IPDB
>>> IPDB.get_ip_automatic(CASs=['7727-37-9', '74-84-0'], ip_type='PR kij', ip=
→˓'kij')
0.0533

get_ip_specific(name, CASs, ip)
Get an interaction parameter from a table. If the specified parameter is missing, the default missing value
as defined in the data file is returned instead.

Parameters
name [str] Name of the data table, [-]

CASs [Iterable[str]] CAS numbers; they do not need to be sorted, [-]

ip [str] Name of the parameter to retrieve, [-]

Returns
value [float] Interaction parameter specified by ip, [-]

Examples

Check if nitrogen-ethane as a PR BIP:

>>> from thermo.interaction_parameters import IPDB
>>> IPDB.get_ip_specific('ChemSep PR', ['7727-37-9', '74-84-0'], 'kij')
0.0533

get_ip_symmetric_matrix(name, CASs, ip, T=298.15)
Get a table of interaction parameters from a specified source for the specified parameters. This method
assumes symmetric parameters for speed.

Parameters
name [str] Name of the data table, [-]

CASs [Iterable[str]] CAS numbers; they do not need to be sorted, [-]

ip [str] Name of the parameter to retrieve, [-]

T [float, optional] Temperature of the system, [-]

Returns
values [list[list[float]]] Interaction parameters specified by ip, [-]

Examples

>>> from thermo.interaction_parameters import IPDB
>>> IPDB.get_ip_symmetric_matrix(name='ChemSep PR', CASs=['7727-37-9', '74-84-0
→˓', '74-98-6'], ip='kij')
[[0.0, 0.0533, 0.0878], [0.0533, 0.0, 0.0011], [0.0878, 0.0011, 0.0]]

get_tables_with_type(ip_type)
Get a list of tables which have a type of a parameter.
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Parameters
ip_type [str] Name of the parameter type, [-]

Returns
table_names [list[str]] Interaction parameter tables including ip, [-]

Examples

>>> from thermo.interaction_parameters import IPDB
>>> IPDB.get_tables_with_type('PR kij')
['ChemSep PR']

has_ip_specific(name, CASs, ip)
Check if a bip exists in a table.

Parameters
name [str] Name of the data table, [-]

CASs [Iterable[str]] CAS numbers; they do not need to be sorted, [-]

ip [str] Name of the parameter to retrieve, [-]

Returns
present [bool] Whether or not the data is included in the table, [-]

Examples

Check if nitrogen-ethane as a PR BIP:

>>> from thermo.interaction_parameters import IPDB
>>> IPDB.has_ip_specific('ChemSep PR', ['7727-37-9', '74-84-0'], 'kij')
True

load_json(file, name)
Load a json file from disk containing interaction coefficients.

The format for the file is as follows:

A data key containing a dictionary with a key:

• CAS1 CAS2 [str] The CAS numbers of both components, sorted from small to high as integers; they
should have the ‘-’ symbols still in them and have a single space between them; if these are ternary
or higher parameters, follow the same format for the other CAS numbers, [-]

• values [dict[str][various]] All of the values listed in the metadata element necessary keys; they are
None if missing.

A metadata key containing:

• symmetric [bool] Whether or not the interaction coefficients are missing.

• source [str] Where the data came from.

• components [int] The number of components each interaction parameter is for; 2 for binary, 3 for
ternary, etc.

• necessary keys [list[str]] Which elements are required in the data.
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• P dependent [bool] Whether or not the interaction parameters are pressure dependent.

• missing [dict[str][float]] Values which are missing are returned with these values

• type [One of ‘PR kij’, ‘SRK kij’, etc; used to group data but not] tied into anything else.

• T dependent [bool] Whether or not the data is T-dependent.

Parameters
file [str] Path to json file on disk which contains interaction coefficients, [-]

name [str] Name that the data read should be referred to by, [-]

validate_table(name)
Basic method which checks that all CAS numbers are valid, and that all elements of the data have non-nan
values. Raises an exception if any of the data is missing or is a nan value.

thermo.interaction_parameters.IPDB =
<thermo.interaction_parameters.InteractionParameterDB object>

Basic database framework for interaction parameters.

Exmple database with NRTL and PR values from ChemSep. This is lazy-loaded, access it as
thermo.interaction_parameters.IPDB.

class thermo.interaction_parameters.ScalarParameterDB
Basic database framework for scalar parameters of various thermodynamic models. The following keys are used:

Peng-Robinson
Twu Volume-translated Peng-Robinson: TwuPRL, TwuPRM, TwuPRN, TwuPRc

Volume-translated Peng-Robinson: PRc

Peng-Robinson-Stryjek-Vera: PRSVkappa1

Peng-Robinson-Stryjek-Vera 2: PRSV2kappa1, PRSV2kappa2, PRSV2kappa3

SRK
Twu Volume-translated Peng-Robinson: TwuSRKL, TwuSRKM, TwuSRKN, TwuSRKc

Volume-translated Peng-Robinson: SRKc

Refinery Soave-Redlich-Kwong: APISRKS1, APISRKS2

MSRK : MSRKM, MSRKN, MSRKc

Predictive Soave-Redlich-Kwong: MCSRKC1, MCSRKC2, MCSRKC3

Excess Gibbs Energy Models
Regular Solution: RegularSolutionV, RegularSolutionSP
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Methods

get_parameter_automatic(CAS, parameter) Get an interaction parameter for the first table con-
taining the value.

get_parameter_specific(name, CAS, parame-
ter)

Get a parameter from a table.

get_parameter_vector(name, CASs, parameter) Get a list of parameters from a specified source for
the specified parameter.

get_tables_with_type(parameter) Get a list of tables which have a parameter.
has_parameter_specific(name, CAS, parame-
ter)

Check if a parameter exists in a table.

load_json

SPDB

Example scalar parameters for models. This is lazy-loaded, access it as
thermo.interaction_parameters.SPDB.

7.18 Legal and Economic Chemical Data (thermo.law)

thermo.law.economic_status(CASRN, method=None, get_methods=False)
Look up the economic status of a chemical.

This API is considered experimental, and is expected to be removed in a future release in favor of a more complete
object-oriented interface.

>>> economic_status(CASRN='98-00-0')
["US public: {'Manufactured': 0.0, 'Imported': 10272.711, 'Exported': 184.127}",
→˓'10,000 - 100,000 tonnes per annum', 'OECD HPV Chemicals']

>>> economic_status(CASRN='13775-50-3') # SODIUM SESQUISULPHATE
[]
>>> economic_status(CASRN='98-00-0', method='OECD high production volume chemicals')
'OECD HPV Chemicals'
>>> economic_status(CASRN='98-01-1', method='European Chemicals Agency Total␣
→˓Tonnage Bands')
['10,000 - 100,000 tonnes per annum']

thermo.law.legal_status(CASRN, method=None, get_methods=False, CASi=None)
Looks up the legal status of a chemical according to either a specifc method or with all methods.

Returns either the status as a string for a specified method, or the status of the chemical in all available data
sources, in the format {source: status}.

Parameters
CASRN [string] CASRN [-]

Returns
status [str or dict] Legal status information [-]
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methods [list, only returned if get_methods == True] List of methods which can be used to
obtain legal status with the given inputs

Other Parameters
method [string, optional] A string for the method name to use, as defined by constants in le-

gal_status_methods

get_methods [bool, optional] If True, function will determine which methods can be used to
obtain the legal status for the desired chemical, and will return methods instead of the status

CASi [int, optional] CASRN as an integer, used internally [-]

Notes

Supported methods are:

• DSL: Canada Domestic Substance List, [1]. As extracted on Feb 11, 2015 from a html list. This list is
updated continuously, so this version will always be somewhat old. Strictly speaking, there are multiple
lists but they are all bundled together here. A chemical may be ‘Listed’, or be on the ‘Non-Domestic
Substances List (NDSL)’, or be on the list of substances with ‘Significant New Activity (SNAc)’, or be on
the DSL but with a ‘Ministerial Condition pertaining to this substance’, or have been removed from the
DSL, or have had a Ministerial prohibition for the substance.

• TSCA: USA EPA Toxic Substances Control Act Chemical Inventory, [2]. This list is as extracted on 2016-
01. It is believed this list is updated on a periodic basis (> 6 month). A chemical may simply be ‘Listed’,
or may have certain flags attached to it. All these flags are described in the dict TSCA_flags.

• EINECS: European INventory of Existing Commercial chemical Substances, [3]. As extracted from a
spreadsheet dynamically generated at [1]. This list was obtained March 2015; a more recent revision already
exists.

• NLP: No Longer Polymers, a list of chemicals with special regulatory exemptions in EINECS. Also de-
scribed at [3].

• SPIN: Substances Prepared in Nordic Countries. Also a boolean data type. Retrieved 2015-03 from [4].

Other methods which could be added are:

• Australia: AICS Australian Inventory of Chemical Substances

• China: Inventory of Existing Chemical Substances Produced or Imported in China (IECSC)

• Europe: REACH List of Registered Substances

• India: List of Hazardous Chemicals

• Japan: ENCS: Inventory of existing and new chemical substances

• Korea: Existing Chemicals Inventory (KECI)

• Mexico: INSQ National Inventory of Chemical Substances in Mexico

• New Zealand: Inventory of Chemicals (NZIoC)

• Philippines: PICCS Philippines Inventory of Chemicals and Chemical Substances
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References

[1], [2], [3], [4]

Examples

>>> legal_status('64-17-5')
{'DSL': 'LISTED', 'TSCA': 'LISTED', 'EINECS': 'LISTED', 'NLP': 'UNLISTED', 'SPIN':
→˓'LISTED'}

thermo.law.load_economic_data()

thermo.law.load_law_data()

7.19 NRTL Gibbs Excess Model (thermo.nrtl)

This module contains a class NRTL for performing activity coefficient calculations with the NRTL model. An older,
functional calculation for activity coefficients only is also present, NRTL_gammas.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• NRTL Class

• NRTL Functional Calculations

• NRTL Regression Calculations

7.19.1 NRTL Class

class thermo.nrtl.NRTL(T, xs, tau_coeffs=None, alpha_coeffs=None, ABEFGHCD=None, tau_as=None,
tau_bs=None, tau_es=None, tau_fs=None, tau_gs=None, tau_hs=None,
alpha_cs=None, alpha_ds=None)

Bases: thermo.activity.GibbsExcess

Class for representing an a liquid with excess gibbs energy represented by the NRTL equation. This model is
capable of representing VL and LL behavior. [1] and [2] are good references on this model.

𝑔𝐸 = 𝑅𝑇
∑︁
𝑖

𝑥𝑖

∑︀
𝑗 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗∑︀
𝑗 𝐺𝑗𝑖𝑥𝑗

𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)

𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑇

𝜏𝑖𝑗 = 𝐴𝑖𝑗 +
𝐵𝑖𝑗

𝑇
+ 𝐸𝑖𝑗 ln𝑇 + 𝐹𝑖𝑗𝑇 +

𝐺𝑖𝑗

𝑇 2
+𝐻𝑖𝑗𝑇

2

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]
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tau_coeffs [list[list[list[float]]], optional] NRTL parameters, indexed by [i][j] and then each
value is a 6 element list with parameters [a, b, e, f, g, h]; either (tau_coeffs and alpha_coeffs)
or ABEFGHCD are required, [-]

alpha_coeffs [list[list[float]], optional] NRTL alpha parameters, []

ABEFGHCD [tuple[list[list[float]], 8], optional] Contains the following. One of (tau_coeffs
and alpha_coeffs) or ABEFGHCD or some of the tau or alpha parameters are required, [-]

tau_as [list[list[float]], optional] a parameters used in calculating NRTL.taus, [-]

tau_bs [list[list[float]], optional] b parameters used in calculating NRTL.taus, [K]

tau_es [list[list[float]], optional] e parameters used in calculating NRTL.taus, [-]

tau_fs [list[list[float]], optional] f paraemeters used in calculating NRTL.taus, [1/K]

tau_gs [list[list[float]], optional] e parameters used in calculating NRTL.taus, [K^2]

tau_hs [list[list[float]], optional] f parameters used in calculating NRTL.taus, [1/K^2]

alpha_cs [list[list[float]], optional] c parameters used in calculating NRTL.alphas, [-]

alpha_ds [list[list[float]], optional] d paraemeters used in calculating NRTL.alphas, [1/K]

Notes

In addition to the methods presented here, the methods of its base class thermo.activity.GibbsExcess are
available as well.

References

[1], [2]

Examples

The DDBST has published numerous problems showing this model a simple binary system, Example P05.01b
in [2], shows how to use parameters from the DDBST which are in units of calorie and need the gas constant as
a multiplier:

>>> from scipy.constants import calorie, R
>>> N = 2
>>> T = 70.0 + 273.15
>>> xs = [0.252, 0.748]
>>> tausA = tausE = tausF = tausG = tausH = alphaD = [[0.0]*N for i in range(N)]
>>> tausB = [[0, -121.2691/R*calorie], [1337.8574/R*calorie, 0]]
>>> alphaC = [[0, 0.2974],[.2974, 0]]
>>> ABEFGHCD = (tausA, tausB, tausE, tausF, tausG, tausH, alphaC, alphaD)
>>> GE = NRTL(T=T, xs=xs, ABEFGHCD=ABEFGHCD)
>>> GE.gammas()
[1.93605165145, 1.15366304520]
>>> GE
NRTL(T=343.15, xs=[0.252, 0.748], tau_bs=[[0, -61.0249799309399], [673.
→˓2359767282798, 0]], alpha_cs=[[0, 0.2974], [0.2974, 0]])
>>> GE.GE(), GE.dGE_dT(), GE.d2GE_dT2()
(780.053057219, 0.5743500022, -0.003584843605528)

(continues on next page)
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(continued from previous page)

>>> GE.HE(), GE.SE(), GE.dHE_dT(), GE.dSE_dT()
(582.964853938, -0.57435000227, 1.230139083237, 0.0035848436055)

The solution given by the DDBST has the same values [1.936, 1.154], and can be found here:
http://chemthermo.ddbst.com/Problems_Solutions/Mathcad_Files/P05.01b%20VLE%20Behavior%20of%
20Ethanol%20-%20Water%20Using%20NRTL.xps

Attributes
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Methods

GE() Calculate and return the excess Gibbs energy of a liq-
uid phase represented by the NRTL model.

Gs() Calculates and return the G terms in the NRTL model
for a specified temperature.

alphas() Calculates and return the alpha terms in the NRTL
model for a specified temperature.

d2GE_dT2() Calculate and return the second tempreature deriva-
tive of excess Gibbs energy of a liquid phase repre-
sented by the NRTL model.

d2GE_dTdxs() Calculate and return the temperature derivative of
mole fraction derivatives of excess Gibbs energy of
a liquid represented by the NRTL model.

d2GE_dxixjs() Calculate and return the second mole fraction deriva-
tives of excess Gibbs energy of a liquid represented
by the NRTL model.

d2Gs_dT2() Calculates and return the second temperature deriva-
tive of G terms in the NRTL model for a specified
temperature.

d2taus_dT2() Calculate and return the second temperature deriva-
tive of the tau terms for the NRTL model for a spec-
ified temperature.

d3Gs_dT3() Calculates and return the third temperature derivative
of G terms in the NRTL model for a specified tem-
perature.

d3taus_dT3() Calculate and return the third temperature derivative
of the tau terms for the NRTL model for a specified
temperature.

dGE_dT() Calculate and return the first tempreature derivative
of excess Gibbs energy of a liquid phase represented
by the NRTL model.

dGE_dxs() Calculate and return the mole fraction derivatives of
excess Gibbs energy of a liquid represented by the
NRTL model.

dGs_dT() Calculates and return the first temperature derivative
of G terms in the NRTL model for a specified tem-
perature.

continues on next page
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Table 77 – continued from previous page
dtaus_dT() Calculate and return the temperature derivative of the

tau terms for the NRTL model for a specified temper-
ature.

taus() Calculate and return the tau terms for the NRTL
model for a specified temperature.

to_T_xs(T, xs) Method to construct a new NRTL instance at temper-
ature T, and mole fractions xs with the same param-
eters as the existing object.

to_T_xs(T, xs)
Method to construct a new NRTL instance at temperature T, and mole fractions xs with the same parameters
as the existing object.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions of each component, [-]

Returns
obj [NRTL] New NRTL object at the specified conditions [-]

Notes

If the new temperature is the same temperature as the existing temperature, if the tau, Gs, or alphas terms
or their derivatives have been calculated, they will be set to the new object as well.

taus()
Calculate and return the tau terms for the NRTL model for a specified temperature.

𝜏𝑖𝑗 = 𝐴𝑖𝑗 +
𝐵𝑖𝑗

𝑇
+ 𝐸𝑖𝑗 ln𝑇 + 𝐹𝑖𝑗𝑇 +

𝐺𝑖𝑗

𝑇 2
+𝐻𝑖𝑗𝑇

2

Returns
taus [list[list[float]]] tau terms, asymmetric matrix [-]

Notes

These tau ij values (and the coefficients) are NOT symmetric.

dtaus_dT()
Calculate and return the temperature derivative of the tau terms for the NRTL model for a specified tem-
perature.

𝜕𝜏𝑖𝑗
𝜕𝑇 𝑃,𝑥𝑖

= −𝐵𝑖𝑗

𝑇 2
+
𝐸𝑖𝑗

𝑇
+ 𝐹𝑖𝑗 −

2𝐺𝑖𝑗

𝑇 3
+ 2𝐻𝑖𝑗𝑇

Returns
dtaus_dT [list[list[float]]] First temperature derivative of tau terms, asymmetric matrix

[1/K]

d2taus_dT2()
Calculate and return the second temperature derivative of the tau terms for the NRTL model for a specified
temperature.

𝜕2𝜏𝑖𝑗
𝜕𝑇 2 𝑃,𝑥𝑖

=
2𝐵𝑖𝑗

𝑇 3
− 𝐸𝑖𝑗

𝑇 2
+

6𝐺𝑖𝑗

𝑇 4
+ 2𝐻𝑖𝑗
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Returns
d2taus_dT2 [list[list[float]]] Second temperature derivative of tau terms, asymmetric matrix

[1/K^2]

d3taus_dT3()
Calculate and return the third temperature derivative of the tau terms for the NRTL model for a specified
temperature.

𝜕3𝜏𝑖𝑗
𝜕𝑇 3 𝑃,𝑥𝑖

= −6𝐵𝑖𝑗

𝑇 4
+

2𝐸𝑖𝑗

𝑇 3
− 24𝐺𝑖𝑗

𝑇 5

Returns
d3taus_dT3 [list[list[float]]] Third temperature derivative of tau terms, asymmetric matrix

[1/K^3]

alphas()
Calculates and return the alpha terms in the NRTL model for a specified temperature.

𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑇

Returns
alphas [list[list[float]]] alpha terms, possibly asymmetric matrix [-]

Notes

alpha values (and therefore cij and dij are normally symmetrical; but this is not strictly required.

Some sources suggest the c term should be fit to a given system; but the d term should be fit for an entire
chemical family to avoid overfitting.

Recommended values for cij according to one source are:

0.30 Nonpolar substances with nonpolar substances; low deviation from ideality. 0.20 Hydrocarbons that
are saturated interacting with polar liquids that do not associate, or systems that for multiple liquid phases
which are immiscible 0.47 Strongly self associative systems, interacting with non-polar substances

alpha_coeffs should be a list[list[cij, dij]] so a 3d array

Gs()
Calculates and return the G terms in the NRTL model for a specified temperature.

𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)

Returns
Gs [list[list[float]]] G terms, asymmetric matrix [-]

dGs_dT()
Calculates and return the first temperature derivative of G terms in the NRTL model for a specified tem-
perature.

𝜕𝐺𝑖𝑗

𝜕𝑇
=

(︂
−𝛼(𝑇 )

𝑑

𝑑𝑇
𝜏(𝑇 ) − 𝜏(𝑇 )

𝑑

𝑑𝑇
𝛼(𝑇 )

)︂
𝑒−𝛼(𝑇 )𝜏(𝑇 )

Returns
dGs_dT [list[list[float]]] Temperature derivative of G terms, asymmetric matrix [1/K]
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Notes

Derived with SymPy:

>>> from sympy import *
>>> T = symbols('T')
>>> alpha, tau = symbols('alpha, tau', cls=Function)
>>> diff(exp(-alpha(T)*tau(T)), T)

d2Gs_dT2()
Calculates and return the second temperature derivative of G terms in the NRTL model for a specified
temperature.

𝜕2𝐺𝑖𝑗

𝜕𝑇 2
=

(︃(︂
𝛼(𝑇 )

𝑑

𝑑𝑇
𝜏(𝑇 ) + 𝜏(𝑇 )

𝑑

𝑑𝑇
𝛼(𝑇 )

)︂2

− 𝛼(𝑇 )
𝑑2

𝑑𝑇 2
𝜏(𝑇 ) − 2

𝑑

𝑑𝑇
𝛼(𝑇 )

𝑑

𝑑𝑇
𝜏(𝑇 )

)︃
𝑒−𝛼(𝑇 )𝜏(𝑇 )

Returns
d2Gs_dT2 [list[list[float]]] Second temperature derivative of G terms, asymmetric matrix

[1/K^2]

Notes

Derived with SymPy:

>>> from sympy import *
>>> T = symbols('T')
>>> alpha, tau = symbols('alpha, tau', cls=Function)
>>> diff(exp(-alpha(T)*tau(T)), T, 2)

d3Gs_dT3()
Calculates and return the third temperature derivative of G terms in the NRTL model for a specified tem-
perature.

𝜕3𝐺𝑖𝑗

𝜕𝑇 3
=

(︂
𝛼(𝑇 )

𝑑

𝑑𝑇
𝜏(𝑇 ) + 𝜏(𝑇 )

𝑑

𝑑𝑇
𝛼(𝑇 )

)︂3

+

(︂
3𝛼(𝑇 )

𝑑

𝑑𝑇
𝜏(𝑇 ) + 3𝜏(𝑇 )

𝑑

𝑑𝑇
𝛼(𝑇 )

)︂(︂
𝛼(𝑇 )

𝑑2

𝑑𝑇 2
𝜏(𝑇 ) + 2

𝑑

𝑑𝑇
𝛼(𝑇 )

𝑑

𝑑𝑇
𝜏(𝑇 )

)︂
− 𝛼(𝑇 )

𝑑3

𝑑𝑇 3
𝜏(𝑇 ) − 3

𝑑

𝑑𝑇
𝛼(𝑇 )

𝑑2

𝑑𝑇 2
𝜏(𝑇 )

Returns
d3Gs_dT3 [list[list[float]]] Third temperature derivative of G terms, asymmetric matrix

[1/K^3]

Notes

Derived with SymPy:

>>> from sympy import *
>>> T = symbols('T')
>>> alpha, tau = symbols('alpha, tau', cls=Function)
>>> diff(exp(-alpha(T)*tau(T)), T, 3)

GE()
Calculate and return the excess Gibbs energy of a liquid phase represented by the NRTL model.

𝑔𝐸 = 𝑅𝑇
∑︁
𝑖

𝑥𝑖

∑︀
𝑗 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗∑︀
𝑗 𝐺𝑗𝑖𝑥𝑗
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Returns
GE [float] Excess Gibbs energy, [J/mol]

dGE_dT()
Calculate and return the first tempreature derivative of excess Gibbs energy of a liquid phase represented
by the NRTL model.

Returns
dGE_dT [float] First temperature derivative of excess Gibbs energy, [J/(mol*K)]

d2GE_dT2()
Calculate and return the second tempreature derivative of excess Gibbs energy of a liquid phase represented
by the NRTL model.

Returns
d2GE_dT2 [float] Second temperature derivative of excess Gibbs energy, [J/(mol*K^2)]

dGE_dxs()
Calculate and return the mole fraction derivatives of excess Gibbs energy of a liquid represented by the
NRTL model.

𝜕𝑔𝐸

𝜕𝑥𝑖

Returns
dGE_dxs [list[float]] Mole fraction derivatives of excess Gibbs energy, [J/mol]

d2GE_dxixjs()
Calculate and return the second mole fraction derivatives of excess Gibbs energy of a liquid represented by
the NRTL model.

𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝑅𝑇

[︃
+

𝐺𝑖𝑗𝜏𝑖𝑗∑︀
𝑚 𝑥𝑚𝐺𝑚𝑗

+
𝐺𝑗𝑖𝜏𝑗𝑖𝑖𝑗∑︀
𝑚 𝑥𝑚𝐺𝑚𝑖

−
(
∑︀

𝑚 𝑥𝑚𝐺𝑚𝑗𝜏𝑚𝑗)𝐺𝑖𝑗

(
∑︀

𝑚 𝑥𝑚𝐺𝑚𝑗)2
−

(
∑︀

𝑚 𝑥𝑚𝐺𝑚𝑖𝜏𝑚𝑖)𝐺𝑗𝑖

(
∑︀

𝑚 𝑥𝑚𝐺𝑚𝑖)2

∑︁
𝑘

(︂
2𝑥𝑘(

∑︀
𝑚 𝑥𝑚𝜏𝑚𝑘𝐺𝑚𝑘)𝐺𝑖𝑘𝐺𝑗𝑘

(
∑︀

𝑚 𝑥𝑚𝐺𝑚𝑘)3
− 𝑥𝑘𝐺𝑖𝑘𝐺𝑗𝑘(𝜏𝑗𝑘 + 𝜏𝑖𝑘)

(
∑︀

𝑚 𝑥𝑚𝐺𝑚𝑘)2

)︂]︃

Returns
d2GE_dxixjs [list[list[float]]] Second mole fraction derivatives of excess Gibbs energy,

[J/mol]

d2GE_dTdxs()
Calculate and return the temperature derivative of mole fraction derivatives of excess Gibbs energy of a
liquid represented by the NRTL model.

𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑇
= 𝑅

⎡⎣−𝑇
⎛⎝∑︁

𝑗

(︃
−
𝑥𝑗(𝐺𝑖𝑗

𝜕𝜏𝑖𝑗
𝜕𝑇 + 𝜏𝑖𝑗

𝜕𝐺𝑖𝑗

𝜕𝑇 )∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

+
𝑥𝑗𝐺𝑖𝑗𝜏𝑖𝑗(

∑︀
𝑘 𝑥𝑘

𝜕𝐺𝑘𝑗

𝜕𝑇 )

(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗)2
+
𝑥𝑗

𝜕𝐺𝑖𝑗

𝜕𝑇 (
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗𝜏𝑘𝑗)

(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗)2
+
𝑥𝑗𝐺𝑖𝑗(

∑︀
𝑘 𝑥𝑘(𝐺𝑘𝑗

𝜕𝜏𝑘𝑗

𝜕𝑇 + 𝜏𝑘𝑗
𝜕𝐺𝑘𝑗

𝜕𝑇 ))

(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗)2
− 2

𝑥𝑗𝐺𝑖𝑗(
∑︀

𝑘 𝑥𝑘
𝜕𝐺𝑘𝑗

𝜕𝑇 )(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗𝜏𝑘𝑗)

(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗)3

)︃
−
∑︀

𝑘(𝑥𝑘𝐺𝑘𝑖
𝜕𝜏𝑘𝑖

𝜕𝑇 + 𝑥𝑘𝜏𝑘𝑖
𝜕𝐺𝑘𝑖

𝜕𝑇∑︀
𝑘 𝑥𝑘𝐺𝑘𝑖

+
(
∑︀

𝑘 𝑥𝑘
𝜕𝐺𝑘𝑖

𝜕𝑇 )(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑖𝜏𝑘𝑖)

(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑖)2

⎞⎠+

∑︀
𝑗 𝑥𝑗𝐺𝑗𝑖𝜏𝑗𝑖∑︀
𝑗 𝑥𝑗𝐺𝑗𝑖

+
∑︁
𝑗

(︂
𝑥𝑗𝐺𝑖𝑗(

∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗𝜏𝑘𝑗)

(
∑︀

𝑘 𝑥𝑘𝐺𝑘𝑗)2
+

𝑥𝑗𝐺𝑖𝑗𝜏𝑖𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

)︂⎤⎦
Returns

d2GE_dTdxs [list[float]] Temperature derivative of mole fraction derivatives of excess
Gibbs energy, [J/(mol*K)]
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7.19.2 NRTL Functional Calculations

thermo.nrtl.NRTL_gammas(xs, taus, alphas)
Calculates the activity coefficients of each species in a mixture using the Non-Random Two-Liquid (NRTL)
method, given their mole fractions, dimensionless interaction parameters, and nonrandomness constants. Those
are normally correlated with temperature in some form, and need to be calculated separately.

ln(𝛾𝑖) =

𝑛∑︁
𝑗=1

𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖

𝑛∑︁
𝑘=1

𝑥𝑘𝐺𝑘𝑖

+

𝑛∑︁
𝑗=1

𝑥𝑗𝐺𝑖𝑗
𝑛∑︁

𝑘=1

𝑥𝑘𝐺𝑘𝑗

⎛⎜⎜⎜⎜⎝𝜏𝑖𝑗 −
𝑛∑︁

𝑚=1

𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗

𝑛∑︁
𝑘=1

𝑥𝑘𝐺𝑘𝑗

⎞⎟⎟⎟⎟⎠
𝐺𝑖𝑗 = exp (−𝛼𝑖𝑗𝜏𝑖𝑗)

Parameters
xs [list[float]] Liquid mole fractions of each species, [-]

taus [list[list[float]]] Dimensionless interaction parameters of each compound with each other,
[-]

alphas [list[list[float]]] Nonrandomness constants of each compound interacting with each other,
[-]

Returns
gammas [list[float]] Activity coefficient for each species in the liquid mixture, [-]

Notes

This model needs N^2 parameters.

One common temperature dependence of the nonrandomness constants is:

𝛼𝑖𝑗 = 𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑇

Most correlations for the interaction parameters include some of the terms shown in the following form:

𝜏𝑖𝑗 = 𝐴𝑖𝑗 +
𝐵𝑖𝑗

𝑇
+
𝐶𝑖𝑗

𝑇 2
+𝐷𝑖𝑗 ln (𝑇 ) + 𝐸𝑖𝑗𝑇

𝐹𝑖𝑗

The original form of this model used the temperature dependence of taus in the form (values can be found in the
literature, often with units of calories/mol):

𝜏𝑖𝑗 =
𝑏𝑖𝑗
𝑅𝑇

For this model to produce ideal acitivty coefficients (gammas = 1), all interaction parameters should be 0; the
value of alpha does not impact the calculation when that is the case.
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References

[1], [2]

Examples

Ethanol-water example, at 343.15 K and 1 MPa:

>>> NRTL_gammas(xs=[0.252, 0.748], taus=[[0, -0.178], [1.963, 0]],
... alphas=[[0, 0.2974],[.2974, 0]])
[1.9363183763514304, 1.1537609663170014]

7.19.3 NRTL Regression Calculations

thermo.nrtl.NRTL_gammas_binaries(xs, tau12, tau21, alpha12, alpha21, gammas=None)
Calculates activity coefficients at fixed tau and alpha values for a binary system at a series of mole fractions. This
is used for regression of tau and alpha parameters. This function is highly optimized, and operates on multiple
points at a time.

ln 𝛾1 = 𝑥22

[︃
𝜏21

(︂
𝐺21

𝑥1 + 𝑥2𝐺21

)︂2

+
𝜏12𝐺12

(𝑥2 + 𝑥1𝐺12)2

]︃

ln 𝛾2 = 𝑥21

[︃
𝜏12

(︂
𝐺12

𝑥2 + 𝑥1𝐺12

)︂2

+
𝜏21𝐺21

(𝑥1 + 𝑥2𝐺21)2

]︃
𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)

Parameters
xs [list[float]] Liquid mole fractions of each species in the format x0_0, x1_0, (component 1

point1, component 2 point 1), x0_1, x1_1, (component 1 point2, component 2 point 2), . . .
[-]

tau12 [float] tau parameter for 12, [-]

tau21 [float] tau parameter for 21, [-]

alpha12 [float] alpha parameter for 12, [-]

alpha21 [float] alpha parameter for 21, [-]

gammas [list[float], optional] Array to store the activity coefficient for each species in the liquid
mixture, indexed the same as xs; can be omitted or provided for slightly better performance
[-]

Returns
gammas [list[float]] Activity coefficient for each species in the liquid mixture, indexed the same

as xs, [-]
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Examples

>>> NRTL_gammas_binaries([.1, .9, 0.3, 0.7, .85, .15], 0.1759, 0.7991, .2, .3)
[2.121421, 1.011342, 1.52177, 1.09773, 1.016062, 1.841391]

7.20 Legacy Mixtures (thermo.mixture)

class thermo.mixture.Mixture(IDs=None, zs=None, ws=None, Vfls=None, Vfgs=None, T=None, P=None,
VF=None, H=None, Hm=None, S=None, Sm=None, pkg=None,
Vf_TP=(None, None))

Bases: object

Creates a Mixture object which contains basic information such as molecular weight and the structure of the
species, as well as thermodynamic and transport properties as a function of two of the variables temperature,
pressure, vapor fraction, enthalpy, or entropy.

The components of the mixture must be specified by specifying the names of the chemicals; the composition can
be specified by providing any one of the following parameters:

• Mass fractions ws

• Mole fractions zs

• Liquid volume fractions (based on pure component densities) Vfls

• Gas volume fractions (based on pure component densities) Vfgs

If volume fractions are provided, by default the pure component volumes are calculated at the specified T and P.
To use another reference temperature and pressure specify it as a tuple for the argument Vf_TP.

If no thermodynamic conditions are specified, or if only one of T and P are specifed without another thermody-
namic variable as well, the T and P 298.15 K and/or 101325 Pa will be set instead of the missing variables.

Parameters
IDs [list, optional] List of chemical identifiers - names, CAS numbers, SMILES or InChi strings

can all be recognized and may be mixed [-]

zs [list or dict, optional] Mole fractions of all components in the mixture [-]

ws [list or dict, optional] Mass fractions of all components in the mixture [-]

Vfls [list or dict, optional] Volume fractions of all components as a hypothetical liquid phase
based on pure component densities [-]

Vfgs [list, or dict optional] Volume fractions of all components as a hypothetical gas phase based
on pure component densities [-]

T [float, optional] Temperature of the mixture (default 298.15 K), [K]

P [float, optional] Pressure of the mixture (default 101325 Pa) [Pa]

VF [float, optional] Vapor fraction (mole basis) of the mixture, [-]

Hm [float, optional] Molar enthalpy of the mixture, [J/mol]

H [float, optional] Mass enthalpy of the mixture, [J/kg]

Sm [float, optional] Molar entropy of the mixture, [J/mol/K]

S [float, optional] Mass entropy of the mixture, [J/kg/K]
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pkg [object] The thermodynamic property package to use for flash calculations; one of the
caloric packages in thermo.property_package; defaults to the ideal model [-]

Vf_TP [tuple(2, float), optional] The (T, P) at which the volume fractions are specified to be at,
[K] and [Pa]

Notes

Warning: The Mixture class is not designed for high-performance or the ability to use different thermody-
namic models. It is especially limited in its multiphase support and the ability to solve with specifications
other than temperature and pressure. It is impossible to change constant properties such as a compound’s
critical temperature in this interface.

It is recommended to switch over to the thermo.flash interface which solves those problems and is better
positioned to grow. That interface also requires users to be responsible for their chemical constants and pure
component correlations; while default values can easily be loaded for most compounds, the user is ultimately
responsible for them.

Examples

Creating Mixture objects:

>>> Mixture(['water', 'ethanol'], Vfls=[.6, .4], T=300, P=1E5)
<Mixture, components=['water', 'ethanol'], mole fractions=[0.8299, 0.1701], T=300.
→˓00 K, P=100000 Pa>

For mixtures with large numbers of components, it may be confusing to enter the composition separate from the
names of the chemicals. For that case, the syntax using dictionaries as follows is supported with any composition
specification:

>>> comp = OrderedDict([('methane', 0.96522),
... ('nitrogen', 0.00259),
... ('carbon dioxide', 0.00596),
... ('ethane', 0.01819),
... ('propane', 0.0046),
... ('isobutane', 0.00098),
... ('butane', 0.00101),
... ('2-methylbutane', 0.00047),
... ('pentane', 0.00032),
... ('hexane', 0.00066)])
>>> m = Mixture(zs=comp)

Attributes
MW [float] Mole-weighted average molecular weight all chemicals in the mixture, [g/mol]

IDs [list of str] Names of all the species in the mixture as given in the input, [-]

names [list of str] Names of all the species in the mixture, [-]

CASs [list of str] CAS numbers of all species in the mixture, [-]

MWs [list of float] Molecular weights of all chemicals in the mixture, [g/mol]

Tms [list of float] Melting temperatures of all chemicals in the mixture, [K]
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Tbs [list of float] Boiling temperatures of all chemicals in the mixture, [K]

Tcs [list of float] Critical temperatures of all chemicals in the mixture, [K]

Pcs [list of float] Critical pressures of all chemicals in the mixture, [Pa]

Vcs [list of float] Critical volumes of all chemicals in the mixture, [m^3/mol]

Zcs [list of float] Critical compressibilities of all chemicals in the mixture, [-]

rhocs [list of float] Critical densities of all chemicals in the mixture, [kg/m^3]

rhocms [list of float] Critical molar densities of all chemicals in the mixture, [mol/m^3]

omegas [list of float] Acentric factors of all chemicals in the mixture, [-]

StielPolars [list of float] Stiel Polar factors of all chemicals in the mixture, see chemicals.
acentric.Stiel_polar_factor for the definition, [-]

Tts [list of float] Triple temperatures of all chemicals in the mixture, [K]

Pts [list of float] Triple pressures of all chemicals in the mixture, [Pa]

Hfuss [list of float] Enthalpy of fusions of all chemicals in the mixture, [J/kg]

Hfusms [list of float] Molar enthalpy of fusions of all chemicals in the mixture, [J/mol]

Hsubs [list of float] Enthalpy of sublimations of all chemicals in the mixture, [J/kg]

Hsubms [list of float] Molar enthalpy of sublimations of all chemicals in the mixture, [J/mol]

Hfms [list of float] Molar enthalpy of formations of all chemicals in the mixture, [J/mol]

Hfs [list of float] Enthalpy of formations of all chemicals in the mixture, [J/kg]

Gfms [list of float] Molar Gibbs free energies of formation of all chemicals in the mixture,
[J/mol]

Gfs [list of float] Gibbs free energies of formation of all chemicals in the mixture, [J/kg]

Sfms [list of float] Molar entropy of formation of all chemicals in the mixture, [J/mol/K]

Sfs [list of float] Entropy of formation of all chemicals in the mixture, [J/kg/K]

S0ms [list of float] Standard absolute entropies of all chemicals in the mixture, [J/mol/K]

S0s [list of float] Standard absolute entropies of all chemicals in the mixture, [J/kg/K]

Hcms [list of float] Molar higher heats of combustions of all chemicals in the mixture, [J/mol]

Hcs [list of float] Higher heats of combustions of all chemicals in the mixture, [J/kg]

Hcms_lower [list of float] Molar lower heats of combustions of all chemicals in the mixture,
[J/mol]

Hcs_lower [list of float] Higher lower of combustions of all chemicals in the mixture, [J/kg]

Tflashs [list of float] Flash points of all chemicals in the mixture, [K]

Tautoignitions [list of float] Autoignition points of all chemicals in the mixture, [K]

LFLs [list of float] Lower flammability limits of the gases in an atmosphere at STP, mole frac-
tions, [-]

UFLs [list of float] Upper flammability limit of the gases in an atmosphere at STP, mole frac-
tions, [-]

TWAs [list of list of tuple(quantity, unit)] Time-Weighted Average limits on worker exposure to
dangerous chemicals.
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STELs [list of tuple(quantity, unit)] Short-term Exposure limits on worker exposure to danger-
ous chemicals.

Ceilings [list of tuple(quantity, unit)] Ceiling limits on worker exposure to dangerous chemicals.

Skins [list of bool] Whether or not each of the chemicals can be absorbed through the skin.

Carcinogens [list of str or dict] Carcinogen status information for each chemical in the mixture.

Chemicals [list of Chemical instances] Chemical instances used in calculating mixture proper-
ties, [-]

dipoles [list of float] Dipole moments of all chemicals in the mixture in debye, [3.33564095198e-
30 ampere*second^2]

Stockmayers [list of float] Lennard-Jones depth of potential-energy minimum over k for all
chemicals in the mixture, [K]

molecular_diameters [list of float] Lennard-Jones molecular diameters of all chemicals in the
mixture, [angstrom]

GWPs [list of float] Global warming potentials (default 100-year outlook) (impact/mass chem-
ical)/(impact/mass CO2) of all chemicals in the mixture, [-]

ODPs [list of float] Ozone Depletion potentials (impact/mass chemical)/(impact/mass CFC-11),
of all chemicals in the mixture, [-]

logPs [list of float] Octanol-water partition coefficients of all chemicals in the mixture, [-]

Psat_298s [list of float] Vapor pressure of the chemicals in the mixture at 298.15 K, [Pa]

phase_STPs [list of str] Phase of the chemicals in the mixture at 298.15 K and 101325 Pa; one
of ‘s’, ‘l’, ‘g’, or ‘l/g’.

Vml_Tbs [list of float] Molar volumes of the chemicals in the mixture as liquids at their normal
boiling points, [m^3/mol]

Vml_Tms [list of float] Molar volumes of the chemicals in the mixture as liquids at their melting
points, [m^3/mol]

Vml_STPs [list of float] Molar volume of the chemicals in the mixture as liquids at 298.15 K
and 101325 Pa, [m^3/mol]

rhoml_STPs [list of float] Molar densities of the chemicals in the mixture as liquids at 298.15
K and 101325 Pa, [mol/m^3]

Vmg_STPs [list of float] Molar volume of the chemicals in the mixture as gases at 298.15 K
and 101325 Pa, [m^3/mol]

Vms_Tms [list of float] Molar volumes of solid phase at the melting point [m^3/mol]

rhos_Tms [list of float] Mass densities of solid phase at the melting point [kg/m^3]

Hvap_Tbms [list of float] Molar enthalpies of vaporization of the chemicals in the mixture at
their normal boiling points, [J/mol]

Hvap_Tbs [list of float] Mass enthalpies of vaporization of the chemicals in the mixture at their
normal boiling points, [J/kg]

alpha Thermal diffusivity of the mixture at its current temperature, pressure, and phase in units
of [m^2/s].

alphag Thermal diffusivity of the gas phase of the mixture if one exists at its current temperature
and pressure, in units of [m^2/s].
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alphags Pure component thermal diffusivities of the chemicals in the mixture in the gas phase
at the current temperature and pressure, in units of [m^2/s].

alphal Thermal diffusivity of the liquid phase of the mixture if one exists at its current temper-
ature and pressure, in units of [m^2/s].

alphals Pure component thermal diffusivities of the chemicals in the mixture in the liquid
phase at the current temperature and pressure, in units of [m^2/s].

A Helmholtz energy of the mixture at its current state, in units of [J/kg].

Am Helmholtz energy of the mixture at its current state, in units of [J/mol].

atom_fractions Dictionary of atomic fractions for each atom in the mixture.

atom_fractionss List of dictionaries of atomic fractions for all chemicals in the mixture.

atomss List of dictionaries of atom counts for all chemicals in the mixture.

Bvirial Second virial coefficient of the gas phase of the mixture at its current temperature,
pressure, and composition in units of [mol/m^3].

charges Charges for all chemicals in the mixture, [faraday].

Cp Mass heat capacity of the mixture at its current phase and temperature, in units of [J/kg/K].

Cpg Gas-phase heat capacity of the mixture at its current temperature , and composition in units
of [J/kg/K].

Cpgm Gas-phase heat capacity of the mixture at its current temperature and composition, in units
of [J/mol/K].

Cpgms Gas-phase ideal gas heat capacity of the chemicals at its current temperature, in units of
[J/mol/K].

Cpgs Gas-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/kg/K].

Cpl Liquid-phase heat capacity of the mixture at its current temperature and composition, in
units of [J/kg/K].

Cplm Liquid-phase heat capacity of the mixture at its current temperature and composition, in
units of [J/mol/K].

Cplms Liquid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/mol/K].

Cpls Liquid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/kg/K].

Cpm Molar heat capacity of the mixture at its current phase and temperature, in units of
[J/mol/K].

Cps Solid-phase heat capacity of the mixture at its current temperature and composition, in units
of [J/kg/K].

Cpsm Solid-phase heat capacity of the mixture at its current temperature and composition, in
units of [J/mol/K].

Cpsms Solid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/mol/K].

Cpss Solid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/kg/K].
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Cvg Gas-phase ideal-gas contant-volume heat capacity of the mixture at its current temperature,
in units of [J/kg/K].

Cvgm Gas-phase ideal-gas contant-volume heat capacity of the mixture at its current temperature
and composition, in units of [J/mol/K].

Cvgms Gas-phase pure component ideal-gas contant-volume heat capacities of the chemicals in
the mixture at its current temperature, in units of [J/mol/K].

Cvgs Gas-phase pure component ideal-gas contant-volume heat capacities of the chemicals in
the mixture at its current temperature, in units of [J/kg/K].

economic_statuses List of dictionaries of the economic status for all chemicals in the mix-
ture.

eos Equation of state object held by the mixture.

formulas Chemical formulas for all chemicals in the mixture.

Hvapms Pure component enthalpies of vaporization of the chemicals in the mixture at its current
temperature, in units of [J/mol].

Hvaps Enthalpy of vaporization of the chemicals in the mixture at its current temperature, in
units of [J/kg].

InChI_Keys InChI keys for all chemicals in the mixture.

InChIs InChI strings for all chemicals in the mixture.

isentropic_exponent Gas-phase ideal-gas isentropic exponent of the mixture at its current
temperature, [dimensionless].

isentropic_exponents Gas-phase pure component ideal-gas isentropic exponent of the
chemicals in the mixture at its current temperature, [dimensionless].

isobaric_expansion Isobaric (constant-pressure) expansion of the mixture at its current
phase, temperature, and pressure in units of [1/K].

isobaric_expansion_g Isobaric (constant-pressure) expansion of the gas phase of the mix-
ture at its current temperature and pressure, in units of [1/K].

isobaric_expansion_gs Pure component isobaric (constant-pressure) expansions of the
chemicals in the mixture in the gas phase at its current temperature and pressure, in units
of [1/K].

isobaric_expansion_l Isobaric (constant-pressure) expansion of the liquid phase of the mix-
ture at its current temperature and pressure, in units of [1/K].

isobaric_expansion_ls Pure component isobaric (constant-pressure) expansions of the
chemicals in the mixture in the liquid phase at its current temperature and pressure, in units
of [1/K].

IUPAC_names IUPAC names for all chemicals in the mixture.

JT Joule Thomson coefficient of the mixture at its current phase, temperature, and pressure in
units of [K/Pa].

JTg Joule Thomson coefficient of the gas phase of the mixture if one exists at its current tem-
perature and pressure, in units of [K/Pa].

JTgs Pure component Joule Thomson coefficients of the chemicals in the mixture in the gas
phase at its current temperature and pressure, in units of [K/Pa].

JTl Joule Thomson coefficient of the liquid phase of the mixture if one exists at its current
temperature and pressure, in units of [K/Pa].
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JTls Pure component Joule Thomson coefficients of the chemicals in the mixture in the liquid
phase at its current temperature and pressure, in units of [K/Pa].

k Thermal conductivity of the mixture at its current phase, temperature, and pressure in units of
[W/m/K].

kg Thermal conductivity of the mixture in the gas phase at its current temperature, pressure, and
composition in units of [Pa*s].

kgs Pure component thermal conductivies of the chemicals in the mixture in the gas phase at its
current temperature and pressure, in units of [W/m/K].

kl Thermal conductivity of the mixture in the liquid phase at its current temperature, pressure,
and composition in units of [Pa*s].

kls Pure component thermal conductivities of the chemicals in the mixture in the liquid phase
at its current temperature and pressure, in units of [W/m/K].

legal_statuses List of dictionaries of the legal status for all chemicals in the mixture.

mass_fractions Dictionary of mass fractions for each atom in the mixture.

mass_fractionss List of dictionaries of mass fractions for all chemicals in the mixture.

mu Viscosity of the mixture at its current phase, temperature, and pressure in units of [Pa*s].

mug Viscosity of the mixture in the gas phase at its current temperature, pressure, and composi-
tion in units of [Pa*s].

mugs Pure component viscosities of the chemicals in the mixture in the gas phase at its current
temperature and pressure, in units of [Pa*s].

mul Viscosity of the mixture in the liquid phase at its current temperature, pressure, and com-
position in units of [Pa*s].

muls Pure component viscosities of the chemicals in the mixture in the liquid phase at its current
temperature and pressure, in units of [Pa*s].

nu Kinematic viscosity of the the mixture at its current temperature, pressure, and phase in units
of [m^2/s].

nug Kinematic viscosity of the gas phase of the mixture if one exists at its current temperature
and pressure, in units of [m^2/s].

nugs Pure component kinematic viscosities of the gas phase of the chemicals in the mixture at
its current temperature and pressure, in units of [m^2/s].

nul Kinematic viscosity of the liquid phase of the mixture if one exists at its current temperature
and pressure, in units of [m^2/s].

nuls Pure component kinematic viscosities of the liquid phase of the chemicals in the mixture
at its current temperature and pressure, in units of [m^2/s].

permittivites Pure component relative permittivities of the chemicals in the mixture at its
current temperature, [dimensionless].

Pr Prandtl number of the mixture at its current temperature, pressure, and phase; [dimension-
less].

Prg Prandtl number of the gas phase of the mixture if one exists at its current temperature and
pressure, [dimensionless].

Prgs Pure component Prandtl numbers of the gas phase of the chemicals in the mixture at its
current temperature and pressure, [dimensionless].
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Prl Prandtl number of the liquid phase of the mixture if one exists at its current temperature
and pressure, [dimensionless].

Prls Pure component Prandtl numbers of the liquid phase of the chemicals in the mixture at its
current temperature and pressure, [dimensionless].

Psats Pure component vapor pressures of the chemicals in the mixture at its current tempera-
ture, in units of [Pa].

PSRK_groups List of dictionaries of PSRK subgroup: count groups for each chemical in the
mixture.

PubChems PubChem Component ID numbers for all chemicals in the mixture.

rho Mass density of the mixture at its current phase and temperature and pressure, in units of
[kg/m^3].

rhog Gas-phase mass density of the mixture at its current temperature, pressure, and composi-
tion in units of [kg/m^3].

rhogm Molar density of the mixture in the gas phase at the current temperature, pressure, and
composition in units of [mol/m^3].

rhogms Pure component molar densities of the chemicals in the gas phase at the current tem-
perature and pressure, in units of [mol/m^3].

rhogm_STP Molar density of the mixture in the gas phase at 298.15 K and 101.325 kPa, and the
current composition, in units of [mol/m^3].

rhogs Pure-component gas-phase mass densities of the chemicals in the mixture at its current
temperature and pressure, in units of [kg/m^3].

rhog_STP Gas-phase mass density of the mixture at 298.15 K and 101.325 kPa, and the current
composition in units of [kg/m^3].

rhol Liquid-phase mass density of the mixture at its current temperature, pressure, and com-
position in units of [kg/m^3].

rholm Molar density of the mixture in the liquid phase at the current temperature, pressure, and
composition in units of [mol/m^3].

rholms Pure component molar densities of the chemicals in the mixture in the liquid phase at
the current temperature and pressure, in units of [mol/m^3].

rholm_STP Molar density of the mixture in the liquid phase at 298.15 K and 101.325 kPa, and
the current composition, in units of [mol/m^3].

rhols Pure-component liquid-phase mass density of the chemicals in the mixture at its current
temperature and pressure, in units of [kg/m^3].

rhol_STP Liquid-phase mass density of the mixture at 298.15 K and 101.325 kPa, and the
current composition in units of [kg/m^3].

rhom Molar density of the mixture at its current phase and temperature and pressure, in units of
[mol/m^3].

rhosms Pure component molar densities of the chemicals in the solid phase at the current tem-
perature and pressure, in units of [mol/m^3].

rhoss Pure component solid-phase mass density of the chemicals in the mixture at its current
temperature, in units of [kg/m^3].

ringss List of ring counts for all chemicals in the mixture.
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sigma Surface tension of the mixture at its current temperature and composition, in units of
[N/m].

sigmas Pure component surface tensions of the chemicals in the mixture at its current temper-
ature, in units of [N/m].

smiless SMILES strings for all chemicals in the mixture.

solubility_parameters Pure component solubility parameters of the chemicals in the mix-
ture at its current temperature and pressure, in units of [Pa^0.5].

synonymss Lists of synonyms for all chemicals in the mixture.

U Internal energy of the mixture at its current state, in units of [J/kg].

Um Internal energy of the mixture at its current state, in units of [J/mol].

UNIFAC_Dortmund_groups List of dictionaries of Dortmund UNIFAC subgroup: count groups
for each chemcial in the mixture.

UNIFAC_groups List of dictionaries of UNIFAC subgroup: count groups for each chemical in
the mixture.

Vm Molar volume of the mixture at its current phase and temperature and pressure, in units of
[m^3/mol].

Vmg Gas-phase molar volume of the mixture at its current temperature, pressure, and composi-
tion in units of [m^3/mol].

Vmgs Pure component gas-phase molar volumes of the chemicals in the mixture at its current
temperature and pressure, in units of [m^3/mol].

Vmg_STP Gas-phase molar volume of the mixture at 298.15 K and 101.325 kPa, and the current
composition in units of [m^3/mol].

Vml Liquid-phase molar volume of the mixture at its current temperature, pressure, and compo-
sition in units of [m^3/mol].

Vmls Pure component liquid-phase molar volumes of the chemicals in the mixture at its current
temperature and pressure, in units of [m^3/mol].

Vml_STP Liquid-phase molar volume of the mixture at 298.15 K and 101.325 kPa, and the cur-
rent composition in units of [m^3/mol].

Vmss Pure component solid-phase molar volumes of the chemicals in the mixture at its current
temperature, in units of [m^3/mol].

Z Compressibility factor of the mixture at its current phase and temperature and pressure, [di-
mensionless].

Zg Compressibility factor of the mixture in the gas phase at the current temperature, pressure,
and composition, [dimensionless].

Zgs Pure component compressibility factors of the chemicals in the mixture in the gas phase at
the current temperature and pressure, [dimensionless].

Zg_STP Gas-phase compressibility factor of the mixture at 298.15 K and 101.325 kPa, and the
current composition, [dimensionless].

Zl Compressibility factor of the mixture in the liquid phase at the current temperature, pressure,
and composition, [dimensionless].

Zls Pure component compressibility factors of the chemicals in the liquid phase at the current
temperature and pressure, [dimensionless].
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Zl_STP Liquid-phase compressibility factor of the mixture at 298.15 K and 101.325 kPa, and
the current composition, [dimensionless].

Zss Pure component compressibility factors of the chemicals in the mixture in the solid phase
at the current temperature and pressure, [dimensionless].

Methods

Hc_volumetric_g([T, P]) Standard higher molar heat of combustion of the mix-
ture, in units of [J/m^3] at the specified T and P in the
gas phase.

Hc_volumetric_g_lower([T, P]) Standard lower molar heat of combustion of the mix-
ture, in units of [J/m^3] at the specified T and P in
the gas phase.

Vfgs([T, P]) Volume fractions of all species in a hypothetical pure-
gas phase at the current or specified temperature and
pressure.

Vfls([T, P]) Volume fractions of all species in a hypothetical pure-
liquid phase at the current or specified temperature
and pressure.

draw_2d([Hs]) Interface for drawing a 2D image of all the molecules
in the mixture.

set_chemical_TP([T, P]) Basic method to change all chemical instances to be
at the T and P specified.

set_chemical_constants() Basic method which retrieves and sets constants of
chemicals to be accessible as lists from a Mixture ob-
ject.

Bond
Capillary
Grashof
Jakob
Peclet_heat
Reynolds
Weber
compound_index
eos_pures
flash_caloric
properties
set_Chemical_property_objects
set_TP_sources
set_constant_sources
set_constants
set_eos
set_property_package

property A
Helmholtz energy of the mixture at its current state, in units of [J/kg].

This property requires that the property package of the mixture found a solution to the given state variables.
It also depends on the molar volume of the mixture at its current conditions.
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property API
API gravity of the hypothetical liquid phase of the mixture, [degrees]. The reference condition is water at
15.6 °C (60 °F) and 1 atm (rho=999.016 kg/m^3, standardized).

Examples

>>> Mixture(['hexane', 'decane'], ws=[0.5, 0.5]).API
71.34707841728181

property Am
Helmholtz energy of the mixture at its current state, in units of [J/mol].

This property requires that the property package of the mixture found a solution to the given state variables.
It also depends on the molar volume of the mixture at its current conditions.

Bond(L=None)

property Bvirial
Second virial coefficient of the gas phase of the mixture at its current temperature, pressure, and composition
in units of [mol/m^3].

This property uses the object-oriented interface thermo.volume.VolumeGasMixture, converting its re-
sult with thermo.utils.B_from_Z.

Examples

>>> Mixture(['hexane'], ws=[1], T=300, P=1E5).Bvirial
-0.001486976173801296

Capillary(V=None)

property Cp
Mass heat capacity of the mixture at its current phase and temperature, in units of [J/kg/K].

Examples

>>> w = Mixture(['water'], ws=[1])
>>> w.Cp, w.phase
(4180.597021827336, 'l')
>>> Pd = Mixture(['palladium'], ws=[1])
>>> Pd.Cp, Pd.phase
(234.26767209171211, 's')

property Cpg
Gas-phase heat capacity of the mixture at its current temperature , and composition in units of [J/kg/K].
For calculation of this property at other temperatures or compositions, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.heat_capacity.
HeatCapacityGasMixture; each Mixture instance creates one to actually perform the calculations. Note
that that interface provides output in molar units.
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Examples

>>> Mixture(['oxygen', 'nitrogen'], ws=[.4, .6], T=350, P=1E6).Cpg
995.8911053614883

property Cpgm
Gas-phase heat capacity of the mixture at its current temperature and composition, in units of [J/mol/K].
For calculation of this property at other temperatures or compositions, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.heat_capacity.
HeatCapacityGasMixture; each Mixture instance creates one to actually perform the calculations.

Examples

>>> Mixture(['oxygen', 'nitrogen'], ws=[.4, .6], T=350, P=1E6).Cpgm
29.361044582498046

property Cpgms
Gas-phase ideal gas heat capacity of the chemicals at its current temperature, in units of [J/mol/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cpgms
[89.55804092586159, 111.70390334788907]

property Cpgs
Gas-phase pure component heat capacity of the chemicals in the mixture at its current temperature, in units
of [J/kg/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cpgs
[1146.5360555565146, 1212.3488046342566]

property Cpl
Liquid-phase heat capacity of the mixture at its current temperature and composition, in units of [J/kg/K].
For calculation of this property at other temperatures or compositions, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.heat_capacity.
HeatCapacityLiquidMixture; each Mixture instance creates one to actually perform the calculations.
Note that that interface provides output in molar units.

Examples

>>> Mixture(['water', 'sodium chloride'], ws=[.9, .1], T=301.5).Cpl
3735.4604049449786

property Cplm
Liquid-phase heat capacity of the mixture at its current temperature and composition, in units of [J/mol/K].
For calculation of this property at other temperatures or compositions, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.heat_capacity.
HeatCapacityLiquidMixture; each Mixture instance creates one to actually perform the calculations.
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Examples

>>> Mixture(['toluene', 'decane'], ws=[.9, .1], T=300).Cplm
168.29127923518843

property Cplms
Liquid-phase pure component heat capacity of the chemicals in the mixture at its current temperature, in
units of [J/mol/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cplms
[140.9113971170526, 163.62584810669068]

property Cpls
Liquid-phase pure component heat capacity of the chemicals in the mixture at its current temperature, in
units of [J/kg/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cpls
[1803.9697581961016, 1775.869915141704]

property Cpm
Molar heat capacity of the mixture at its current phase and temperature, in units of [J/mol/K]. Available
only if single phase.

Examples

>>> Mixture(['ethylbenzene'], ws=[1], T=550, P=3E6).Cpm
294.18449553310046

property Cps
Solid-phase heat capacity of the mixture at its current temperature and composition, in units of [J/kg/K].
For calculation of this property at other temperatures or compositions, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.heat_capacity.
HeatCapacitySolidMixture; each Mixture instance creates one to actually perform the calculations.
Note that that interface provides output in molar units.

Examples

>>> Mixture(['silver', 'platinum'], ws=[0.95, 0.05]).Cps
229.55166388430328

property Cpsm
Solid-phase heat capacity of the mixture at its current temperature and composition, in units of [J/mol/K].
For calculation of this property at other temperatures or compositions, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.heat_capacity.
HeatCapacitySolidMixture; each Mixture instance creates one to actually perform the calculations.
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Examples

>>> Mixture(['silver', 'platinum'], ws=[0.95, 0.05]).Cpsm
25.32745796347474

property Cpsms
Solid-phase pure component heat capacity of the chemicals in the mixture at its current temperature, in
units of [J/mol/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cpsms
[109.77384365511931, 135.22614707678474]

property Cpss
Solid-phase pure component heat capacity of the chemicals in the mixture at its current temperature, in
units of [J/kg/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cpss
[1405.341925822248, 1467.6412627521154]

property Cvg
Gas-phase ideal-gas contant-volume heat capacity of the mixture at its current temperature, in units of
[J/kg/K]. Subtracts R from the ideal-gas heat capacity; does not include pressure-compensation from an
equation of state.

Examples

>>> Mixture(['water'], ws=[1], T=520).Cvg
1506.1471795798861

property Cvgm
Gas-phase ideal-gas contant-volume heat capacity of the mixture at its current temperature and composition,
in units of [J/mol/K]. Subtracts R from the ideal-gas heat capacity; does not include pressure-compensation
from an equation of state.

Examples

>>> Mixture(['water'], ws=[1], T=520).Cvgm
27.13366316134193

property Cvgms
Gas-phase pure component ideal-gas contant-volume heat capacities of the chemicals in the mixture at its
current temperature, in units of [J/mol/K]. Subtracts R from the ideal-gas heat capacities; does not include
pressure-compensation from an equation of state.
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Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cvgms
[81.2435811258616, 103.38944354788907]

property Cvgs
Gas-phase pure component ideal-gas contant-volume heat capacities of the chemicals in the mixture at its
current temperature, in units of [J/kg/K]. Subtracts R from the ideal-gas heat capacity; does not include
pressure-compensation from an equation of state.

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Cvgs
[1040.093040003431, 1122.1100117398266]

Grashof(Tw=None, L=None)

H = None

property Hc
Standard higher heat of combustion of the mixture, in units of [J/kg].

This property depends on the bulk composition only.

property Hc_lower
Standard lower heat of combustion of the mixture, in units of [J/kg].

This property depends on the bulk composition only.

Hc_volumetric_g(T=288.7055555555555, P=101325.0)
Standard higher molar heat of combustion of the mixture, in units of [J/m^3] at the specified T and P in the
gas phase.

This property depends on the bulk composition only.

Parameters
T [float, optional] Reference temperature, [K]

P [float, optional] Reference pressure, [Pa]

Returns
Hc_volumetric_g [float, optional] Higher heat of combustion on a volumetric basis, [J/m^3]

Hc_volumetric_g_lower(T=288.7055555555555, P=101325.0)
Standard lower molar heat of combustion of the mixture, in units of [J/m^3] at the specified T and P in the
gas phase.

This property depends on the bulk composition only.

Parameters
T [float, optional] Reference temperature, [K]

P [float, optional] Reference pressure, [Pa]

Returns
Hc_volumetric_g [float, optional] Lower heat of combustion on a volumetric basis, [J/m^3]
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property Hcm
Standard higher molar heat of combustion of the mixture, in units of [J/mol].

This property depends on the bulk composition only.

property Hcm_lower
Standard lower molar heat of combustion of the mixture, in units of [J/mol].

This property depends on the bulk composition only.

Hm = None

property Hvapms
Pure component enthalpies of vaporization of the chemicals in the mixture at its current temperature, in
units of [J/mol].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Hvapms
[32639.806783391632, 36851.7902195611]

property Hvaps
Enthalpy of vaporization of the chemicals in the mixture at its current temperature, in units of [J/kg].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Hvaps
[417859.9144942896, 399961.16950519773]

property IUPAC_names
IUPAC names for all chemicals in the mixture.

Examples

>>> Mixture(['1-hexene', '1-nonene'], zs=[.7, .3]).IUPAC_names
['hex-1-ene', 'non-1-ene']

property InChI_Keys
InChI keys for all chemicals in the mixture.

Examples

>>> Mixture(['1-nonene'], zs=[1]).InChI_Keys
['JRZJOMJEPLMPRA-UHFFFAOYSA-N']

property InChIs
InChI strings for all chemicals in the mixture.
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Examples

>>> Mixture(['methane', 'ethane', 'propane', 'butane'],
... zs=[0.25, 0.25, 0.25, 0.25]).InChIs
['CH4/h1H4', 'C2H6/c1-2/h1-2H3', 'C3H8/c1-3-2/h3H2,1-2H3', 'C4H10/c1-3-4-2/h3-
→˓4H2,1-2H3']

property JT
Joule Thomson coefficient of the mixture at its current phase, temperature, and pressure in units of [K/Pa].
Available only if single phase.

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)

Examples

>>> Mixture(['water'], ws=[1]).JT
-2.2150394958666412e-07

property JTg
Joule Thomson coefficient of the gas phase of the mixture if one exists at its current temperature and pres-
sure, in units of [K/Pa].

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)

Examples

>>> Mixture(['dodecane'], ws=[1], T=400, P=1000).JTg
5.4089897835384913e-05

property JTgs
Pure component Joule Thomson coefficients of the chemicals in the mixture in the gas phase at its current
temperature and pressure, in units of [K/Pa].

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).JTgs
[6.0940046688790938e-05, 4.1290005523287549e-05]

property JTl
Joule Thomson coefficient of the liquid phase of the mixture if one exists at its current temperature and
pressure, in units of [K/Pa].

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)
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Examples

>>> Mixture(['dodecane'], ws=[1], T=400).JTl
-3.193910574559279e-07

property JTls
Pure component Joule Thomson coefficients of the chemicals in the mixture in the liquid phase at its current
temperature and pressure, in units of [K/Pa].

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).JTls
[-3.8633730709853161e-07, -3.464395792560331e-07]

Jakob(Tw=None)

property PSRK_groups
List of dictionaries of PSRK subgroup: count groups for each chemical in the mixture. Uses the PSRK
subgroups, as determined by DDBST’s online service.

Examples

>>> Mixture(['1-pentanol', 'decane'], ws=[0.5, 0.5]).PSRK_groups
[{1: 1, 2: 4, 14: 1}, {1: 2, 2: 8}]

P_default = 101325.0

property Parachor
Parachor of the mixture at its current temperature and pressure, in units of [N^0.25*m^2.75/mol].

𝑃 =
𝜎0.25𝑀𝑊

𝜌𝐿 − 𝜌𝑉

Calculated based on surface tension, density of the liquid and gas phase, and molecular weight. For uses
of this property, see thermo.utils.Parachor.

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).Parachor
4.233407085050756e-05

property Parachors
Pure component Parachor parameters of the chemicals in the mixture at its current temperature and pressure,
in units of [N^0.25*m^2.75/mol].

𝑃 =
𝜎0.25𝑀𝑊

𝜌𝐿 − 𝜌𝑉

Calculated based on surface tension, density of the liquid and gas phase, and molecular weight. For uses
of this property, see thermo.utils.Parachor.
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Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).Parachors
[3.6795616000855504e-05, 4.82947303150274e-05]

property Pbubble
Bubble point pressure of the mixture at its current temperature and composition, in units of [Pa].

This property requires that the property package of the mixture found a solution to the given state variables.

property Pdew
Dew point pressure of the mixture at its current temperature and composition, in units of [Pa].

This property requires that the property package of the mixture found a solution to the given state variables.

Peclet_heat(V=None, D=None)

property Pr
Prandtl number of the mixture at its current temperature, pressure, and phase; [dimensionless]. Available
only if single phase.

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

Examples

>>> Mixture(['acetone'], ws=[1]).Pr
4.183039103542711

property Prg
Prandtl number of the gas phase of the mixture if one exists at its current temperature and pressure, [di-
mensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

Examples

>>> Mixture(['NH3'], ws=[1]).Prg
0.8472637319330079

property Prgs
Pure component Prandtl numbers of the gas phase of the chemicals in the mixture at its current temperature
and pressure, [dimensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

7.20. Legacy Mixtures (thermo.mixture) 579



thermo Documentation, Release 0.2.20

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).Prgs
[0.7810364900059606, 0.784358381123896]

property Prl
Prandtl number of the liquid phase of the mixture if one exists at its current temperature and pressure,
[dimensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

Examples

>>> Mixture(['nitrogen'], ws=[1], T=70).Prl
2.782821450148889

property Prls
Pure component Prandtl numbers of the liquid phase of the chemicals in the mixture at its current temper-
ature and pressure, [dimensionless].

𝑃𝑟 =
𝐶𝑝𝜇

𝑘

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).Prls
[6.13542244155373, 5.034355147908088]

property Psats
Pure component vapor pressures of the chemicals in the mixture at its current temperature, in units of [Pa].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Psats
[32029.25774454549, 10724.419010511821]

property PubChems
PubChem Component ID numbers for all chemicals in the mixture.

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5]).PubChems
[241, 1140]

property R_specific
Specific gas constant of the mixture, in units of [J/kg/K].
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Examples

>>> Mixture(['N2', 'O2'], zs=[0.79, .21]).R_specific
288.1928437986195

Reynolds(V=None, D=None)

property SG
Specific gravity of the mixture, [dimensionless].

For gas-phase conditions, this is calculated at 15.6 °C (60 °F) and 1 atm for the mixture and the reference
fluid, air. For liquid and solid phase conditions, this is calculated based on a reference fluid of water at 4°C
at 1 atm, but the with the liquid or solid mixture’s density at the currently specified conditions.

Examples

>>> Mixture('MTBE').SG
0.7428160596603596

property SGg
Specific gravity of a hypothetical gas phase of the mixture, . [dimensionless]. The reference condition is air
at 15.6 °C (60 °F) and 1 atm (rho=1.223 kg/m^3). The definition for gases uses the compressibility factor
of the reference gas and the mixture both at the reference conditions, not the conditions of the mixture.

Examples

>>> Mixture('argon').SGg
1.3800407778218216

property SGl
Specific gravity of a hypothetical liquid phase of the mixture at the specified temperature and pressure,
[dimensionless]. The reference condition is water at 4 °C and 1 atm (rho=999.017 kg/m^3). For liquids,
SG is defined that the reference chemical’s T and P are fixed, but the chemical itself varies with the specified
T and P.

Examples

>>> Mixture('water', ws=[1], T=365).SGl
0.9650065522428539

property SGs
Specific gravity of a hypothetical solid phase of the mixture at the specified temperature and pressure,
[dimensionless]. The reference condition is water at 4 °C and 1 atm (rho=999.017 kg/m^3). The SG
varries with temperature and pressure but only very slightly.

T_default = 298.15

property Tbubble
Bubble point temperature of the mixture at its current pressure and composition, in units of [K].

This property requires that the property package of the mixture found a solution to the given state variables.
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property Tdew
Dew point temperature of the mixture at its current pressure and composition, in units of [K].

This property requires that the property package of the mixture found a solution to the given state variables.

property U
Internal energy of the mixture at its current state, in units of [J/kg].

This property requires that the property package of the mixture found a solution to the given state variables.
It also depends on the molar volume of the mixture at its current conditions.

property UNIFAC_Dortmund_groups
List of dictionaries of Dortmund UNIFAC subgroup: count groups for each chemcial in the mixture. Uses
the Dortmund UNIFAC subgroups, as determined by DDBST’s online service.

Examples

>>> Mixture(['1-pentanol', 'decane'], ws=[0.5, 0.5]).UNIFAC_Dortmund_groups
[{1: 1, 2: 4, 14: 1}, {1: 2, 2: 8}]

property UNIFAC_Qs
UNIFAC Q (normalized Van der Waals area) values, dimensionless. Used in the UNIFAC model.

Examples

>>> Mixture(['o-xylene', 'decane'], zs=[.5, .5]).UNIFAC_Qs
[3.536, 6.016]

property UNIFAC_Rs
UNIFAC R (normalized Van der Waals volume) values, dimensionless. Used in the UNIFAC model.

Examples

>>> Mixture(['o-xylene', 'm-xylene'], zs=[.5, .5]).UNIFAC_Rs
[4.6578, 4.6578]

property UNIFAC_groups
List of dictionaries of UNIFAC subgroup: count groups for each chemical in the mixture. Uses the original
UNIFAC subgroups, as determined by DDBST’s online service.

Examples

>>> Mixture(['1-pentanol', 'decane'], ws=[0.5, 0.5]).UNIFAC_groups
[{1: 1, 2: 4, 14: 1}, {1: 2, 2: 8}]

property Um
Internal energy of the mixture at its current state, in units of [J/mol].

This property requires that the property package of the mixture found a solution to the given state variables.
It also depends on the molar volume of the mixture at its current conditions.

V_over_F = None
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property Van_der_Waals_areas
List of unnormalized Van der Waals areas of all the chemicals in the mixture, in units of [m^2/mol].

Examples

>>> Mixture(['1-pentanol', 'decane'], ws=[0.5, 0.5]).Van_der_Waals_areas
[1052000.0, 1504000.0]

property Van_der_Waals_volumes
List of unnormalized Van der Waals volumes of all the chemicals in the mixture, in units of [m^3/mol].

Examples

>>> Mixture(['1-pentanol', 'decane'], ws=[0.5, 0.5]).Van_der_Waals_volumes
[6.9762279e-05, 0.00010918455800000001]

Vfgs(T=None, P=None)
Volume fractions of all species in a hypothetical pure-gas phase at the current or specified temperature and
pressure. If temperature or pressure are specified, the non-specified property is assumed to be that of the
mixture. Note this is a method, not a property. Volume fractions are calculated based on pure species
volumes only.

Examples

>>> Mixture(['sulfur hexafluoride', 'methane'], zs=[.2, .9], T=315).Vfgs()
[0.18062059238682632, 0.8193794076131737]

>>> S = Mixture(['sulfur hexafluoride', 'methane'], zs=[.1, .9])
>>> S.Vfgs(P=1E2)
[0.0999987466608421, 0.9000012533391578]

Vfls(T=None, P=None)
Volume fractions of all species in a hypothetical pure-liquid phase at the current or specified temperature
and pressure. If temperature or pressure are specified, the non-specified property is assumed to be that of
the mixture. Note this is a method, not a property. Volume fractions are calculated based on pure species
volumes only.

Examples

>>> Mixture(['hexane', 'pentane'], zs=[.5, .5], T=315).Vfls()
[0.5299671144566751, 0.47003288554332484]

>>> S = Mixture(['hexane', 'decane'], zs=[0.25, 0.75])
>>> S.Vfls(298.16, 101326)
[0.18301434895886864, 0.8169856510411313]

property Vm
Molar volume of the mixture at its current phase and temperature and pressure, in units of [m^3/mol].
Available only if single phase.
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Examples

>>> Mixture(['ethylbenzene'], ws=[1], T=550, P=3E6).Vm
0.00017758024401627633

property Vmg
Gas-phase molar volume of the mixture at its current temperature, pressure, and composition in units of
[m^3/mol]. For calculation of this property at other temperatures or pressures or compositions, or specify-
ing manually the method used to calculate it, and more - see the object oriented interface thermo.volume.
VolumeGasMixture; each Mixture instance creates one to actually perform the calculations.

Examples

>>> Mixture(['hexane'], ws=[1], T=300, P=2E5).Vmg
0.010888694235142216

property Vmg_STP
Gas-phase molar volume of the mixture at 298.15 K and 101.325 kPa, and the current composition in units
of [m^3/mol].

Examples

>>> Mixture(['nitrogen'], ws=[1]).Vmg_STP
0.02445443688838904

property Vmgs
Pure component gas-phase molar volumes of the chemicals in the mixture at its current temperature and
pressure, in units of [m^3/mol].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Vmgs
[0.024929001982294974, 0.024150186467130488]

property Vml
Liquid-phase molar volume of the mixture at its current temperature, pressure, and composition in units of
[m^3/mol]. For calculation of this property at other temperatures or pressures or compositions, or specify-
ing manually the method used to calculate it, and more - see the object oriented interface thermo.volume.
VolumeLiquidMixture; each Mixture instance creates one to actually perform the calculations.

Examples

>>> Mixture(['cyclobutane'], ws=[1], T=225).Vml
7.42395423425395e-05

property Vml_STP
Liquid-phase molar volume of the mixture at 298.15 K and 101.325 kPa, and the current composition in
units of [m^3/mol].
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Examples

>>> Mixture(['cyclobutane'], ws=[1]).Vml_STP
8.143327329133706e-05

property Vmls
Pure component liquid-phase molar volumes of the chemicals in the mixture at its current temperature and
pressure, in units of [m^3/mol].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Vmls
[9.188896727673715e-05, 0.00010946199496993461]

Vms = None

property Vmss
Pure component solid-phase molar volumes of the chemicals in the mixture at its current temperature, in
units of [m^3/mol].

Examples

>>> Mixture(['iron'], ws=[1], T=320).Vmss
[7.09593392630242e-06]

Weber(V=None, D=None)

property Z
Compressibility factor of the mixture at its current phase and temperature and pressure, [dimensionless].
Available only if single phase.

Examples

>>> Mixture(['MTBE'], ws=[1], T=900, P=1E-2).Z
0.9999999999056374

property Zg
Compressibility factor of the mixture in the gas phase at the current temperature, pressure, and composition,
[dimensionless].

Utilizes the object oriented interface and thermo.volume.VolumeGasMixture to perform the actual cal-
culation of molar volume.
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Examples

>>> Mixture(['hexane'], ws=[1], T=300, P=1E5).Zg
0.9403859376888885

property Zg_STP
Gas-phase compressibility factor of the mixture at 298.15 K and 101.325 kPa, and the current composition,
[dimensionless].

Examples

>>> Mixture(['nitrogen'], ws=[1]).Zg_STP
0.9995520809691023

property Zgs
Pure component compressibility factors of the chemicals in the mixture in the gas phase at the current
temperature and pressure, [dimensionless].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Zgs
[0.9493743379816593, 0.9197146081359057]

property Zl
Compressibility factor of the mixture in the liquid phase at the current temperature, pressure, and compo-
sition, [dimensionless].

Utilizes the object oriented interface and thermo.volume.VolumeLiquidMixture to perform the actual
calculation of molar volume.

Examples

>>> Mixture(['water'], ws=[1]).Zl
0.0007385375470263454

property Zl_STP
Liquid-phase compressibility factor of the mixture at 298.15 K and 101.325 kPa, and the current composi-
tion, [dimensionless].

Examples

>>> Mixture(['cyclobutane'], ws=[1]).Zl_STP
0.0033285083663950068

property Zls
Pure component compressibility factors of the chemicals in the liquid phase at the current temperature and
pressure, [dimensionless].
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Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).Zls
[0.0034994191720201235, 0.004168655010037687]

property Zss
Pure component compressibility factors of the chemicals in the mixture in the solid phase at the current
temperature and pressure, [dimensionless].

Examples

>>> Mixture(['palladium'], ws=[1]).Zss
[0.00036248477437931853]

property alpha
Thermal diffusivity of the mixture at its current temperature, pressure, and phase in units of [m^2/s]. Avail-
able only if single phase.

𝛼 =
𝑘

𝜌𝐶𝑝

Examples

>>> Mixture(['furfural'], ws=[1]).alpha
8.696537158635412e-08

property alphag
Thermal diffusivity of the gas phase of the mixture if one exists at its current temperature and pressure, in
units of [m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝

Examples

>>> Mixture(['ammonia'], ws=[1]).alphag
1.6968517002221566e-05

property alphags
Pure component thermal diffusivities of the chemicals in the mixture in the gas phase at the current tem-
perature and pressure, in units of [m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝
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Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).alphags
[3.3028044028118324e-06, 2.4412958544059014e-06]

property alphal
Thermal diffusivity of the liquid phase of the mixture if one exists at its current temperature and pressure,
in units of [m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝

Examples

>>> Mixture(['nitrogen'], ws=[1], T=70).alphal
9.444949636299626e-08

property alphals
Pure component thermal diffusivities of the chemicals in the mixture in the liquid phase at the current
temperature and pressure, in units of [m^2/s].

𝛼 =
𝑘

𝜌𝐶𝑝

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).alphals
[8.732683564481583e-08, 7.57355434073289e-08]

property atom_fractions
Dictionary of atomic fractions for each atom in the mixture.

Examples

>>> Mixture(['CO2', 'O2'], zs=[0.5, 0.5]).atom_fractions
{'C': 0.2, 'O': 0.8}

property atom_fractionss
List of dictionaries of atomic fractions for all chemicals in the mixture.

Examples

>>> Mixture(['oxygen', 'nitrogen'], zs=[.5, .5]).atom_fractionss
[{'O': 1.0}, {'N': 1.0}]

property atoms
Mole-averaged dictionary of atom counts for all atoms of the chemicals in the mixture.
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Examples

>>> Mixture(['nitrogen', 'oxygen'], zs=[.01, .99]).atoms
{'O': 1.98, 'N': 0.02}

property atomss
List of dictionaries of atom counts for all chemicals in the mixture.

Examples

>>> Mixture(['nitrogen', 'oxygen'], zs=[.01, .99]).atomss
[{'N': 2}, {'O': 2}]

autoflash = True

property charge_balance
Charge imbalance of the mixture, in units of [faraday]. Mixtures meeting the electroneutrality condition
will have an imbalance of 0.

Examples

>>> Mixture(['Na+', 'Cl-', 'water'], zs=[.01, .01, .98]).charge_balance
0.0

property charges
Charges for all chemicals in the mixture, [faraday].

Examples

>>> Mixture(['water', 'sodium ion', 'chloride ion'], zs=[.9, .05, .05]).charges
[0, 1, -1]

compound_index(CAS)

conductivity = None

property constants
Returns a :obj:`thermo.chemical_package.ChemicalConstantsPackage instance with constants from the
mixture, [-].

draw_2d(Hs=False)
Interface for drawing a 2D image of all the molecules in the mixture. Requires an HTML5 browser, and
the libraries RDKit and IPython. An exception is raised if either of these libraries is absent.

Parameters
Hs [bool] Whether or not to show hydrogen
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Mixture([‘natural gas’]).draw_2d()

property economic_statuses
List of dictionaries of the economic status for all chemicals in the mixture.

Examples

>>> Mixture(['o-xylene', 'm-xylene'], zs=[.5, .5]).economic_statuses
[["US public: {'Manufactured': 0.0, 'Imported': 0.0, 'Exported': 0.0}",

u'100,000 - 1,000,000 tonnes per annum',
'OECD HPV Chemicals'],
["US public: {'Manufactured': 39.805, 'Imported': 0.0, 'Exported': 0.0}",
u'100,000 - 1,000,000 tonnes per annum',
'OECD HPV Chemicals']]

property eos
Equation of state object held by the mixture. See : obj:thermo.eos_mix for a full listing.

eos_in_a_box = []

eos_pures(eos=<class 'thermo.eos.PR'>, T=None, P=None)

flash_caloric(T=None, P=None, VF=None, Hm=None, Sm=None, H=None, S=None)

flashed = True

property formulas
Chemical formulas for all chemicals in the mixture.

Examples

>>> Mixture(['ethanol', 'trichloroethylene', 'furfuryl alcohol'],
... ws=[0.5, 0.2, 0.3]).formulas
['C2H6O', 'C2HCl3', 'C5H6O2']

property isentropic_exponent
Gas-phase ideal-gas isentropic exponent of the mixture at its current temperature, [dimensionless]. Does
not include pressure-compensation from an equation of state.

Examples

>>> Mixture(['hydrogen'], ws=[1]).isentropic_exponent
1.405237786321222

property isentropic_exponents
Gas-phase pure component ideal-gas isentropic exponent of the chemicals in the mixture at its current
temperature, [dimensionless].

Does not include pressure-compensation from an equation of state.

590 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).isentropic_exponents
[1.1023398979313739, 1.080418846592871]

property isobaric_expansion
Isobaric (constant-pressure) expansion of the mixture at its current phase, temperature, and pressure in units
of [1/K]. Available only if single phase.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Examples

>>> Mixture(['water'], ws=[1], T=647.1, P=22048320.0).isobaric_expansion
0.34074205839222449

property isobaric_expansion_g
Isobaric (constant-pressure) expansion of the gas phase of the mixture at its current temperature and pres-
sure, in units of [1/K]. Available only if single phase.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Examples

>>> Mixture(['argon'], ws=[1], T=647.1, P=22048320.0).isobaric_expansion_g
0.0015661100323025273

property isobaric_expansion_gs
Pure component isobaric (constant-pressure) expansions of the chemicals in the mixture in the gas phase
at its current temperature and pressure, in units of [1/K].

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).isobaric_expansion_gs
[0.0038091518363900499, 0.0043556759306508453]

property isobaric_expansion_l
Isobaric (constant-pressure) expansion of the liquid phase of the mixture at its current temperature and
pressure, in units of [1/K]. Available only if single phase.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃
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>>> Mixture(['argon'], ws=[1], T=647.1, P=22048320.0).isobaric_expansion_l
0.001859152875154442

property isobaric_expansion_ls
Pure component isobaric (constant-pressure) expansions of the chemicals in the mixture in the liquid phase
at its current temperature and pressure, in units of [1/K].

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).isobaric_expansion_ls
[0.0012736035771253886, 0.0011234157437069571]

property k
Thermal conductivity of the mixture at its current phase, temperature, and pressure in units of [W/m/K].
Available only if single phase.

Examples

>>> Mixture(['ethanol'], ws=[1], T=300).kl
0.16313594741877802

property kg
Thermal conductivity of the mixture in the gas phase at its current temperature, pressure, and composition
in units of [Pa*s].

For calculation of this property at other temperatures and pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.thermal_conductivity.
ThermalConductivityGasMixture; each Mixture instance creates one to actually perform the calcu-
lations.

Examples

>>> Mixture(['water'], ws=[1], T=500).kg
0.036035173297862676

property kgs
Pure component thermal conductivies of the chemicals in the mixture in the gas phase at its current tem-
perature and pressure, in units of [W/m/K].
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>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).kgs
[0.011865404482987936, 0.010981336502491088]

property kl
Thermal conductivity of the mixture in the liquid phase at its current temperature, pressure, and composition
in units of [Pa*s].

For calculation of this property at other temperatures and pressures, or specifying manually the method
used to calculate it, and more - see the object oriented interface thermo.thermal_conductivity.
ThermalConductivityLiquidMixture; each Mixture instance creates one to actually perform the cal-
culations.

Examples

>>> Mixture(['water'], ws=[1], T=320).kl
0.6369957248212118

property kls
Pure component thermal conductivities of the chemicals in the mixture in the liquid phase at its current
temperature and pressure, in units of [W/m/K].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).kls
[0.13391538485205587, 0.12429339088930591]

ks = None

property legal_statuses
List of dictionaries of the legal status for all chemicals in the mixture.

Examples

>>> Mixture(['oxygen', 'nitrogen'], zs=[.5, .5]).legal_statuses
[{'DSL': 'LISTED',
'EINECS': 'LISTED',
'NLP': 'UNLISTED',
'SPIN': 'LISTED',
'TSCA': 'LISTED'},
{'DSL': 'LISTED',
'EINECS': 'LISTED',
'NLP': 'UNLISTED',
'SPIN': 'LISTED',
'TSCA': 'LISTED'}]

property mass_fractions
Dictionary of mass fractions for each atom in the mixture.
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>>> Mixture(['CO2', 'O2'], zs=[0.5, 0.5]).mass_fractions
{'C': 0.15801826905745822, 'O': 0.8419817309425419}

property mass_fractionss
List of dictionaries of mass fractions for all chemicals in the mixture.

Examples

>>> Mixture(['oxygen', 'nitrogen'], zs=[.5, .5]).mass_fractionss
[{'O': 1.0}, {'N': 1.0}]

property mu
Viscosity of the mixture at its current phase, temperature, and pressure in units of [Pa*s]. Available only if
single phase.

Examples

>>> Mixture(['ethanol'], ws=[1], T=400).mu
1.1853097849748213e-05

property mug
Viscosity of the mixture in the gas phase at its current temperature, pressure, and composition in units of
[Pa*s].

For calculation of this property at other temperatures and pressures, or specifying manually the method used
to calculate it, and more - see the object oriented interface thermo.viscosity.ViscosityGasMixture;
each Mixture instance creates one to actually perform the calculations.

Examples

>>> Mixture(['water'], ws=[1], T=500).mug
1.7298722343367148e-05

property mugs
Pure component viscosities of the chemicals in the mixture in the gas phase at its current temperature and
pressure, in units of [Pa*s].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).mugs
[8.082880451060605e-06, 7.442602145854158e-06]

property mul
Viscosity of the mixture in the liquid phase at its current temperature, pressure, and composition in units
of [Pa*s].

For calculation of this property at other temperatures and pressures, or specifying manually the
method used to calculate it, and more - see the object oriented interface thermo.viscosity.
ViscosityLiquidMixture; each Mixture instance creates one to actually perform the calculations.
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>>> Mixture(['water'], ws=[1], T=320).mul
0.0005767262693751547

property muls
Pure component viscosities of the chemicals in the mixture in the liquid phase at its current temperature
and pressure, in units of [Pa*s].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).muls
[0.00045545522798131764, 0.00043274394349114754]

property nu
Kinematic viscosity of the the mixture at its current temperature, pressure, and phase in units of [m^2/s].
Available only if single phase.

𝜈 =
𝜇

𝜌

Examples

>>> Mixture(['argon'], ws=[1]).nu
1.3842643382482236e-05

property nug
Kinematic viscosity of the gas phase of the mixture if one exists at its current temperature and pressure, in
units of [m^2/s].

𝜈 =
𝜇

𝜌

Examples

>>> Mixture(['methane'], ws=[1], T=115).nug
2.5118460023343146e-06

property nugs
Pure component kinematic viscosities of the gas phase of the chemicals in the mixture at its current tem-
perature and pressure, in units of [m^2/s].

𝜈 =
𝜇

𝜌
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>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).nugs
[5.357870271650772e-07, 3.8127962283230277e-07]

property nul
Kinematic viscosity of the liquid phase of the mixture if one exists at its current temperature and pressure,
in units of [m^2/s].

𝜈 =
𝜇

𝜌

Examples

>>> Mixture(['methane'], ws=[1], T=110).nul
2.858088468937333e-07

property nuls
Pure component kinematic viscosities of the liquid phase of the chemicals in the mixture at its current
temperature and pressure, in units of [m^2/s].

𝜈 =
𝜇

𝜌

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).nuls
[5.357870271650772e-07, 3.8127962283230277e-07]

property permittivites
Pure component relative permittivities of the chemicals in the mixture at its current temperature, [dimen-
sionless].

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).permittivites
[2.23133472, 1.8508128]

phase = None

properties(copy_pures=True, copy_mixtures=True)

property_package_constants = None

property rho
Mass density of the mixture at its current phase and temperature and pressure, in units of [kg/m^3]. Avail-
able only if single phase.
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>>> Mixture(['decane'], ws=[1], T=550, P=2E6).rho
498.67008448640604

property rhog
Gas-phase mass density of the mixture at its current temperature, pressure, and composition in units of
[kg/m^3]. For calculation of this property at other temperatures, pressures, or compositions or specifying
manually the method used to calculate it, and more - see the object oriented interface thermo.volume.
VolumeGasMixture; each Mixture instance creates one to actually perform the calculations. Note that that
interface provides output in molar units.

Examples

>>> Mixture(['hexane'], ws=[1], T=300, P=2E5).rhog
7.914447603999089

property rhog_STP
Gas-phase mass density of the mixture at 298.15 K and 101.325 kPa, and the current composition in units
of [kg/m^3].

Examples

>>> Mixture(['nitrogen'], ws=[1]).rhog_STP
1.145534453639403

property rhogm
Molar density of the mixture in the gas phase at the current temperature, pressure, and composition in units
of [mol/m^3].

Utilizes the object oriented interface and thermo.volume.VolumeGasMixture to perform the actual cal-
culation of molar volume.

Examples

>>> Mixture(['water'], ws=[1], T=500).rhogm
24.467426039789093

property rhogm_STP
Molar density of the mixture in the gas phase at 298.15 K and 101.325 kPa, and the current composition,
in units of [mol/m^3].
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>>> Mixture(['nitrogen'], ws=[1]).rhogm_STP
40.892374850585895

property rhogms
Pure component molar densities of the chemicals in the gas phase at the current temperature and pressure,
in units of [mol/m^3].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).rhogms
[40.11392035309789, 41.407547778608084]

property rhogs
Pure-component gas-phase mass densities of the chemicals in the mixture at its current temperature and
pressure, in units of [kg/m^3].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).rhogs
[3.1333721283939258, 3.8152260283954584]

property rhol
Liquid-phase mass density of the mixture at its current temperature, pressure, and composition in units
of [kg/m^3]. For calculation of this property at other temperatures, pressures, compositions or specifying
manually the method used to calculate it, and more - see the object oriented interface thermo.volume.
VolumeLiquidMixture; each Mixture instance creates one to actually perform the calculations. Note that
that interface provides output in molar units.

Examples

>>> Mixture(['o-xylene'], ws=[1], T=297).rhol
876.9946785618097

property rhol_STP
Liquid-phase mass density of the mixture at 298.15 K and 101.325 kPa, and the current composition in
units of [kg/m^3].

Examples

>>> Mixture(['cyclobutane'], ws=[1]).rhol_STP
688.9851989526821

property rholm
Molar density of the mixture in the liquid phase at the current temperature, pressure, and composition in
units of [mol/m^3].

Utilizes the object oriented interface and thermo.volume.VolumeLiquidMixture to perform the actual
calculation of molar volume.
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>>> Mixture(['water'], ws=[1], T=300).rholm
55317.352773503124

property rholm_STP
Molar density of the mixture in the liquid phase at 298.15 K and 101.325 kPa, and the current composition,
in units of [mol/m^3].

Examples

>>> Mixture(['water'], ws=[1]).rholm_STP
55344.59086372442

property rholms
Pure component molar densities of the chemicals in the mixture in the liquid phase at the current tempera-
ture and pressure, in units of [mol/m^3].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).rholms
[10882.699301520635, 9135.590853014008]

property rhols
Pure-component liquid-phase mass density of the chemicals in the mixture at its current temperature and
pressure, in units of [kg/m^3].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).rhols
[850.0676666084917, 841.7389069631628]

property rhom
Molar density of the mixture at its current phase and temperature and pressure, in units of [mol/m^3].
Available only if single phase.

Examples

>>> Mixture(['1-hexanol'], ws=[1]).rhom
7983.414573003429

rhos = None

property rhosms
Pure component molar densities of the chemicals in the solid phase at the current temperature and pressure,
in units of [mol/m^3].
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>>> Mixture(['iron'], ws=[1], T=320).rhosms
[140925.7767033753]

property rhoss
Pure component solid-phase mass density of the chemicals in the mixture at its current temperature, in units
of [kg/m^3].

Examples

>>> Mixture(['iron'], ws=[1], T=320).rhoss
[7869.999999999994]

property ringss
List of ring counts for all chemicals in the mixture.

Examples

>>> Mixture(['Docetaxel', 'Paclitaxel'], zs=[.5, .5]).ringss
[6, 7]

set_Chemical_property_objects()

set_TP_sources()

set_chemical_TP(T=None, P=None)
Basic method to change all chemical instances to be at the T and P specified. If they are not specified, the
the values of the mixture will be used. This is not necessary for using the Mixture instance unless values
specified to chemicals are required.

set_chemical_constants()
Basic method which retrieves and sets constants of chemicals to be accessible as lists from a Mixture object.
This gets called automatically on the instantiation of a new Mixture instance.

set_constant_sources()

set_constants()

set_eos(T, P, eos=<class 'thermo.eos_mix.PRMIX'>)

set_property_package(pkg=None)

property sigma
Surface tension of the mixture at its current temperature and composition, in units of [N/m].

For calculation of this property at other temperatures, or specifying manually the method used to calculate
it, and more - see the object oriented interface thermo.interface.SurfaceTensionMixture; each
Mixture instance creates one to actually perform the calculations.
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>>> Mixture(['water'], ws=[1], T=300, P=1E5).sigma
0.07176932405246211

property sigmas
Pure component surface tensions of the chemicals in the mixture at its current temperature, in units of
[N/m].

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5], T=320).sigmas
[0.02533469712937521, 0.025254723406585546]

property similarity_variables
Similarity variables for all chemicals in the mixture, see chemicals.elements.similarity_variable
for the definition, [mol/g]

Examples

>>> Mixture(['benzene', 'toluene'], ws=[0.5, 0.5]).similarity_variables
[0.15362587797189262, 0.16279853724428964]

property smiless
SMILES strings for all chemicals in the mixture.

Examples

>>> Mixture(['methane', 'ethane', 'propane', 'butane'],
... zs=[0.25, 0.25, 0.25, 0.25]).smiless
['C', 'CC', 'CCC', 'CCCC']

property solubility_parameters
Pure component solubility parameters of the chemicals in the mixture at its current temperature and pres-
sure, in units of [Pa^0.5].

𝛿 =

√︂
∆𝐻𝑣𝑎𝑝 −𝑅𝑇

𝑉𝑚

Examples

>>> Mixture(['benzene', 'hexane'], ws=[0.5, 0.5], T=320).solubility_parameters
[18062.51359608708, 14244.12852702228]

property speed_of_sound
Bulk speed of sound of the mixture at its current temperature, [m/s].
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>>> Mixture(['toluene'], P=1E5, VF=0.5, ws=[1]).speed_of_sound
478.99527258140211

property speed_of_sound_g
Gas-phase speed of sound of the mixture at its current temperature, [m/s].

Examples

>>> Mixture(['nitrogen'], ws=[1]).speed_of_sound_g
351.77445481641661

property speed_of_sound_l
Liquid-phase speed of sound of the mixture at its current temperature, [m/s].

Examples

>>> Mixture(['toluene'], P=1E5, T=300, ws=[1]).speed_of_sound_l
1116.0852487852942

property synonymss
Lists of synonyms for all chemicals in the mixture.

Examples

>>> Mixture(['Tetradecene', 'Pentadecene'], zs=[.1, .9]).synonymss
[['tetradec-2-ene', 'tetradecene', '2-tetradecene', 'tetradec-2-ene', '26952-13-
→˓6', '35953-53-8', '1652-97-7'], ['pentadec-1-ene', '1-pentadecene',
→˓'pentadecene,1-', 'pentadec-1-ene', '13360-61-7', 'pentadecene']]

xs = None

ys = None

7.21 Permittivity/Dielectric Constant (thermo.permittivity)

This module contains implementations of TDependentProperty representing liquid permittivity. A variety of esti-
mation and data methods are available as included in the chemicals library.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Liquid Permittivity

602 Chapter 7. API Reference

https://github.com/CalebBell/thermo/


thermo Documentation, Release 0.2.20

7.21.1 Pure Liquid Permittivity

class thermo.permittivity.PermittivityLiquid(CASRN='', extrapolation='linear', **kwargs)
Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with liquid permittivity as a function of temperature. Consists of one temperature-dependent
simple expression, one constant value source, and IAPWS.

Parameters
CASRN [str, optional] The CAS number of the chemical

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

Notes

To iterate over all methods, use the list stored in permittivity_methods.

CRC: Simple polynomials for calculating permittivity over a specified temperature range only. The full expres-
sion is:

𝜖𝑟 = 𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3

Not all chemicals use all terms; in fact, few do. Data is available for 759 liquids, from [1].

CRC_CONSTANT: Constant permittivity values at specified temperatures only. Data is from [1], and is avail-
able for 1303 liquids.

IAPWS: The IAPWS model for water permittivity as a liquid.

References

[1]

Attributes
Tmax Maximum temperature (K) at which the current method can calculate the property.

Tmin Minimum temperature (K) at which the current method can calculate the property.

Methods

calculate(T, method) Method to calculate permittivity of a liquid at tem-
perature T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

property Tmax
Maximum temperature (K) at which the current method can calculate the property.

property Tmin
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Minimum temperature (K) at which the current method can calculate the property.

calculate(T, method)
Method to calculate permittivity of a liquid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate relative permittivity, [K]

method [str] Name of the method to use

Returns
epsilon [float] Relative permittivity of the liquid at T, [-]

name = 'liquid relative permittivity'

property_max = 1000.0
Maximum valid of permittivity; highest in the data available is ~240.

property_min = 1.0
Relative permittivity must always be larger than 1; nothing is better than a vacuum.

ranked_methods = ['IAPWS', 'CRC', 'CRC_CONSTANT']
Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is set; if
it is, the extrapolation is considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = '-'

thermo.permittivity.permittivity_methods = ['CRC', 'CRC_CONSTANT', 'IAPWS']
Holds all methods available for the PermittivityLiquid class, for use in iterating over them.

7.22 Phase Models (thermo.phases)

• Base Class

• Ideal Gas Equation of State

• Cubic Equations of State

– Gas Phases

– Liquid Phases
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• Activity Based Liquids

• Fundamental Equations of State

• CoolProp Wrapper

The phases subpackage exposes classes that represent the state of single phase mixture, including the composition,
temperature, pressure, enthalpy, and entropy. Phase objects are immutable and know nothing about bulk properties or
transport properties. The goal is for each phase to be able to compute all of its thermodynamic properties, including
volume-based ones. Use settings to handle different assumptions.

7.22.1 Base Class

class thermo.phases.Phase
Bases: object

Phase is the base class for all phase objects in thermo. Each sub-class implements a number of core properties;
many other properties can be calculated from them.

Among those properties are H, S, Cp, dP_dT, dP_dV, d2P_dT2, d2P_dV2, and d2P_dTdV.

An additional set of properties that can be implemented and that enable more functionality are dH_dP,
dS_dT, dS_dP, d2H_dT2, d2H_dP2, d2S_dP2, dH_dT_V, dH_dP_V, dH_dV_T, dH_dV_P, dS_dT_V, dS_dP_V,
d2H_dTdP, d2H_dT2_V, d2P_dTdP, d2P_dVdP, d2P_dVdT_TP, d2P_dT2_PV.

Some models may re-implement properties which would normally be calculated by this Phase base class because
they have more explicit, faster ways of calculating the property.

When a phase object is the result of a Flash calculation, the resulting phase objects have a reference to a
ChemicalConstantsPackage object and all of its properties can be accessed from from the resulting phase
objects as well.

A ChemicalConstantsPackage object can also be manually set to the attribute constants to enable access to
those properties. This includes mass-based properties, which are not accessible from Phase objects without a
reference to the constants.

Attributes
CASs CAS registration numbers for each component, [-].

Carcinogens Status of each component in cancer causing registries, [-].

Ceilings Ceiling exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

GWPs Global Warming Potentials for each component (impact/mass chemical)/(impact/mass
CO2), [-].

Gfgs Ideal gas standard molar Gibbs free energy of formation for each component, [J/mol].

Gfgs_mass Ideal gas standard Gibbs free energy of formation for each component, [J/kg].

Hcs Higher standard molar heats of combustion for each component, [J/mol].

Hcs_lower Lower standard molar heats of combustion for each component, [J/mol].

Hcs_lower_mass Lower standard heats of combustion for each component, [J/kg].

Hcs_mass Higher standard heats of combustion for each component, [J/kg].

Hf_STPs Standard state molar enthalpies of formation for each component, [J/mol].

Hf_STPs_mass Standard state mass enthalpies of formation for each component, [J/kg].
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Hfgs Ideal gas standard molar enthalpies of formation for each component, [J/mol].

Hfgs_mass Ideal gas standard enthalpies of formation for each component, [J/kg].

Hfus_Tms Molar heats of fusion for each component at their respective melting points, [J/mol].

Hfus_Tms_mass Heats of fusion for each component at their respective melting points, [J/kg].

Hsub_Tts Heats of sublimation for each component at their respective triple points, [J/mol].

Hsub_Tts_mass Heats of sublimation for each component at their respective triple points,
[J/kg].

Hvap_298s Molar heats of vaporization for each component at 298.15 K, [J/mol].

Hvap_298s_mass Heats of vaporization for each component at 298.15 K, [J/kg].

Hvap_Tbs Molar heats of vaporization for each component at their respective normal boiling
points, [J/mol].

Hvap_Tbs_mass Heats of vaporization for each component at their respective normal boiling
points, [J/kg].

InChI_Keys InChI Keys for each component, [-].

InChIs InChI strings for each component, [-].

LFLs Lower flammability limits for each component, [-].

MWs Similatiry variables for each component, [g/mol].

ODPs Ozone Depletion Potentials for each component (impact/mass chemical)/(impact/mass
CFC-11), [-].

PSRK_groups PSRK subgroup: count groups for each component, [-].

Parachors Parachors for each component, [N^0.25*m^2.75/mol].

Pcs Critical pressures for each component, [Pa].

Psat_298s Vapor pressures for each component at 298.15 K, [Pa].

Pts Triple point pressures for each component, [Pa].

PubChems Pubchem IDs for each component, [-].

RI_Ts Temperatures at which the refractive indexes were reported for each component, [K].

RIs Refractive indexes for each component, [-].

S0gs Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component, [J/(mol*K)].

S0gs_mass Ideal gas absolute entropies at 298.15 K at 1 atm for each component, [J/(kg*K)].

STELs Short term exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Sfgs Ideal gas standard molar entropies of formation for each component, [J/(mol*K)].

Sfgs_mass Ideal gas standard entropies of formation for each component, [J/(kg*K)].

Skins Whether each compound can be absorbed through the skin or not, [-].

StielPolars Stiel polar factors for each component, [-].

Stockmayers Lennard-Jones Stockmayer parameters (depth of potential-energy minimum over
k) for each component, [K].

TWAs Time-weighted average exposure limits to chemicals (and their units; ppm or mg/m^3),
[various].
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Tautoignitions Autoignition temperatures for each component, [K].

Tbs Boiling temperatures for each component, [K].

Tcs Critical temperatures for each component, [K].

Tflashs Flash point temperatures for each component, [K].

Tms Melting temperatures for each component, [K].

Tts Triple point temperatures for each component, [K].

UFLs Upper flammability limits for each component, [-].

UNIFAC_Dortmund_groups UNIFAC_Dortmund_group: count groups for each component, [-
].

UNIFAC_Qs UNIFAC Q parameters for each component, [-].

UNIFAC_Rs UNIFAC R parameters for each component, [-].

UNIFAC_groups UNIFAC_group: count groups for each component, [-].

VF Method to return the vapor fraction of the phase.

Van_der_Waals_areas Unnormalized Van der Waals areas for each component, [m^2/mol].

Van_der_Waals_volumes Unnormalized Van der Waals volumes for each component,
[m^3/mol].

Vcs Critical molar volumes for each component, [m^3/mol].

Vmg_STPs Gas molar volumes for each component at STP; metastable if normally another state,
[m^3/mol].

Vml_60Fs Liquid molar volumes for each component at 60 °F, [m^3/mol].

Vml_STPs Liquid molar volumes for each component at STP, [m^3/mol].

Vml_Tms Liquid molar volumes for each component at their respective melting points,
[m^3/mol].

Vms_Tms Solid molar volumes for each component at their respective melting points, [m^3/mol].

Zcs Critical compressibilities for each component, [-].

atomss Breakdown of each component into its elements and their counts, as a dict, [-].

beta Method to return the phase fraction of this phase.

beta_mass Method to return the mass phase fraction of this phase.

beta_volume Method to return the volumetric phase fraction of this phase.

charges Charge number (valence) for each component, [-].

conductivities Electrical conductivities for each component, [S/m].

conductivity_Ts Temperatures at which the electrical conductivities for each component
were measured, [K].

dipoles Dipole moments for each component, [debye].

economic_statuses Status of each component in in relation to import and export from various
regions, [-].

force_phase
formulas Formulas of each component, [-].
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legal_statuses Status of each component in in relation to import and export rules from var-
ious regions, [-].

logPs Octanol-water partition coefficients for each component, [-].

molecular_diameters Lennard-Jones molecular diameters for each component, [angstrom].

names Names for each component, [-].

omegas Acentric factors for each component, [-].

phase_STPs Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].

rhocs Molar densities at the critical point for each component, [mol/m^3].

rhocs_mass Densities at the critical point for each component, [kg/m^3].

rhog_STPs Molar gas densities at STP for each component; metastable if normally another
state, [mol/m^3].

rhog_STPs_mass Gas densities at STP for each component; metastable if normally another
state, [kg/m^3].

rhol_60Fs Liquid molar densities for each component at 60 °F, [mol/m^3].

rhol_60Fs_mass Liquid mass densities for each component at 60 °F, [kg/m^3].

rhol_STPs Molar liquid densities at STP for each component, [mol/m^3].

rhol_STPs_mass Liquid densities at STP for each component, [kg/m^3].

rhos_Tms Solid molar densities for each component at their respective melting points,
[mol/m^3].

rhos_Tms_mass Solid mass densities for each component at their melting point, [kg/m^3].

sigma_STPs Liquid-air surface tensions at 298.15 K and the higher of 101325 Pa or the satura-
tion pressure, [N/m].

sigma_Tbs Liquid-air surface tensions at the normal boiling point and 101325 Pa, [N/m].

sigma_Tms Liquid-air surface tensions at the melting point and 101325 Pa, [N/m].

similarity_variables Similarity variables for each component, [mol/g].

smiless SMILES identifiers for each component, [-].

solubility_parameters Solubility parameters for each component at 298.15 K, [Pa^0.5].

Methods

A() Method to calculate and return the Helmholtz energy
of the phase.

API() Method to calculate and return the API of the phase.
A_dep() Method to calculate and return the departure

Helmholtz energy of the phase.
A_formation_ideal_gas() Method to calculate and return the ideal-gas

Helmholtz energy of formation of the phase (as if
the phase was an ideal gas).

A_ideal_gas() Method to calculate and return the ideal-gas
Helmholtz energy of the phase.

continues on next page
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Table 80 – continued from previous page
A_mass() Method to calculate and return mass Helmholtz en-

ergy of the phase.
A_reactive() Method to calculate and return the Helmholtz free en-

ergy of the phase on a reactive basis.
Cp() Method to calculate and return the constant-pressure

heat capacity of the phase.
Cp_Cv_ratio() Method to calculate and return the Cp/Cv ratio of the

phase.
Cp_Cv_ratio_ideal_gas() Method to calculate and return the ratio of the ideal-

gas heat capacity to its constant-volume heat capac-
ity.

Cp_ideal_gas() Method to calculate and return the ideal-gas heat ca-
pacity of the phase.

Cp_mass() Method to calculate and return mass constant pres-
sure heat capacity of the phase.

Cpig_integrals_over_T_pure() Method to calculate and return the integrals of the
ideal-gas heat capacities divided by temperature of
every component in the phase from a temperature of
Phase.T_REF_IG to the system temperature.

Cpig_integrals_pure() Method to calculate and return the integrals of the
ideal-gas heat capacities of every component in the
phase from a temperature of Phase.T_REF_IG to the
system temperature.

Cpigs_pure() Method to calculate and return the ideal-gas heat ca-
pacities of every component in the phase.

Cv() Method to calculate and return the constant-volume
heat capacity Cv of the phase.

Cv_dep() Method to calculate and return the difference between
the actual Cv and the ideal-gas constant volume heat
capacity 𝐶𝑖𝑔

𝑣 of the phase.
Cv_ideal_gas() Method to calculate and return the ideal-gas constant

volume heat capacity of the phase.
Cv_mass() Method to calculate and return mass constant volume

heat capacity of the phase.
G() Method to calculate and return the Gibbs free energy

of the phase.
G_dep() Method to calculate and return the departure Gibbs

free energy of the phase.
G_dep_phi_consistency() Method to calculate and return a consistency check

between departure Gibbs free energy, and the fugac-
ity coefficients.

G_formation_ideal_gas() Method to calculate and return the ideal-gas Gibbs
free energy of formation of the phase (as if the phase
was an ideal gas).

G_ideal_gas() Method to calculate and return the ideal-gas Gibbs
free energy of the phase.

G_mass() Method to calculate and return mass Gibbs energy of
the phase.

G_min() Method to calculate and return the Gibbs free energy
of the phase.

continues on next page
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G_min_criteria() Method to calculate and return the Gibbs energy cri-

teria required for comparing phase stability.
G_reactive() Method to calculate and return the Gibbs free energy

of the phase on a reactive basis.
H() Method to calculate and return the enthalpy of the

phase.
H_C_ratio() Method to calculate and return the atomic ratio of hy-

drogen atoms to carbon atoms, based on the current
composition of the phase.

H_C_ratio_mass() Method to calculate and return the mass ratio of hy-
drogen atoms to carbon atoms, based on the current
composition of the phase.

H_dep_phi_consistency() Method to calculate and return a consistency check
between departure enthalpy, and the fugacity coeffi-
cients' temperature derivatives.

H_formation_ideal_gas() Method to calculate and return the ideal-gas enthalpy
of formation of the phase (as if the phase was an ideal
gas).

H_from_phi() Method to calculate and return the enthalpy of the
fluid as calculated from the ideal-gas enthalpy and the
the fugacity coefficients' temperature derivatives.

H_ideal_gas() Method to calculate and return the ideal-gas enthalpy
of the phase.

H_mass() Method to calculate and return mass enthalpy of the
phase.

H_phi_consistency() Method to calculate and return a consistency check
between ideal gas enthalpy behavior, and the fugacity
coefficients and their temperature derivatives.

H_reactive() Method to calculate and return the enthalpy of the
phase on a reactive basis, using the Hfs values of the
phase.

Hc() Method to calculate and return the molar ideal-gas
higher heat of combustion of the object, [J/mol]

Hc_lower() Method to calculate and return the molar ideal-gas
lower heat of combustion of the object, [J/mol]

Hc_lower_mass() Method to calculate and return the mass ideal-gas
lower heat of combustion of the object, [J/mol]

Hc_lower_normal() Method to calculate and return the volumetric ideal-
gas lower heat of combustion of the object using the
normal gas volume, [J/m^3]

Hc_lower_standard() Method to calculate and return the volumetric ideal-
gas lower heat of combustion of the object using the
standard gas volume, [J/m^3]

Hc_mass() Method to calculate and return the mass ideal-gas
higher heat of combustion of the object, [J/mol]

Hc_normal() Method to calculate and return the volumetric ideal-
gas higher heat of combustion of the object using the
normal gas volume, [J/m^3]

Hc_standard() Method to calculate and return the volumetric ideal-
gas higher heat of combustion of the object using the
standard gas volume, [J/m^3]

continues on next page
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Joule_Thomson() Method to calculate and return the Joule-Thomson

coefficient of the phase.
MW() Method to calculate and return molecular weight of

the phase.
MW_inv() Method to calculate and return inverse of molecular

weight of the phase.
PIP() Method to calculate and return the phase identifica-

tion parameter of the phase.
P_max_at_V(V) Dummy method.
P_transitions() Dummy method.
Pmc() Method to calculate and return the mechanical criti-

cal pressure of the phase.
S() Method to calculate and return the entropy of the

phase.
SG() Method to calculate and return the standard liquid

specific gravity of the phase, using constant liquid
pure component densities not calculated by the phase
object, at 60 °F.

SG_gas() Method to calculate and return the specific gravity of
the phase with respect to a gas reference density.

S_dep_phi_consistency() Method to calculate and return a consistency check
between ideal gas entropy behavior, and the fugacity
coefficients and their temperature derivatives.

S_formation_ideal_gas() Method to calculate and return the ideal-gas entropy
of formation of the phase (as if the phase was an ideal
gas).

S_from_phi() Method to calculate and return the entropy of the fluid
as calculated from the ideal-gas entropy and the the
fugacity coefficients' temperature derivatives.

S_ideal_gas() Method to calculate and return the ideal-gas entropy
of the phase.

S_mass() Method to calculate and return mass entropy of the
phase.

S_phi_consistency() Method to calculate and return a consistency check
between ideal gas entropy behavior, and the fugacity
coefficients and their temperature derivatives.

S_reactive() Method to calculate and return the entropy of the
phase on a reactive basis, using the Sfs values of the
phase.

T_max_at_V(V) Method to calculate the maximum temperature the
phase can create at a constant volume, if one exists;
returns None otherwise.

Tmc() Method to calculate and return the mechanical criti-
cal temperature of the phase.

U() Method to calculate and return the internal energy of
the phase.

U_dep() Method to calculate and return the departure internal
energy of the phase.

U_formation_ideal_gas() Method to calculate and return the ideal-gas internal
energy of formation of the phase (as if the phase was
an ideal gas).

continues on next page
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U_ideal_gas() Method to calculate and return the ideal-gas internal

energy of the phase.
U_mass() Method to calculate and return mass internal energy

of the phase.
U_reactive() Method to calculate and return the internal energy of

the phase on a reactive basis.
V() Method to return the molar volume of the phase.
V_dep() Method to calculate and return the departure (from

ideal gas behavior) molar volume of the phase.
V_from_phi() Method to calculate and return the molar volume of

the fluid as calculated from the pressure derivatives
of fugacity coefficients.

V_gas() Method to calculate and return the ideal-gas molar
volume of the phase at the chosen reference tempera-
ture and pressure, according to the temperature vari-
able T_gas_ref and pressure variable P_gas_ref of
the thermo.bulk.BulkSettings.

V_gas_normal() Method to calculate and return the ideal-gas mo-
lar volume of the phase at the normal temperature
and pressure, according to the temperature variable
T_normal and pressure variable P_normal of the
thermo.bulk.BulkSettings.

V_gas_standard() Method to calculate and return the ideal-gas mo-
lar volume of the phase at the standard temperature
and pressure, according to the temperature variable
T_standard and pressure variable P_standard of the
thermo.bulk.BulkSettings.

V_ideal_gas() Method to calculate and return the ideal-gas molar
volume of the phase.

V_iter([force]) Method to calculate and return the volume of the
phase in a way suitable for a TV resolution to con-
verge on the same pressure.

V_liquid_ref () Method to calculate and return the liquid refer-
ence molar volume according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

V_mass() Method to calculate and return the specific volume of
the phase.

V_phi_consistency() Method to calculate and return a consistency check
between molar volume, and the fugacity coefficients'
pressures derivatives.

Vfgs() Method to calculate and return the ideal-gas volume
fractions of the components of the phase.

Vfls() Method to calculate and return the ideal-liquid vol-
ume fractions of the components of the phase,
using the standard liquid densities at the tem-
perature variable T_liquid_volume_ref of thermo.
bulk.BulkSettings and the composition of the
phase.

Vmc() Method to calculate and return the mechanical criti-
cal volume of the phase.

continues on next page
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Wobbe_index() Method to calculate and return the molar Wobbe in-

dex of the object, [J/mol].
Wobbe_index_lower() Method to calculate and return the molar lower

Wobbe index of the
Wobbe_index_lower_mass() Method to calculate and return the lower mass Wobbe

index of the object, [J/kg].
Wobbe_index_lower_normal() Method to calculate and return the volumetric normal

lower Wobbe index of the object, [J/m^3].
Wobbe_index_lower_standard() Method to calculate and return the volumetric stan-

dard lower Wobbe index of the object, [J/m^3].
Wobbe_index_mass() Method to calculate and return the mass Wobbe index

of the object, [J/kg].
Wobbe_index_normal() Method to calculate and return the volumetric normal

Wobbe index of the object, [J/m^3].
Wobbe_index_standard() Method to calculate and return the volumetric stan-

dard Wobbe index of the object, [J/m^3].
Z() Method to calculate and return the compressibility

factor of the phase.
Zmc() Method to calculate and return the mechanical criti-

cal compressibility of the phase.
activities() Method to calculate and return the activities of each

component in the phase [-].
as_json() Method to create a JSON-friendly serialization of the

phase which can be stored, and reloaded later.
atom_fractions() Method to calculate and return the atomic composi-

tion of the phase; returns a dictionary of atom frac-
tion (by count), containing only those elements who
are present.

atom_mass_fractions() Method to calculate and return the atomic mass frac-
tions of the phase; returns a dictionary of atom frac-
tion (by mass), containing only those elements who
are present.

chemical_potential() Method to calculate and return the chemical poten-
tials of each component in the phase [-].

d2P_dT2() Method to calculate and return the second tempera-
ture derivative of pressure of the phase.

d2P_dTdV() Method to calculate and return the second derivative
of pressure with respect to temperature and volume
of the phase.

d2P_dTdrho() Method to calculate and return the temperature
derivative and then molar density derivative of the
pressure of the phase.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the phase.

d2P_dVdT() Method to calculate and return the second derivative
of pressure with respect to temperature and volume
of the phase.

d2P_drho2() Method to calculate and return the second molar den-
sity derivative of pressure of the phase.

continues on next page
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d2T_dP2() Method to calculate and return the constant-volume

second pressure derivative of temperature of the
phase.

d2T_dP2_V() Method to calculate and return the constant-volume
second pressure derivative of temperature of the
phase.

d2T_dPdV() Method to calculate and return the derivative of pres-
sure and then the derivative of volume of temperature
of the phase.

d2T_dPdrho() Method to calculate and return the pressure derivative
and then molar density derivative of the temperature
of the phase.

d2T_dV2() Method to calculate and return the constant-pressure
second volume derivative of temperature of the
phase.

d2T_dV2_P() Method to calculate and return the constant-pressure
second volume derivative of temperature of the
phase.

d2T_dVdP() Method to calculate and return the derivative of pres-
sure and then the derivative of volume of temperature
of the phase.

d2T_drho2() Method to calculate and return the second molar den-
sity derivative of temperature of the phase.

d2V_dP2() Method to calculate and return the constant-
temperature pressure derivative of volume of the
phase.

d2V_dP2_T() Method to calculate and return the constant-
temperature pressure derivative of volume of the
phase.

d2V_dPdT() Method to calculate and return the derivative of pres-
sure and then the derivative of temperature of volume
of the phase.

d2V_dT2() Method to calculate and return the constant-pressure
second temperature derivative of volume of the
phase.

d2V_dT2_P() Method to calculate and return the constant-pressure
second temperature derivative of volume of the
phase.

d2V_dTdP() Method to calculate and return the derivative of pres-
sure and then the derivative of temperature of volume
of the phase.

d2rho_dP2() Method to calculate and return the second pressure
derivative of molar density of the phase.

d2rho_dPdT() Method to calculate and return the pressure derivative
and then temperature derivative of the molar density
of the phase.

d2rho_dT2() Method to calculate and return the second tempera-
ture derivative of molar density of the phase.

dA_dP() Method to calculate and return the constant-
temperature pressure derivative of Helmholtz
energy.

continues on next page
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dA_dP_T() Method to calculate and return the constant-

temperature pressure derivative of Helmholtz
energy.

dA_dP_V() Method to calculate and return the constant-volume
pressure derivative of Helmholtz energy.

dA_dT() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dA_dT_P() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dA_dT_V() Method to calculate and return the constant-volume
temperature derivative of Helmholtz energy.

dA_dV_P() Method to calculate and return the constant-pressure
volume derivative of Helmholtz energy.

dA_dV_T() Method to calculate and return the constant-
temperature volume derivative of Helmholtz energy.

dA_mass_dP([prop]) Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
temperature.

dA_mass_dP_T([prop]) Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
temperature.

dA_mass_dP_V([prop]) Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
volume.

dA_mass_dT([prop]) Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant pressure.

dA_mass_dT_P([prop]) Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant pressure.

dA_mass_dT_V([prop]) Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant volume.

dA_mass_dV_P([prop]) Method to calculate and return the volume derivative
of mass Helmholtz energy of the phase at constant
pressure.

dA_mass_dV_T([prop]) Method to calculate and return the volume derivative
of mass Helmholtz energy of the phase at constant
temperature.

dCpigs_dT_pure() Method to calculate and return the first temperature
derivative of ideal-gas heat capacities of every com-
ponent in the phase.

dCv_dP_T() Method to calculate the pressure derivative of Cv,
constant volume heat capacity, at constant tempera-
ture.

dCv_dT_P() Method to calculate the temperature derivative of Cv,
constant volume heat capacity, at constant pressure.

dCv_mass_dP_T([prop]) Method to calculate and return the pressure derivative
of mass Constant-volume heat capacity of the phase
at constant temperature.

continues on next page
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dCv_mass_dT_P([prop]) Method to calculate and return the temperature

derivative of mass Constant-volume heat capacity of
the phase at constant pressure.

dG_dP() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dP_T() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dP_V() Method to calculate and return the constant-volume
pressure derivative of Gibbs free energy.

dG_dT() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

dG_dT_P() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

dG_dT_V() Method to calculate and return the constant-volume
temperature derivative of Gibbs free energy.

dG_dV_P() Method to calculate and return the constant-pressure
volume derivative of Gibbs free energy.

dG_dV_T() Method to calculate and return the constant-
temperature volume derivative of Gibbs free energy.

dG_mass_dP([prop]) Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
temperature.

dG_mass_dP_T([prop]) Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
temperature.

dG_mass_dP_V([prop]) Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
volume.

dG_mass_dT([prop]) Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant pressure.

dG_mass_dT_P([prop]) Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant pressure.

dG_mass_dT_V([prop]) Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant volume.

dG_mass_dV_P([prop]) Method to calculate and return the volume derivative
of mass Gibbs free energy of the phase at constant
pressure.

dG_mass_dV_T([prop]) Method to calculate and return the volume derivative
of mass Gibbs free energy of the phase at constant
temperature.

dH_dP_T() Method to calculate and return the pressure derivative
of enthalpy of the phase at constant pressure.

dH_dT_P() Method to calculate and return the temperature
derivative of enthalpy of the phase at constant pres-
sure.

continues on next page
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dH_dns() Method to calculate and return the mole number

derivative of the enthalpy of the phase.
dH_mass_dP([prop]) Method to calculate and return the pressure deriva-

tive of mass enthalpy of the phase at constant tem-
perature.

dH_mass_dP_T([prop]) Method to calculate and return the pressure deriva-
tive of mass enthalpy of the phase at constant tem-
perature.

dH_mass_dP_V([prop]) Method to calculate and return the pressure derivative
of mass enthalpy of the phase at constant volume.

dH_mass_dT([prop]) Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
pressure.

dH_mass_dT_P([prop]) Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
pressure.

dH_mass_dT_V([prop]) Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
volume.

dH_mass_dV_P([prop]) Method to calculate and return the volume derivative
of mass enthalpy of the phase at constant pressure.

dH_mass_dV_T([prop]) Method to calculate and return the volume derivative
of mass enthalpy of the phase at constant tempera-
ture.

dP_dP_A([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of pressure of the phase at constant Helmholtz energy.

dP_dP_G([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of pressure of the phase at constant Gibbs energy.

dP_dP_H([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of pressure of the phase at constant enthalpy.

dP_dP_S([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of pressure of the phase at constant entropy.

dP_dP_T() Method to calculate and return the pressure derivative
of pressure of the phase at constant temperature.

dP_dP_U([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of pressure of the phase at constant internal energy.

dP_dP_V() Method to calculate and return the pressure derivative
of pressure of the phase at constant volume.

dP_dT() Method to calculate and return the first temperature
derivative of pressure of the phase.

dP_dT_A([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of pressure of the phase at constant
Helmholtz energy.

dP_dT_G([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of pressure of the phase at constant Gibbs
energy.

dP_dT_H([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of pressure of the phase at constant en-
thalpy.
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dP_dT_P() Method to calculate and return the temperature

derivative of temperature of the phase at constant
pressure.

dP_dT_S([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of pressure of the phase at constant en-
tropy.

dP_dT_U([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of pressure of the phase at constant internal
energy.

dP_dV() Method to calculate and return the first volume
derivative of pressure of the phase.

dP_dV_A([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of pressure of the phase at constant Helmholtz energy.

dP_dV_G([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of pressure of the phase at constant Gibbs energy.

dP_dV_H([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of pressure of the phase at constant enthalpy.

dP_dV_P() Method to calculate and return the volume derivative
of pressure of the phase at constant pressure.

dP_dV_S([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of pressure of the phase at constant entropy.

dP_dV_U([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of pressure of the phase at constant internal energy.

dP_drho() Method to calculate and return the molar density
derivative of pressure of the phase.

dP_drho_A([property, differentiate_by, ...]) Method to calculate and return the density derivative
of pressure of the phase at constant Helmholtz energy.

dP_drho_G([property, differentiate_by, ...]) Method to calculate and return the density derivative
of pressure of the phase at constant Gibbs energy.

dP_drho_H([property, differentiate_by, ...]) Method to calculate and return the density derivative
of pressure of the phase at constant enthalpy.

dP_drho_S([property, differentiate_by, ...]) Method to calculate and return the density derivative
of pressure of the phase at constant entropy.

dP_drho_U([property, differentiate_by, ...]) Method to calculate and return the density derivative
of pressure of the phase at constant internal energy.

dS_dP_T() Method to calculate and return the pressure derivative
of entropy of the phase at constant pressure.

dS_dV_P() Method to calculate and return the volume derivative
of entropy of the phase at constant pressure.

dS_dV_T() Method to calculate and return the volume derivative
of entropy of the phase at constant temperature.

dS_dns() Method to calculate and return the mole number
derivative of the entropy of the phase.

dS_mass_dP([prop]) Method to calculate and return the pressure derivative
of mass entropy of the phase at constant temperature.

dS_mass_dP_T([prop]) Method to calculate and return the pressure derivative
of mass entropy of the phase at constant temperature.

dS_mass_dP_V([prop]) Method to calculate and return the pressure derivative
of mass entropy of the phase at constant volume.

continues on next page

618 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Table 80 – continued from previous page
dS_mass_dT([prop]) Method to calculate and return the temperature

derivative of mass entropy of the phase at constant
pressure.

dS_mass_dT_P([prop]) Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
pressure.

dS_mass_dT_V([prop]) Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
volume.

dS_mass_dV_P([prop]) Method to calculate and return the volume derivative
of mass entropy of the phase at constant pressure.

dS_mass_dV_T([prop]) Method to calculate and return the volume derivative
of mass entropy of the phase at constant temperature.

dT_dP() Method to calculate and return the constant-volume
pressure derivative of temperature of the phase.

dT_dP_A([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_dP_G([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of temperature of the phase at constant Gibbs energy.

dT_dP_H([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of temperature of the phase at constant enthalpy.

dT_dP_S([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of temperature of the phase at constant entropy.

dT_dP_T() Method to calculate and return the pressure derivative
of temperature of the phase at constant temperature.

dT_dP_U([property, differentiate_by, ...]) Method to calculate and return the pressure deriva-
tive of temperature of the phase at constant internal
energy.

dT_dP_V() Method to calculate and return the constant-volume
pressure derivative of temperature of the phase.

dT_dT_A([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of temperature of the phase at constant
Helmholtz energy.

dT_dT_G([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of temperature of the phase at constant
Gibbs energy.

dT_dT_H([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of temperature of the phase at constant en-
thalpy.

dT_dT_P() Method to calculate and return the temperature
derivative of temperature of the phase at constant
pressure.

dT_dT_S([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of temperature of the phase at constant en-
tropy.

dT_dT_U([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of temperature of the phase at constant in-
ternal energy.
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dT_dT_V() Method to calculate and return the temperature

derivative of temperature of the phase at constant vol-
ume.

dT_dV() Method to calculate and return the constant-pressure
volume derivative of temperature of the phase.

dT_dV_A([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_dV_G([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of temperature of the phase at constant Gibbs energy.

dT_dV_H([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of temperature of the phase at constant enthalpy.

dT_dV_P() Method to calculate and return the constant-pressure
volume derivative of temperature of the phase.

dT_dV_S([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of temperature of the phase at constant entropy.

dT_dV_T() Method to calculate and return the volume derivative
of temperature of the phase at constant temperature.

dT_dV_U([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of temperature of the phase at constant internal en-
ergy.

dT_drho() Method to calculate and return the molar density
derivative of temperature of the phase.

dT_drho_A([property, differentiate_by, ...]) Method to calculate and return the density derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_drho_G([property, differentiate_by, ...]) Method to calculate and return the density derivative
of temperature of the phase at constant Gibbs energy.

dT_drho_H([property, differentiate_by, ...]) Method to calculate and return the density derivative
of temperature of the phase at constant enthalpy.

dT_drho_S([property, differentiate_by, ...]) Method to calculate and return the density derivative
of temperature of the phase at constant entropy.

dT_drho_U([property, differentiate_by, ...]) Method to calculate and return the density derivative
of temperature of the phase at constant internal en-
ergy.

dU_dP() Method to calculate and return the constant-
temperature pressure derivative of internal energy.

dU_dP_T() Method to calculate and return the constant-
temperature pressure derivative of internal energy.

dU_dP_V() Method to calculate and return the constant-volume
pressure derivative of internal energy.

dU_dT() Method to calculate and return the constant-pressure
temperature derivative of internal energy.

dU_dT_P() Method to calculate and return the constant-pressure
temperature derivative of internal energy.

dU_dT_V() Method to calculate and return the constant-volume
temperature derivative of internal energy.

dU_dV_P() Method to calculate and return the constant-pressure
volume derivative of internal energy.

dU_dV_T() Method to calculate and return the constant-
temperature volume derivative of internal energy.
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dU_mass_dP([prop]) Method to calculate and return the pressure deriva-

tive of mass internal energy of the phase at constant
temperature.

dU_mass_dP_T([prop]) Method to calculate and return the pressure deriva-
tive of mass internal energy of the phase at constant
temperature.

dU_mass_dP_V([prop]) Method to calculate and return the pressure deriva-
tive of mass internal energy of the phase at constant
volume.

dU_mass_dT([prop]) Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant pressure.

dU_mass_dT_P([prop]) Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant pressure.

dU_mass_dT_V([prop]) Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant volume.

dU_mass_dV_P([prop]) Method to calculate and return the volume derivative
of mass internal energy of the phase at constant pres-
sure.

dU_mass_dV_T([prop]) Method to calculate and return the volume derivative
of mass internal energy of the phase at constant tem-
perature.

dV_dP() Method to calculate and return the constant-
temperature pressure derivative of volume of the
phase.

dV_dP_A([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of volume of the phase at constant Helmholtz energy.

dV_dP_G([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of volume of the phase at constant Gibbs energy.

dV_dP_H([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of volume of the phase at constant enthalpy.

dV_dP_S([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of volume of the phase at constant entropy.

dV_dP_T() Method to calculate and return the constant-
temperature pressure derivative of volume of the
phase.

dV_dP_U([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of volume of the phase at constant internal energy.

dV_dP_V() Method to calculate and return the volume derivative
of pressure of the phase at constant volume.

dV_dT() Method to calculate and return the constant-pressure
temperature derivative of volume of the phase.

dV_dT_A([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of volume of the phase at constant
Helmholtz energy.

dV_dT_G([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of volume of the phase at constant Gibbs
energy.
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dV_dT_H([property, differentiate_by, ...]) Method to calculate and return the temperature

derivative of volume of the phase at constant en-
thalpy.

dV_dT_P() Method to calculate and return the constant-pressure
temperature derivative of volume of the phase.

dV_dT_S([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of volume of the phase at constant entropy.

dV_dT_U([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of volume of the phase at constant inter-
nal energy.

dV_dT_V() Method to calculate and return the temperature
derivative of volume of the phase at constant volume.

dV_dV_A([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of volume of the phase at constant Helmholtz energy.

dV_dV_G([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of volume of the phase at constant Gibbs energy.

dV_dV_H([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of volume of the phase at constant enthalpy.

dV_dV_P() Method to calculate and return the volume derivative
of volume of the phase at constant pressure.

dV_dV_S([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of volume of the phase at constant entropy.

dV_dV_T() Method to calculate and return the volume derivative
of volume of the phase at constant temperature.

dV_dV_U([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of volume of the phase at constant internal energy.

dV_dns() Method to calculate and return the mole number
derivatives of the molar volume V of the phase.

dV_drho_A([property, differentiate_by, ...]) Method to calculate and return the density derivative
of volume of the phase at constant Helmholtz energy.

dV_drho_G([property, differentiate_by, ...]) Method to calculate and return the density derivative
of volume of the phase at constant Gibbs energy.

dV_drho_H([property, differentiate_by, ...]) Method to calculate and return the density derivative
of volume of the phase at constant enthalpy.

dV_drho_S([property, differentiate_by, ...]) Method to calculate and return the density derivative
of volume of the phase at constant entropy.

dV_drho_U([property, differentiate_by, ...]) Method to calculate and return the density derivative
of volume of the phase at constant internal energy.

dZ_dP() Method to calculate and return the pressure derivative
of compressibility of the phase.

dZ_dT() Method to calculate and return the temperature
derivative of compressibility of the phase.

dZ_dV() Method to calculate and return the volume derivative
of compressibility of the phase.

dZ_dns() Method to calculate and return the mole number
derivatives of the compressibility factor Z of the
phase.

dZ_dzs() Method to calculate and return the mole fraction
derivatives of the compressibility factor Z of the
phase.
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dfugacities_dP() Method to calculate and return the pressure derivative

of the fugacities of the components in the phase.
dfugacities_dT() Method to calculate and return the temperature

derivative of fugacities of the phase.
dfugacities_dns() Method to calculate and return the mole number

derivative of the fugacities of the components in the
phase.

dfugacity_dP() Method to calculate and return the pressure deriva-
tive of fugacity of the phase; provided the phase is 1
component.

dfugacity_dT() Method to calculate and return the temperature
derivative of fugacity of the phase; provided the
phase is 1 component.

disobaric_expansion_dP() Method to calculate and return the pressure derivative
of isobatic expansion coefficient of the phase.

disobaric_expansion_dT() Method to calculate and return the temperature
derivative of isobatic expansion coefficient of the
phase.

disothermal_compressibility_dT() Method to calculate and return the temperature
derivative of isothermal compressibility of the phase.

dkappa_dT() Method to calculate and return the temperature
derivative of isothermal compressibility of the phase.

dlnfugacities_dns() Method to calculate and return the mole number
derivative of the log of fugacities of the components
in the phase.

dlnfugacities_dzs() Method to calculate and return the mole fraction
derivative of the log of fugacities of the components
in the phase.

dlnphis_dP() Method to calculate and return the pressure derivative
of the log of fugacity coefficients of each component
in the phase.

dlnphis_dT() Method to calculate and return the temperature
derivative of the log of fugacity coefficients of each
component in the phase.

dphis_dP() Method to calculate and return the pressure derivative
of fugacity coefficients of the phase.

dphis_dT() Method to calculate and return the temperature
derivative of fugacity coefficients of the phase.

dphis_dzs() Method to calculate and return the molar composition
derivative of fugacity coefficients of the phase.

drho_dP() Method to calculate and return the pressure derivative
of molar density of the phase.

drho_dP_A([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of density of the phase at constant Helmholtz energy.

drho_dP_G([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of density of the phase at constant Gibbs energy.

drho_dP_H([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of density of the phase at constant enthalpy.

drho_dP_S([property, differentiate_by, ...]) Method to calculate and return the pressure derivative
of density of the phase at constant entropy.
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drho_dP_U([property, differentiate_by, ...]) Method to calculate and return the pressure derivative

of density of the phase at constant internal energy.
drho_dT() Method to calculate and return the temperature

derivative of molar density of the phase.
drho_dT_A([property, differentiate_by, ...]) Method to calculate and return the temperature

derivative of density of the phase at constant
Helmholtz energy.

drho_dT_G([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of density of the phase at constant Gibbs
energy.

drho_dT_H([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of density of the phase at constant en-
thalpy.

drho_dT_S([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of density of the phase at constant entropy.

drho_dT_U([property, differentiate_by, ...]) Method to calculate and return the temperature
derivative of density of the phase at constant internal
energy.

drho_dT_V() Method to calculate and return the temperature
derivative of molar density of the phase at constant
volume.

drho_dV_A([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of density of the phase at constant Helmholtz energy.

drho_dV_G([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of density of the phase at constant Gibbs energy.

drho_dV_H([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of density of the phase at constant enthalpy.

drho_dV_S([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of density of the phase at constant entropy.

drho_dV_T() Method to calculate and return the volume derivative
of molar density of the phase.

drho_dV_U([property, differentiate_by, ...]) Method to calculate and return the volume derivative
of density of the phase at constant internal energy.

drho_drho_A([property, differentiate_by, ...]) Method to calculate and return the density derivative
of density of the phase at constant Helmholtz energy.

drho_drho_G([property, differentiate_by, ...]) Method to calculate and return the density derivative
of density of the phase at constant Gibbs energy.

drho_drho_H([property, differentiate_by, ...]) Method to calculate and return the density derivative
of density of the phase at constant enthalpy.

drho_drho_S([property, differentiate_by, ...]) Method to calculate and return the density derivative
of density of the phase at constant entropy.

drho_drho_U([property, differentiate_by, ...]) Method to calculate and return the density derivative
of density of the phase at constant internal energy.

drho_mass_dP() Method to calculate the mass density derivative with
respect to pressure, at constant temperature.

drho_mass_dT() Method to calculate the mass density derivative with
respect to temperature, at constant pressure.

dspeed_of_sound_dP_T() Method to calculate the pressure derivative of speed
of sound at constant temperature in molar units.

dspeed_of_sound_dT_P() Method to calculate the temperature derivative of
speed of sound at constant pressure in molar units.
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from_json(json_repr) Method to create a phase from a JSON serialization

of another phase.
fugacities() Method to calculate and return the fugacities of the

phase.
fugacities_at_zs(zs) Method to directly calculate the figacities at a differ-

ent composition than the current phase.
fugacities_lowest_Gibbs() Method to calculate and return the fugacities of the

phase.
fugacity() Method to calculate and return the fugacity of the

phase; provided the phase is 1 component.
gammas() Method to calculate and return the activity coeffi-

cients of the phase, [-].
isentropic_exponent() Method to calculate and return the real gas isentropic

exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

isentropic_exponent_PT() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃 (1−𝑘)𝑇 𝑘 = const.

isentropic_exponent_PV() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

isentropic_exponent_TV() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑇𝑉 𝑘−1 = const.

isobaric_expansion() Method to calculate and return the isobatic expansion
coefficient of the phase.

isothermal_bulk_modulus() Method to calculate and return the isothermal bulk
modulus of the phase.

isothermal_compressibility() Method to calculate and return the isothermal com-
pressibility of the phase.

kappa() Method to calculate and return the isothermal com-
pressibility of the phase.

lnfugacities() Method to calculate and return the log of fugacities
of the phase.

lnphi() Method to calculate and return the log of fugacity co-
efficient of the phase; provided the phase is 1 compo-
nent.

lnphis() Method to calculate and return the log of fugacity co-
efficients of each component in the phase.

lnphis_G_min() Method to calculate and return the log fugacity coef-
ficients of the phase.

lnphis_at_zs(zs) Method to directly calculate the log fugacity coef-
ficients at a different composition than the current
phase.

log_zs() Method to calculate and return the log of mole frac-
tions specified.

model_hash ([ignore_phase]) Method to compute a hash of a phase.
molar_water_content() Method to calculate and return the molar water con-

tent; this is the g/mol of the fluid which is coming
from water, [g/mol].

continues on next page

7.22. Phase Models (thermo.phases) 625



thermo Documentation, Release 0.2.20

Table 80 – continued from previous page
mu()

phi() Method to calculate and return the fugacity coeffi-
cient of the phase; provided the phase is 1 compo-
nent.

phis() Method to calculate and return the fugacity coeffi-
cients of the phase.

pseudo_Pc() Method to calculate and return the pseudocritical
pressure calculated using Kay's rule (linear mole
fractions):

pseudo_Tc() Method to calculate and return the pseudocritical
temperature calculated using Kay's rule (linear mole
fractions):

pseudo_Vc() Method to calculate and return the pseudocritical vol-
ume calculated using Kay's rule (linear mole frac-
tions):

pseudo_Zc() Method to calculate and return the pseudocritical
compressibility calculated using Kay's rule (linear
mole fractions):

rho() Method to calculate and return the molar density of
the phase.

rho_mass() Method to calculate and return mass density of the
phase.

rho_mass_liquid_ref () Method to calculate and return the liquid refer-
ence mass density according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

sigma() Calculate and return the surface tension of the phase.
speed_of_sound() Method to calculate and return the molar speed of

sound of the phase.
speed_of_sound_mass() Method to calculate and return the speed of sound of

the phase.
state_hash () Basic method to calculate a hash of the state of the

phase and its model parameters.
to(zs[, T, P, V]) Method to create a new Phase object with the same

constants as the existing Phase but at different condi-
tions.

to_TP_zs(T, P, zs) Method to create a new Phase object with the same
constants as the existing Phase but at a different T and
P.

value(name) Method to retrieve a property from a string.
ws() Method to calculate and return the mass fractions of

the phase, [-]
ws_no_water() Method to calculate and return the mass fractions of

all species in the phase, normalized to a water-free
basis (the mass fraction of water returned is zero).

zs_no_water() Method to calculate and return the mole fractions of
all species in the phase, normalized to a water-free
basis (the mole fraction of water returned is zero).
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A()
Method to calculate and return the Helmholtz energy of the phase.

𝐴 = 𝑈 − 𝑇𝑆

Returns
A [float] Helmholtz energy, [J/mol]

API()
Method to calculate and return the API of the phase.

API gravity =
141.5

SG
− 131.5

Returns
API [float] API of the fluid [-]

A_dep()
Method to calculate and return the departure Helmholtz energy of the phase.

𝐴𝑑𝑒𝑝 = 𝑈𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

Returns
A_dep [float] Departure Helmholtz energy, [J/mol]

A_formation_ideal_gas()
Method to calculate and return the ideal-gas Helmholtz energy of formation of the phase (as if the phase
was an ideal gas).

𝐴𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑈 𝑖𝑔

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇 𝑖𝑔
𝑟𝑒𝑓𝑆

𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

Returns
A_formation_ideal_gas [float] Helmholtz energy of formation of the phase on a reactive

basis as an ideal gas, [J/(mol)]

A_ideal_gas()
Method to calculate and return the ideal-gas Helmholtz energy of the phase.

𝐴𝑖𝑔 = 𝑈 𝑖𝑔 − 𝑇𝑆𝑖𝑔

Returns
A_ideal_gas [float] Ideal gas Helmholtz free energy, [J/(mol)]

A_mass()
Method to calculate and return mass Helmholtz energy of the phase.

𝐴𝑚𝑎𝑠𝑠 =
1000𝐴𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
A_mass [float] Mass Helmholtz energy, [J/(kg)]

A_reactive()
Method to calculate and return the Helmholtz free energy of the phase on a reactive basis.

𝐴𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑈𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇𝑆𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
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Returns
A_reactive [float] Helmholtz free energy of the phase on a reactive basis, [J/(mol)]

property CASs
CAS registration numbers for each component, [-].

Returns
CASs [list[str]] CAS registration numbers for each component, [-].

property Carcinogens
Status of each component in cancer causing registries, [-].

Returns
Carcinogens [list[dict]] Status of each component in cancer causing registries, [-].

property Ceilings
Ceiling exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Returns
Ceilings [list[tuple[(float, str)]]] Ceiling exposure limits to chemicals (and their units; ppm

or mg/m^3), [various].

Cp()
Method to calculate and return the constant-pressure heat capacity of the phase.

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

Cp_Cv_ratio()
Method to calculate and return the Cp/Cv ratio of the phase.

𝐶𝑝

𝐶𝑣

Returns
Cp_Cv_ratio [float] Cp/Cv ratio, [-]

Cp_Cv_ratio_ideal_gas()
Method to calculate and return the ratio of the ideal-gas heat capacity to its constant-volume heat capacity.

𝐶𝑖𝑔
𝑝

𝐶𝑖𝑔
𝑣

Returns
Cp_Cv_ratio_ideal_gas [float] Cp/Cv for the phase as an ideal gas, [-]

Cp_ideal_gas()
Method to calculate and return the ideal-gas heat capacity of the phase.

𝐶𝑖𝑔
𝑝 =

∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖

Returns
Cp [float] Ideal gas heat capacity, [J/(mol*K)]

Cp_mass()
Method to calculate and return mass constant pressure heat capacity of the phase.

𝐶𝑝𝑚𝑎𝑠𝑠 =
1000𝐶𝑝𝑚𝑜𝑙𝑎𝑟

𝑀𝑊
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Returns
Cp_mass [float] Mass heat capacity, [J/(kg*K)]

Cpgs_poly_fit = False

Cpig_integrals_over_T_pure()
Method to calculate and return the integrals of the ideal-gas heat capacities divided by temperature of every
component in the phase from a temperature of Phase.T_REF_IG to the system temperature. This method
is powered by the HeatCapacityGases objects, except when all components have the same heat capacity
form and a fast implementation has been written for it (currently only polynomials).

∆𝑆𝑖𝑔 =

∫︁ 𝑇

𝑇𝑟𝑒𝑓

𝐶𝑖𝑔
𝑝

𝑇
𝑑𝑇

Returns
dS_ig [list[float]] Integrals of ideal gas heat capacity over temperature from the reference

temperature to the system temperature, [J/(mol)]

Cpig_integrals_pure()
Method to calculate and return the integrals of the ideal-gas heat capacities of every component in the
phase from a temperature of Phase.T_REF_IG to the system temperature. This method is powered by
the HeatCapacityGases objects, except when all components have the same heat capacity form and a fast
implementation has been written for it (currently only polynomials).

∆𝐻𝑖𝑔 =

∫︁ 𝑇

𝑇𝑟𝑒𝑓

𝐶𝑖𝑔
𝑝 𝑑𝑇

Returns
dH_ig [list[float]] Integrals of ideal gas heat capacity from the reference temperature to the

system temperature, [J/(mol)]

Cpigs_pure()
Method to calculate and return the ideal-gas heat capacities of every component in the phase. This method
is powered by the HeatCapacityGases objects, except when all components have the same heat capacity
form and a fast implementation has been written for it (currently only polynomials).

Returns
Cp_ig [list[float]] Molar ideal gas heat capacities, [J/(mol*K)]

Cv()
Method to calculate and return the constant-volume heat capacity Cv of the phase.

𝐶𝑣 = 𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

+ 𝐶𝑝

Returns
Cv [float] Constant volume molar heat capacity, [J/(mol*K)]

Cv_dep()
Method to calculate and return the difference between the actual Cv and the ideal-gas constant volume heat
capacity 𝐶𝑖𝑔

𝑣 of the phase.

𝐶𝑑𝑒𝑝
𝑣 = 𝐶𝑣 − 𝐶𝑖𝑔

𝑣

Returns
Cv_dep [float] Departure ideal gas constant volume heat capacity, [J/(mol*K)]
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Cv_ideal_gas()
Method to calculate and return the ideal-gas constant volume heat capacity of the phase.

𝐶𝑖𝑔
𝑣 =

∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖 −𝑅

Returns
Cv [float] Ideal gas constant volume heat capacity, [J/(mol*K)]

Cv_mass()
Method to calculate and return mass constant volume heat capacity of the phase.

𝐶𝑣𝑚𝑎𝑠𝑠 =
1000𝐶𝑣𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
Cv_mass [float] Mass constant volume heat capacity, [J/(kg*K)]

G()
Method to calculate and return the Gibbs free energy of the phase.

𝐺 = 𝐻 − 𝑇𝑆

Returns
G [float] Gibbs free energy, [J/mol]

property GWPs
Global Warming Potentials for each component (impact/mass chemical)/(impact/mass CO2), [-].

Returns
GWPs [list[float]] Global Warming Potentials for each component (impact/mass chemi-

cal)/(impact/mass CO2), [-].

G_dep()
Method to calculate and return the departure Gibbs free energy of the phase.

𝐺𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑇𝑆𝑑𝑒𝑝

Returns
G_dep [float] Departure Gibbs free energy, [J/mol]

G_dep_phi_consistency()
Method to calculate and return a consistency check between departure Gibbs free energy, and the fugacity
coefficients.

𝐺from phi
𝑑𝑒𝑝 = 𝑅𝑇

∑︁
𝑖

𝑧𝑖𝜑𝑖

Returns
error [float] Relative consistency error |1 −𝐺from phi

𝑑𝑒𝑝 /𝐺implemented
𝑑𝑒𝑝 |, [-]

G_formation_ideal_gas()
Method to calculate and return the ideal-gas Gibbs free energy of formation of the phase (as if the phase
was an ideal gas).

𝐺𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑖𝑔

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇 𝑖𝑔
𝑟𝑒𝑓𝑆

𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
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Returns
G_formation_ideal_gas [float] Gibbs free energy of formation of the phase on a reactive

basis as an ideal gas, [J/(mol)]

G_ideal_gas()
Method to calculate and return the ideal-gas Gibbs free energy of the phase.

𝐺𝑖𝑔 = 𝐻𝑖𝑔 − 𝑇𝑆𝑖𝑔

Returns
G_ideal_gas [float] Ideal gas free energy, [J/(mol)]

G_mass()
Method to calculate and return mass Gibbs energy of the phase.

𝐺𝑚𝑎𝑠𝑠 =
1000𝐺𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
G_mass [float] Mass Gibbs energy, [J/(kg)]

G_min()
Method to calculate and return the Gibbs free energy of the phase.

𝐺 = 𝐻 − 𝑇𝑆

Returns
G [float] Gibbs free energy, [J/mol]

G_min_criteria()
Method to calculate and return the Gibbs energy criteria required for comparing phase stability. This cal-
culation can be faster than calculating the full Gibbs energy. For this comparison to work, all phases must
use the ideal gas basis.

𝐺criteria = 𝐺𝑑𝑒𝑝 +𝑅𝑇
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖

Returns
G_crit [float] Gibbs free energy like criteria [J/mol]

G_reactive()
Method to calculate and return the Gibbs free energy of the phase on a reactive basis.

𝐺𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇𝑆𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

Returns
G_reactive [float] Gibbs free energy of the phase on a reactive basis, [J/(mol)]

property Gfgs
Ideal gas standard molar Gibbs free energy of formation for each component, [J/mol].

Returns
Gfgs [list[float]] Ideal gas standard molar Gibbs free energy of formation for each compo-

nent, [J/mol].

property Gfgs_mass
Ideal gas standard Gibbs free energy of formation for each component, [J/kg].
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Returns
Gfgs_mass [list[float]] Ideal gas standard Gibbs free energy of formation for each compo-

nent, [J/kg].

H()
Method to calculate and return the enthalpy of the phase. The reference state for most subclasses is an
ideal-gas enthalpy of zero at 298.15 K and 101325 Pa.

Returns
H [float] Molar enthalpy, [J/(mol)]

H_C_ratio()
Method to calculate and return the atomic ratio of hydrogen atoms to carbon atoms, based on the current
composition of the phase.

Returns
H_C_ratio [float] H/C ratio on a molar basis, [-]

Notes

None is returned if no species are present that have carbon atoms.

H_C_ratio_mass()
Method to calculate and return the mass ratio of hydrogen atoms to carbon atoms, based on the current
composition of the phase.

Returns
H_C_ratio_mass [float] H/C ratio on a mass basis, [-]

Notes

None is returned if no species are present that have carbon atoms.

H_dep_phi_consistency()
Method to calculate and return a consistency check between departure enthalpy, and the fugacity coeffi-
cients’ temperature derivatives.

𝐻 from phi
𝑑𝑒𝑝 = −𝑅𝑇 2

∑︁
𝑖

𝑧𝑖
𝜕 ln𝜑𝑖
𝜕𝑇

Returns
error [float] Relative consistency error |1 −𝐻 from phi

𝑑𝑒𝑝 /𝐻 implemented
𝑑𝑒𝑝 |, [-]

H_formation_ideal_gas()
Method to calculate and return the ideal-gas enthalpy of formation of the phase (as if the phase was an ideal
gas).

𝐻𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =

∑︁
𝑖

𝑧𝑖𝐻𝑓,𝑖

Returns
H_formation_ideal_gas [float] Enthalpy of formation of the phase on a reactive basis as an

ideal gas, [J/mol]
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H_from_phi()
Method to calculate and return the enthalpy of the fluid as calculated from the ideal-gas enthalpy and the
the fugacity coefficients’ temperature derivatives.

𝐻 from phi = 𝐻𝑖𝑔 −𝑅𝑇 2
∑︁
𝑖

𝑧𝑖
𝜕 ln𝜑𝑖
𝜕𝑇

Returns
H [float] Enthalpy as calculated from fugacity coefficient temperature derivatives [J/mol]

H_ideal_gas()
Method to calculate and return the ideal-gas enthalpy of the phase.

𝐻𝑖𝑔 =
∑︁
𝑖

𝑧𝑖𝐻
𝑖𝑔
𝑖

Returns
H [float] Ideal gas enthalpy, [J/(mol)]

H_mass()
Method to calculate and return mass enthalpy of the phase.

𝐻𝑚𝑎𝑠𝑠 =
1000𝐻𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
H_mass [float] Mass enthalpy, [J/kg]

H_phi_consistency()
Method to calculate and return a consistency check between ideal gas enthalpy behavior, and the fugacity
coefficients and their temperature derivatives.

𝐻 from phi = 𝐻𝑖𝑔 −𝑅𝑇 2
∑︁
𝑖

𝑧𝑖
𝜕 ln𝜑𝑖
𝜕𝑇

Returns
error [float] Relative consistency error |1 −𝐻 from phi/𝐻 implemented|, [-]

H_reactive()
Method to calculate and return the enthalpy of the phase on a reactive basis, using the Hfs values of the
phase.

𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻 +
∑︁
𝑖

𝑧𝑖𝐻𝑓,𝑖

Returns
H_reactive [float] Enthalpy of the phase on a reactive basis, [J/mol]

Hc()
Method to calculate and return the molar ideal-gas higher heat of combustion of the object, [J/mol]

Returns
Hc [float] Molar higher heat of combustion, [J/(mol)]

Hc_lower()
Method to calculate and return the molar ideal-gas lower heat of combustion of the object, [J/mol]

Returns
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Hc_lower [float] Molar lower heat of combustion, [J/(mol)]

Hc_lower_mass()
Method to calculate and return the mass ideal-gas lower heat of combustion of the object, [J/mol]

Returns
Hc_lower_mass [float] Mass lower heat of combustion, [J/(kg)]

Hc_lower_normal()
Method to calculate and return the volumetric ideal-gas lower heat of combustion of the object using the
normal gas volume, [J/m^3]

Returns
Hc_lower_normal [float] Volumetric (normal) lower heat of combustion, [J/(m^3)]

Hc_lower_standard()
Method to calculate and return the volumetric ideal-gas lower heat of combustion of the object using the
standard gas volume, [J/m^3]

Returns
Hc_lower_standard [float] Volumetric (standard) lower heat of combustion, [J/(m^3)]

Hc_mass()
Method to calculate and return the mass ideal-gas higher heat of combustion of the object, [J/mol]

Returns
Hc_mass [float] Mass higher heat of combustion, [J/(kg)]

Hc_normal()
Method to calculate and return the volumetric ideal-gas higher heat of combustion of the object using the
normal gas volume, [J/m^3]

Returns
Hc_normal [float] Volumetric (normal) higher heat of combustion, [J/(m^3)]

Hc_standard()
Method to calculate and return the volumetric ideal-gas higher heat of combustion of the object using the
standard gas volume, [J/m^3]

Returns
Hc_normal [float] Volumetric (standard) higher heat of combustion, [J/(m^3)]

property Hcs
Higher standard molar heats of combustion for each component, [J/mol].

Returns
Hcs [list[float]] Higher standard molar heats of combustion for each component, [J/mol].

property Hcs_lower
Lower standard molar heats of combustion for each component, [J/mol].

Returns
Hcs_lower [list[float]] Lower standard molar heats of combustion for each component,

[J/mol].

property Hcs_lower_mass
Lower standard heats of combustion for each component, [J/kg].

Returns
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Hcs_lower_mass [list[float]] Lower standard heats of combustion for each component,
[J/kg].

property Hcs_mass
Higher standard heats of combustion for each component, [J/kg].

Returns
Hcs_mass [list[float]] Higher standard heats of combustion for each component, [J/kg].

property Hf_STPs
Standard state molar enthalpies of formation for each component, [J/mol].

Returns
Hf_STPs [list[float]] Standard state molar enthalpies of formation for each component,

[J/mol].

property Hf_STPs_mass
Standard state mass enthalpies of formation for each component, [J/kg].

Returns
Hf_STPs_mass [list[float]] Standard state mass enthalpies of formation for each component,

[J/kg].

property Hfgs
Ideal gas standard molar enthalpies of formation for each component, [J/mol].

Returns
Hfgs [list[float]] Ideal gas standard molar enthalpies of formation for each component,

[J/mol].

property Hfgs_mass
Ideal gas standard enthalpies of formation for each component, [J/kg].

Returns
Hfgs_mass [list[float]] Ideal gas standard enthalpies of formation for each component, [J/kg].

property Hfus_Tms
Molar heats of fusion for each component at their respective melting points, [J/mol].

Returns
Hfus_Tms [list[float]] Molar heats of fusion for each component at their respective melting

points, [J/mol].

property Hfus_Tms_mass
Heats of fusion for each component at their respective melting points, [J/kg].

Returns
Hfus_Tms_mass [list[float]] Heats of fusion for each component at their respective melting

points, [J/kg].

property Hsub_Tts
Heats of sublimation for each component at their respective triple points, [J/mol].

Returns
Hsub_Tts [list[float]] Heats of sublimation for each component at their respective triple

points, [J/mol].
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property Hsub_Tts_mass
Heats of sublimation for each component at their respective triple points, [J/kg].

Returns
Hsub_Tts_mass [list[float]] Heats of sublimation for each component at their respective

triple points, [J/kg].

property Hvap_298s
Molar heats of vaporization for each component at 298.15 K, [J/mol].

Returns
Hvap_298s [list[float]] Molar heats of vaporization for each component at 298.15 K, [J/mol].

property Hvap_298s_mass
Heats of vaporization for each component at 298.15 K, [J/kg].

Returns
Hvap_298s_mass [list[float]] Heats of vaporization for each component at 298.15 K, [J/kg].

property Hvap_Tbs
Molar heats of vaporization for each component at their respective normal boiling points, [J/mol].

Returns
Hvap_Tbs [list[float]] Molar heats of vaporization for each component at their respective

normal boiling points, [J/mol].

property Hvap_Tbs_mass
Heats of vaporization for each component at their respective normal boiling points, [J/kg].

Returns
Hvap_Tbs_mass [list[float]] Heats of vaporization for each component at their respective

normal boiling points, [J/kg].

INCOMPRESSIBLE_CONST = 1e+30

property InChI_Keys
InChI Keys for each component, [-].

Returns
InChI_Keys [list[str]] InChI Keys for each component, [-].

property InChIs
InChI strings for each component, [-].

Returns
InChIs [list[str]] InChI strings for each component, [-].

Joule_Thomson()
Method to calculate and return the Joule-Thomson coefficient of the phase.

𝜇𝐽𝑇 =

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

=
1

𝐶𝑝

[︂
𝑇

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

− 𝑉

]︂
=

𝑉

𝐶𝑝
(𝛽𝑇 − 1)

Returns
mu_JT [float] Joule-Thomson coefficient [K/Pa]

property LFLs
Lower flammability limits for each component, [-].
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Returns
LFLs [list[float]] Lower flammability limits for each component, [-].

LOG_P_REF_IG = 11.52608845149651

MW()
Method to calculate and return molecular weight of the phase.

MW =
∑︁
𝑖

𝑧𝑖MW𝑖

Returns
MW [float] Molecular weight, [g/mol]

MW_inv()
Method to calculate and return inverse of molecular weight of the phase.

1

MW
=

1∑︀
𝑖 𝑧𝑖MW𝑖

Returns
MW_inv [float] Inverse of molecular weight, [mol/g]

property MWs
Similatiry variables for each component, [g/mol].

Returns
MWs [list[float]] Similatiry variables for each component, [g/mol].

property ODPs
Ozone Depletion Potentials for each component (impact/mass chemical)/(impact/mass CFC-11), [-].

Returns
ODPs [list[float]] Ozone Depletion Potentials for each component (impact/mass chemi-

cal)/(impact/mass CFC-11), [-].

PIP()
Method to calculate and return the phase identification parameter of the phase.

Π = 𝑉

[︃
𝜕2𝑃
𝜕𝑉 𝜕𝑇
𝜕𝑃
𝜕𝑇

−
𝜕2𝑃
𝜕𝑉 2

𝜕𝑃
𝜕𝑉

]︃

Returns
PIP [float] Phase identification parameter, [-]

property PSRK_groups
PSRK subgroup: count groups for each component, [-].

Returns
PSRK_groups [list[dict]] PSRK subgroup: count groups for each component, [-].

P_MAX_FIXED = 1000000000.0

P_MIN_FIXED = 0.01

P_REF_IG = 101325.0

P_REF_IG_INV = 9.869232667160129e-06

7.22. Phase Models (thermo.phases) 637



thermo Documentation, Release 0.2.20

P_max_at_V(V)
Dummy method. The idea behind this method, which is implemented by some subclasses, is to calculate
the maximum pressure the phase can create at a constant volume, if one exists; returns None otherwise.
This method, as a dummy method, always returns None.

Parameters
V [float] Constant molar volume, [m^3/mol]

Returns
P [float] Maximum possible isochoric pressure, [Pa]

P_transitions()
Dummy method. The idea behind this method is to calculate any pressures (at constant temperature) which
cause the phase properties to become discontinuous.

Returns
P_transitions [list[float]] Transition pressures, [Pa]

property Parachors
Parachors for each component, [N^0.25*m^2.75/mol].

Returns
Parachors [list[float]] Parachors for each component, [N^0.25*m^2.75/mol].

property Pcs
Critical pressures for each component, [Pa].

Returns
Pcs [list[float]] Critical pressures for each component, [Pa].

Pmc()
Method to calculate and return the mechanical critical pressure of the phase.

Returns
Pmc [float] Mechanical critical pressure, [Pa]

property Psat_298s
Vapor pressures for each component at 298.15 K, [Pa].

Returns
Psat_298s [list[float]] Vapor pressures for each component at 298.15 K, [Pa].

Psats_poly_fit = False

property Pts
Triple point pressures for each component, [Pa].

Returns
Pts [list[float]] Triple point pressures for each component, [Pa].

property PubChems
Pubchem IDs for each component, [-].

Returns
PubChems [list[int]] Pubchem IDs for each component, [-].

R = 8.31446261815324

R2 = 69.13028862866763
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property RI_Ts
Temperatures at which the refractive indexes were reported for each component, [K].

Returns
RI_Ts [list[float]] Temperatures at which the refractive indexes were reported for each com-

ponent, [K].

property RIs
Refractive indexes for each component, [-].

Returns
RIs [list[float]] Refractive indexes for each component, [-].

R_inv = 0.12027235504272604

S()
Method to calculate and return the entropy of the phase. The reference state for most subclasses is an
ideal-gas entropy of zero at 298.15 K and 101325 Pa.

Returns
S [float] Molar entropy, [J/(mol*K)]

property S0gs
Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component, [J/(mol*K)].

Returns
S0gs [list[float]] Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component,

[J/(mol*K)].

property S0gs_mass
Ideal gas absolute entropies at 298.15 K at 1 atm for each component, [J/(kg*K)].

Returns
S0gs_mass [list[float]] Ideal gas absolute entropies at 298.15 K at 1 atm for each component,

[J/(kg*K)].

SG()
Method to calculate and return the standard liquid specific gravity of the phase, using constant liquid pure
component densities not calculated by the phase object, at 60 °F.

Returns
SG [float] Specific gravity of the liquid, [-]

Notes

The reference density of water is from the IAPWS-95 standard - 999.0170824078306 kg/m^3.

SG_gas()
Method to calculate and return the specific gravity of the phase with respect to a gas reference density.

Returns
SG_gas [float] Specific gravity of the gas, [-]
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Notes

The reference molecular weight of air used is 28.9586 g/mol.

property STELs
Short term exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Returns
STELs [list[tuple[(float, str)]]] Short term exposure limits to chemicals (and their units; ppm

or mg/m^3), [various].

S_dep_phi_consistency()
Method to calculate and return a consistency check between ideal gas entropy behavior, and the fugacity
coefficients and their temperature derivatives.

𝑆from phi
𝑑𝑒𝑝 = −

∑︁
𝑖

𝑧𝑖𝑅

(︂
ln𝜑𝑖 + 𝑇

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
Returns

error [float] Relative consistency error |1 − 𝑆from phi
𝑑𝑒𝑝 /𝑆implemented

𝑑𝑒𝑝 |, [-]

S_formation_ideal_gas()
Method to calculate and return the ideal-gas entropy of formation of the phase (as if the phase was an ideal
gas).

𝑆𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =

∑︁
𝑖

𝑧𝑖𝑆𝑓,𝑖

Returns
S_formation_ideal_gas [float] Entropy of formation of the phase on a reactive basis as an

ideal gas, [J/(mol*K)]

S_from_phi()
Method to calculate and return the entropy of the fluid as calculated from the ideal-gas entropy and the the
fugacity coefficients’ temperature derivatives.

𝑆 = 𝑆𝑖𝑔 −
∑︁
𝑖

𝑧𝑖𝑅

(︂
ln𝜑𝑖 + 𝑇

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
Returns

S [float] Entropy as calculated from fugacity coefficient temperature derivatives [J/(mol*K)]

S_ideal_gas()
Method to calculate and return the ideal-gas entropy of the phase.

𝑆𝑖𝑔 =
∑︁
𝑖

𝑧𝑖𝑆
𝑖𝑔
𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−𝑅

∑︁
𝑖

𝑧𝑖 ln(𝑧𝑖)

Returns
S [float] Ideal gas molar entropy, [J/(mol*K)]

S_mass()
Method to calculate and return mass entropy of the phase.

𝑆𝑚𝑎𝑠𝑠 =
1000𝑆𝑚𝑜𝑙𝑎𝑟

𝑀𝑊
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Returns
S_mass [float] Mass enthalpy, [J/(kg*K)]

S_phi_consistency()
Method to calculate and return a consistency check between ideal gas entropy behavior, and the fugacity
coefficients and their temperature derivatives.

𝑆 = 𝑆𝑖𝑔 −
∑︁
𝑖

𝑧𝑖𝑅

(︂
ln𝜑𝑖 + 𝑇

𝜕 ln𝜑𝑖
𝜕𝑇

)︂
Returns

error [float] Relative consistency error |1 − 𝑆from phi/𝑆implemented|, [-]

S_reactive()
Method to calculate and return the entropy of the phase on a reactive basis, using the Sfs values of the phase.

𝑆𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑆 +
∑︁
𝑖

𝑧𝑖𝑆𝑓,𝑖

Returns
S_reactive [float] Entropy of the phase on a reactive basis, [J/(mol*K)]

property Sfgs
Ideal gas standard molar entropies of formation for each component, [J/(mol*K)].

Returns
Sfgs [list[float]] Ideal gas standard molar entropies of formation for each component,

[J/(mol*K)].

property Sfgs_mass
Ideal gas standard entropies of formation for each component, [J/(kg*K)].

Returns
Sfgs_mass [list[float]] Ideal gas standard entropies of formation for each component,

[J/(kg*K)].

property Skins
Whether each compound can be absorbed through the skin or not, [-].

Returns
Skins [list[bool]] Whether each compound can be absorbed through the skin or not, [-].

property StielPolars
Stiel polar factors for each component, [-].

Returns
StielPolars [list[float]] Stiel polar factors for each component, [-].

property Stockmayers
Lennard-Jones Stockmayer parameters (depth of potential-energy minimum over k) for each component,
[K].

Returns
Stockmayers [list[float]] Lennard-Jones Stockmayer parameters (depth of potential-energy

minimum over k) for each component, [K].

property TWAs
Time-weighted average exposure limits to chemicals (and their units; ppm or mg/m^3), [various].
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Returns
TWAs [list[tuple[(float, str)]]] Time-weighted average exposure limits to chemicals (and

their units; ppm or mg/m^3), [various].

T_MAX_FIXED = 10000.0

T_MIN_FIXED = 0.001

T_MIN_FLASH = 1e-300

T_REF_IG = 298.15

T_REF_IG_INV = 0.0033540164346805303
The numerical inverse of T_REF_IG , stored to save a division.

T_max_at_V(V)
Method to calculate the maximum temperature the phase can create at a constant volume, if one exists;
returns None otherwise.

Parameters
V [float] Constant molar volume, [m^3/mol]

Pmax [float] Maximum possible isochoric pressure, if already known [Pa]

Returns
T [float] Maximum possible temperature, [K]

property Tautoignitions
Autoignition temperatures for each component, [K].

Returns
Tautoignitions [list[float]] Autoignition temperatures for each component, [K].

property Tbs
Boiling temperatures for each component, [K].

Returns
Tbs [list[float]] Boiling temperatures for each component, [K].

property Tcs
Critical temperatures for each component, [K].

Returns
Tcs [list[float]] Critical temperatures for each component, [K].

property Tflashs
Flash point temperatures for each component, [K].

Returns
Tflashs [list[float]] Flash point temperatures for each component, [K].

Tmc()
Method to calculate and return the mechanical critical temperature of the phase.

Returns
Tmc [float] Mechanical critical temperature, [K]

property Tms
Melting temperatures for each component, [K].
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Returns
Tms [list[float]] Melting temperatures for each component, [K].

property Tts
Triple point temperatures for each component, [K].

Returns
Tts [list[float]] Triple point temperatures for each component, [K].

U()
Method to calculate and return the internal energy of the phase.

𝑈 = 𝐻 − 𝑃𝑉

Returns
U [float] Internal energy, [J/mol]

property UFLs
Upper flammability limits for each component, [-].

Returns
UFLs [list[float]] Upper flammability limits for each component, [-].

property UNIFAC_Dortmund_groups
UNIFAC_Dortmund_group: count groups for each component, [-].

Returns
UNIFAC_Dortmund_groups [list[dict]] UNIFAC_Dortmund_group: count groups for

each component, [-].

property UNIFAC_Qs
UNIFAC Q parameters for each component, [-].

Returns
UNIFAC_Qs [list[float]] UNIFAC Q parameters for each component, [-].

property UNIFAC_Rs
UNIFAC R parameters for each component, [-].

Returns
UNIFAC_Rs [list[float]] UNIFAC R parameters for each component, [-].

property UNIFAC_groups
UNIFAC_group: count groups for each component, [-].

Returns
UNIFAC_groups [list[dict]] UNIFAC_group: count groups for each component, [-].

U_dep()
Method to calculate and return the departure internal energy of the phase.

𝑈𝑑𝑒𝑝 = 𝐻𝑑𝑒𝑝 − 𝑃𝑉𝑑𝑒𝑝

Returns
U_dep [float] Departure internal energy, [J/mol]
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U_formation_ideal_gas()
Method to calculate and return the ideal-gas internal energy of formation of the phase (as if the phase was
an ideal gas).

𝑈 𝑖𝑔
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑖𝑔

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑃 𝑖𝑔
𝑟𝑒𝑓𝑉

𝑖𝑔

Returns
U_formation_ideal_gas [float] Internal energy of formation of the phase on a reactive basis

as an ideal gas, [J/(mol)]

U_ideal_gas()
Method to calculate and return the ideal-gas internal energy of the phase.

𝑈 𝑖𝑔 = 𝐻𝑖𝑔 − 𝑃𝑉 𝑖𝑔

Returns
U_ideal_gas [float] Ideal gas internal energy, [J/(mol)]

U_mass()
Method to calculate and return mass internal energy of the phase.

𝑈𝑚𝑎𝑠𝑠 =
1000𝑈𝑚𝑜𝑙𝑎𝑟

𝑀𝑊

Returns
U_mass [float] Mass internal energy, [J/(kg)]

U_reactive()
Method to calculate and return the internal energy of the phase on a reactive basis.

𝑈𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑃𝑉

Returns
U_reactive [float] Internal energy of the phase on a reactive basis, [J/(mol)]

V()
Method to return the molar volume of the phase.

Returns
V [float] Molar volume, [m^3/mol]

property VF
Method to return the vapor fraction of the phase. If no vapor/gas is present, 0 is always returned. This
method is only available when the phase is linked to an EquilibriumState.

Returns
VF [float] Vapor fraction, [-]

V_MAX_FIXED = 1000000000.0

V_MIN_FIXED = 1e-09

V_dep()
Method to calculate and return the departure (from ideal gas behavior) molar volume of the phase.

𝑉𝑑𝑒𝑝 = 𝑉 − 𝑅𝑇

𝑃

Returns
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V_dep [float] Departure molar volume, [m^3/mol]

V_from_phi()
Method to calculate and return the molar volume of the fluid as calculated from the pressure derivatives of
fugacity coefficients.

𝑉 from phi P der =

(︃(︃∑︁
𝑖

𝑧𝑖
𝜕 ln𝜑𝑖
𝜕𝑃

)︃
𝑃 + 1

)︃
𝑅𝑇/𝑃

Returns
V [float] Molar volume, [m^3/mol]

V_gas()
Method to calculate and return the ideal-gas molar volume of the phase at the chosen reference temperature
and pressure, according to the temperature variable T_gas_ref and pressure variable P_gas_ref of the
thermo.bulk.BulkSettings.

𝑉 𝑖𝑔 =
𝑅𝑇𝑟𝑒𝑓
𝑃𝑟𝑒𝑓

Returns
V_gas [float] Ideal gas molar volume at the reference temperature and pressure, [m^3/mol]

V_gas_normal()
Method to calculate and return the ideal-gas molar volume of the phase at the normal temperature and
pressure, according to the temperature variable T_normal and pressure variable P_normal of the thermo.
bulk.BulkSettings.

𝑉 𝑖𝑔 =
𝑅𝑇𝑛𝑜𝑟𝑚
𝑃𝑛𝑜𝑟𝑚

Returns
V_gas_normal [float] Ideal gas molar volume at normal temperature and pressure,

[m^3/mol]

V_gas_standard()
Method to calculate and return the ideal-gas molar volume of the phase at the standard temperature and pres-
sure, according to the temperature variable T_standard and pressure variable P_standard of the thermo.
bulk.BulkSettings.

𝑉 𝑖𝑔 =
𝑅𝑇𝑠𝑡𝑑
𝑃𝑠𝑡𝑑

Returns
V_gas_standard [float] Ideal gas molar volume at standard temperature and pressure,

[m^3/mol]

V_ideal_gas()
Method to calculate and return the ideal-gas molar volume of the phase.

𝑉 𝑖𝑔 =
𝑅𝑇

𝑃

Returns
V [float] Ideal gas molar volume, [m^3/mol]
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V_iter(force=False)
Method to calculate and return the volume of the phase in a way suitable for a TV resolution to converge
on the same pressure. This often means the return value of this method is an mpmath mpf. This dummy
method simply returns the implemented V method.

Returns
V [float or mpf] Molar volume, [m^3/mol]

V_liquid_ref()
Method to calculate and return the liquid reference molar volume according to the temperature variable
T_liquid_volume_ref of thermo.bulk.BulkSettings and the composition of the phase.

𝑉 =
∑︁
𝑖

𝑧𝑖𝑉𝑖

Returns
V_liquid_ref [float] Liquid molar volume at the reference condition, [m^3/mol]

V_mass()
Method to calculate and return the specific volume of the phase.

𝑉𝑚𝑎𝑠𝑠 =
1000 · 𝑉𝑀
𝑀𝑊

Returns
V_mass [float] Specific volume of the phase, [m^3/kg]

V_phi_consistency()
Method to calculate and return a consistency check between molar volume, and the fugacity coefficients’
pressures derivatives.

𝑉 from phi P der =

(︃(︃∑︁
𝑖

𝑧𝑖
𝜕 ln𝜑𝑖
𝜕𝑃

)︃
𝑃 + 1

)︃
𝑅𝑇/𝑃

Returns
error [float] Relative consistency error |1 − 𝑉 from phi P der/𝑉 implemented|, [-]

property Van_der_Waals_areas
Unnormalized Van der Waals areas for each component, [m^2/mol].

Returns
Van_der_Waals_areas [list[float]] Unnormalized Van der Waals areas for each component,

[m^2/mol].

property Van_der_Waals_volumes
Unnormalized Van der Waals volumes for each component, [m^3/mol].

Returns
Van_der_Waals_volumes [list[float]] Unnormalized Van der Waals volumes for each com-

ponent, [m^3/mol].

property Vcs
Critical molar volumes for each component, [m^3/mol].

Returns
Vcs [list[float]] Critical molar volumes for each component, [m^3/mol].

646 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Vfgs()
Method to calculate and return the ideal-gas volume fractions of the components of the phase. This is the
same as the mole fractions.

Returns
Vfgs [list[float]] Ideal-gas volume fractions of the components of the phase, [-]

Vfls()
Method to calculate and return the ideal-liquid volume fractions of the components of the phase, us-
ing the standard liquid densities at the temperature variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

Returns
Vfls [list[float]] Ideal-liquid volume fractions of the components of the phase, [-]

Vmc()
Method to calculate and return the mechanical critical volume of the phase.

Returns
Vmc [float] Mechanical critical volume, [m^3/mol]

property Vmg_STPs
Gas molar volumes for each component at STP; metastable if normally another state, [m^3/mol].

Returns
Vmg_STPs [list[float]] Gas molar volumes for each component at STP; metastable if nor-

mally another state, [m^3/mol].

property Vml_60Fs
Liquid molar volumes for each component at 60 °F, [m^3/mol].

Returns
Vml_60Fs [list[float]] Liquid molar volumes for each component at 60 °F, [m^3/mol].

property Vml_STPs
Liquid molar volumes for each component at STP, [m^3/mol].

Returns
Vml_STPs [list[float]] Liquid molar volumes for each component at STP, [m^3/mol].

property Vml_Tms
Liquid molar volumes for each component at their respective melting points, [m^3/mol].

Returns
Vml_Tms [list[float]] Liquid molar volumes for each component at their respective melting

points, [m^3/mol].

property Vms_Tms
Solid molar volumes for each component at their respective melting points, [m^3/mol].

Returns
Vms_Tms [list[float]] Solid molar volumes for each component at their respective melting

points, [m^3/mol].
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Wobbe_index()
Method to calculate and return the molar Wobbe index of the object, [J/mol].

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index [float] Molar Wobbe index, [J/(mol)]

Wobbe_index_lower()

Method to calculate and return the molar lower Wobbe index of the object, [J/mol].

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower [float] Molar lower Wobbe index, [J/(mol)]

Wobbe_index_lower_mass()
Method to calculate and return the lower mass Wobbe index of the object, [J/kg].

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower_mass [float] Mass lower Wobbe index, [J/(kg)]

Wobbe_index_lower_normal()
Method to calculate and return the volumetric normal lower Wobbe index of the object, [J/m^3]. The
normal gas volume is used in this calculation.

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower_normal [float] Volumetric normal lower Wobbe index, [J/(m^3)]

Wobbe_index_lower_standard()
Method to calculate and return the volumetric standard lower Wobbe index of the object, [J/m^3]. The
standard gas volume is used in this calculation.

𝐼𝑊 =
𝐻 𝑙𝑜𝑤𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_lower_standard [float] Volumetric standard lower Wobbe index, [J/(m^3)]

Wobbe_index_mass()
Method to calculate and return the mass Wobbe index of the object, [J/kg].

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_mass [float] Mass Wobbe index, [J/(kg)]
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Wobbe_index_normal()
Method to calculate and return the volumetric normal Wobbe index of the object, [J/m^3]. The normal gas
volume is used in this calculation.

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index [float] Volumetric normal Wobbe index, [J/(m^3)]

Wobbe_index_standard()
Method to calculate and return the volumetric standard Wobbe index of the object, [J/m^3]. The standard
gas volume is used in this calculation.

𝐼𝑊 =
𝐻ℎ𝑖𝑔ℎ𝑒𝑟

𝑐𝑜𝑚𝑏√
SG

Returns
Wobbe_index_standard [float] Volumetric standard Wobbe index, [J/(m^3)]

Z()
Method to calculate and return the compressibility factor of the phase.

𝑍 =
𝑃𝑉

𝑅𝑇

Returns
Z [float] Compressibility factor, [-]

property Zcs
Critical compressibilities for each component, [-].

Returns
Zcs [list[float]] Critical compressibilities for each component, [-].

Zmc()
Method to calculate and return the mechanical critical compressibility of the phase.

Returns
Zmc [float] Mechanical critical compressibility, [-]

__eq__(other)
Return self==value.

__hash__()
Method to calculate and return a hash representing the exact state of the object.

Returns
hash [int] Hash of the object, [-]

activities()
Method to calculate and return the activities of each component in the phase [-].

𝑎𝑖(𝑇, 𝑃, 𝑥; 𝑓0𝑖 ) =
𝑓𝑖(𝑇, 𝑃, 𝑥)

𝑓0𝑖 (𝑇, 𝑃 0
𝑖 )

Returns
activities [list[float]] Activities, [-]
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as_json()
Method to create a JSON-friendly serialization of the phase which can be stored, and reloaded later.

Returns
json_repr [dict] JSON-friendly representation, [-]

Examples

>>> import json
>>> from thermo import IAPWS95Liquid
>>> phase = IAPWS95Liquid(T=300, P=1e5, zs=[1])
>>> new_phase = Phase.from_json(json.loads(json.dumps(phase.as_json())))
>>> assert phase == new_phase

atom_fractions()
Method to calculate and return the atomic composition of the phase; returns a dictionary of atom fraction
(by count), containing only those elements who are present.

Returns
atom_fractions [dict[str: float]] Atom fractions, [-]

atom_mass_fractions()
Method to calculate and return the atomic mass fractions of the phase; returns a dictionary of atom fraction
(by mass), containing only those elements who are present.

Returns
atom_mass_fractions [dict[str: float]] Atom mass fractions, [-]

property atomss
Breakdown of each component into its elements and their counts, as a dict, [-].

Returns
atomss [list[dict]] Breakdown of each component into its elements and their counts, as a dict,

[-].

property beta
Method to return the phase fraction of this phase. This method is only available when the phase is linked
to an EquilibriumState.

Returns
beta [float] Phase fraction on a molar basis, [-]

property beta_mass
Method to return the mass phase fraction of this phase. This method is only available when the phase is
linked to an EquilibriumState.

Returns
beta_mass [float] Phase fraction on a mass basis, [-]

property beta_volume
Method to return the volumetric phase fraction of this phase. This method is only available when the phase
is linked to an EquilibriumState.

Returns
beta_volume [float] Phase fraction on a volumetric basis, [-]
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property charges
Charge number (valence) for each component, [-].

Returns
charges [list[float]] Charge number (valence) for each component, [-].

chemical_potential()
Method to calculate and return the chemical potentials of each component in the phase [-]. For a pure
substance, this is the molar Gibbs energy on a reactive basis.

𝜕𝐺

𝜕𝑛𝑖 𝑇,𝑃,𝑁𝑗 ̸=𝑖

Returns
chemical_potential [list[float]] Chemical potentials, [J/mol]

composition_independent = False

property conductivities
Electrical conductivities for each component, [S/m].

Returns
conductivities [list[float]] Electrical conductivities for each component, [S/m].

property conductivity_Ts
Temperatures at which the electrical conductivities for each component were measured, [K].

Returns
conductivity_Ts [list[float]] Temperatures at which the electrical conductivities for each

component were measured, [K].

d2P_dT2()
Method to calculate and return the second temperature derivative of pressure of the phase.

Returns
d2P_dT2 [float] Second temperature derivative of pressure, [Pa/K^2]

d2P_dTdV()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the phase.

Returns
d2P_dTdV [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_dTdrho()
Method to calculate and return the temperature derivative and then molar density derivative of the pressure
of the phase.

𝜕2𝑃

𝜕𝑇𝜕𝜌
= −𝑉 2

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂
Returns

d2P_dTdrho [float] Temperature derivative and then molar density derivative of the pres-
sure, [Pa*m^3/(K*mol)]

d2P_dV2()
Method to calculate and return the second volume derivative of pressure of the phase.

Returns
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d2P_dV2 [float] Second volume derivative of pressure, [Pa*mol^2/m^6]

d2P_dVdT()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the phase. This is an alias of d2P_dTdV.

𝜕2𝑃

𝜕𝑉 𝜕𝑇

Returns
d2P_dVdT [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_drho2()
Method to calculate and return the second molar density derivative of pressure of the phase.

𝜕2𝑃

𝜕𝜌2
= −𝑉 2

(︂
−𝑉 2

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

− 2𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

)︂
Returns

d2P_drho2 [float] Second molar density derivative of pressure, [Pa*m^6/mol^2]

d2T_dP2()
Method to calculate and return the constant-volume second pressure derivative of temperature of the phase.(︂

𝜕2𝑇

𝜕𝑃 2

)︂
𝑉

= −
(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑇

𝜕𝑃

)︂3

𝑉

Returns
d2T_dP2 [float] Constant-volume second pressure derivative of temperature, [K/Pa^2]

d2T_dP2_V()
Method to calculate and return the constant-volume second pressure derivative of temperature of the phase.(︂

𝜕2𝑇

𝜕𝑃 2

)︂
𝑉

= −
(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑇

𝜕𝑃

)︂3

𝑉

Returns
d2T_dP2 [float] Constant-volume second pressure derivative of temperature, [K/Pa^2]

d2T_dPdV()
Method to calculate and return the derivative of pressure and then the derivative of volume of temperature
of the phase. (︂

𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

Returns
d2T_dPdV [float] Derivative of pressure and then the derivative of volume of temperature,

[K*mol/(Pa*m^3)]

d2T_dPdrho()
Method to calculate and return the pressure derivative and then molar density derivative of the temperature
of the phase.

𝜕2𝑇

𝜕𝑃𝜕𝜌
= −𝑉 2

(︂
𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
Returns
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d2T_dPdrho [float] Pressure derivative and then molar density derivative of the temperature,
[K*m^3/(Pa*mol)]

d2T_dV2()
Method to calculate and return the constant-pressure second volume derivative of temperature of the phase.(︂
𝜕2𝑇

𝜕𝑉 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑇

)︂−2

𝑉

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
d2T_dV2 [float] Constant-pressure second volume derivative of temperature,

[K*mol^2/m^6]

d2T_dV2_P()
Method to calculate and return the constant-pressure second volume derivative of temperature of the phase.(︂
𝜕2𝑇

𝜕𝑉 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑇

)︂−2

𝑉

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
d2T_dV2 [float] Constant-pressure second volume derivative of temperature,

[K*mol^2/m^6]

d2T_dVdP()
Method to calculate and return the derivative of pressure and then the derivative of volume of temperature
of the phase. (︂

𝜕2𝑇

𝜕𝑃𝜕𝑉

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

−
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

(︂
𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

]︂(︂
𝜕𝑃

𝜕𝑇

)︂−3

𝑉

Returns
d2T_dPdV [float] Derivative of pressure and then the derivative of volume of temperature,

[K*mol/(Pa*m^3)]

d2T_drho2()
Method to calculate and return the second molar density derivative of temperature of the phase.

𝜕2𝑇

𝜕𝜌2
= −𝑉 2

(︂
−𝑉 2

(︂
𝜕2𝑇

𝜕𝑉 2

)︂
𝑃

− 2𝑉

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

)︂
Returns

d2T_drho2 [float] Second molar density derivative of temperature, [K*m^6/mol^2]

d2V_dP2()
Method to calculate and return the constant-temperature pressure derivative of volume of the phase.

(︂
𝜕2𝑉

𝜕𝑃 2

)︂
𝑇

= −

(︁
𝜕2𝑃
𝜕𝑉 2

)︁
𝑇(︀

𝜕𝑃
𝜕𝑉

)︀3
𝑇

Returns
d2V_dP2 [float] Constant-temperature pressure derivative of volume, [m^3/(mol*Pa^2)]

d2V_dP2_T()
Method to calculate and return the constant-temperature pressure derivative of volume of the phase.

(︂
𝜕2𝑉

𝜕𝑃 2

)︂
𝑇

= −

(︁
𝜕2𝑃
𝜕𝑉 2

)︁
𝑇(︀

𝜕𝑃
𝜕𝑉

)︀3
𝑇
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Returns
d2V_dP2 [float] Constant-temperature pressure derivative of volume, [m^3/(mol*Pa^2)]

d2V_dPdT()
Method to calculate and return the derivative of pressure and then the derivative of temperature of volume
of the phase. (︂

𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

Returns
d2V_dPdT [float] Derivative of pressure and then the derivative of temperature of volume,

[m^3/(mol*K*Pa)]

d2V_dT2()
Method to calculate and return the constant-pressure second temperature derivative of volume of the phase.(︂
𝜕2𝑉

𝜕𝑇 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑉

)︂−2

𝑇

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Returns
d2V_dT2 [float] Constant-pressure second temperature derivative of volume,

[m^3/(mol*K^2)]

d2V_dT2_P()
Method to calculate and return the constant-pressure second temperature derivative of volume of the phase.(︂
𝜕2𝑉

𝜕𝑇 2

)︂
𝑃

= −
[︂(︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂]︂(︂
𝜕𝑃

𝜕𝑉

)︂−2

𝑇

+

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Returns
d2V_dT2 [float] Constant-pressure second temperature derivative of volume,

[m^3/(mol*K^2)]

d2V_dTdP()
Method to calculate and return the derivative of pressure and then the derivative of temperature of volume
of the phase. (︂

𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
= −

[︂(︂
𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

−
(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

(︂
𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

]︂(︂
𝜕𝑃

𝜕𝑉

)︂−3

𝑇

Returns
d2V_dPdT [float] Derivative of pressure and then the derivative of temperature of volume,

[m^3/(mol*K*Pa)]

d2rho_dP2()
Method to calculate and return the second pressure derivative of molar density of the phase.

𝜕2𝜌

𝜕𝑃 2
= − 1

𝑉 2

(︂
𝜕2𝑉

𝜕𝑃 2

)︂
𝑇

+
2

𝑉 3

(︂
𝜕𝑉

𝜕𝑃

)︂2

𝑇

Returns
d2rho_dP2 [float] Second pressure derivative of molar density, [mol^2/(Pa*m^6)]
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d2rho_dPdT()
Method to calculate and return the pressure derivative and then temperature derivative of the molar density
of the phase.

𝜕2𝜌

𝜕𝑃𝜕𝑇
= − 1

𝑉 2

(︂
𝜕2𝑉

𝜕𝑃𝜕𝑇

)︂
+

2

𝑉 3

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Returns
d2rho_dPdT [float] Pressure derivative and then temperature derivative of the molar density,

[mol/(m^3*K*Pa)]

d2rho_dT2()
Method to calculate and return the second temperature derivative of molar density of the phase.

𝜕2𝜌

𝜕𝑇 2
= − 1

𝑉 2

(︂
𝜕2𝑉

𝜕𝑇 2

)︂
𝑃

+
2

𝑉 3

(︂
𝜕𝑉

𝜕𝑇

)︂2

𝑇

Returns
d2rho_dT2 [float] Second temperature derivative of molar density, [mol^2/(K*m^6)]

dA_dP()
Method to calculate and return the constant-temperature pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

Returns
dA_dP [float] Constant-temperature pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dP_T()
Method to calculate and return the constant-temperature pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

Returns
dA_dP [float] Constant-temperature pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dP_V()
Method to calculate and return the constant-volume pressure derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑃

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑉

− 𝑉 − 𝑆

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

− 𝑇

(︂
𝜕𝑆

𝜕𝑃

)︂
𝑉

Returns
dA_dP_V [float] Constant-volume pressure derivative of Helmholtz energy, [J/(mol*Pa)]

dA_dT()
Method to calculate and return the constant-pressure temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

Returns
dA_dT [float] Constant-pressure temperature derivative of Helmholtz energy, [J/(mol*K)]
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dA_dT_P()
Method to calculate and return the constant-pressure temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

Returns
dA_dT [float] Constant-pressure temperature derivative of Helmholtz energy, [J/(mol*K)]

dA_dT_V()
Method to calculate and return the constant-volume temperature derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑇

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

− 𝑉

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

− 𝑇

(︂
𝜕𝑆

𝜕𝑇

)︂
𝑉

− 𝑆

Returns
dA_dT_V [float] Constant-volume temperature derivative of Helmholtz energy, [J/(mol*K)]

dA_dV_P()
Method to calculate and return the constant-pressure volume derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝐴

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dA_dV_P [float] Constant-pressure volume derivative of Helmholtz energy, [J/(m^3)]

dA_dV_T()
Method to calculate and return the constant-temperature volume derivative of Helmholtz energy.(︂

𝜕𝐴

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝐴

𝜕𝑃

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
dA_dV_T [float] Constant-temperature volume derivative of Helmholtz energy, [J/(m^3)]

dA_mass_dP(prop='dA_dP')
Method to calculate and return the pressure derivative of mass Helmholtz energy of the phase at constant
temperature.

(︂
𝜕𝐴mass

𝜕𝑃

)︂
𝑇

Returns
dA_mass_dP [float] The pressure derivative of mass Helmholtz energy of the phase at con-

stant temperature, [J/mol/Pa]

dA_mass_dP_T(prop='dA_dP_T')
Method to calculate and return the pressure derivative of mass Helmholtz energy of the phase at constant
temperature.

(︂
𝜕𝐴mass

𝜕𝑃

)︂
𝑇
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Returns
dA_mass_dP_T [float] The pressure derivative of mass Helmholtz energy of the phase at

constant temperature, [J/mol/Pa]

dA_mass_dP_V(prop='dA_dP_V')
Method to calculate and return the pressure derivative of mass Helmholtz energy of the phase at constant
volume.

(︂
𝜕𝐴mass

𝜕𝑃

)︂
𝑉

Returns
dA_mass_dP_V [float] The pressure derivative of mass Helmholtz energy of the phase at

constant volume, [J/mol/Pa]

dA_mass_dT(prop='dA_dT')
Method to calculate and return the temperature derivative of mass Helmholtz energy of the phase at constant
pressure.

(︂
𝜕𝐴mass

𝜕𝑇

)︂
𝑃

Returns
dA_mass_dT [float] The temperature derivative of mass Helmholtz energy of the phase at

constant pressure, [J/mol/K]

dA_mass_dT_P(prop='dA_dT_P')
Method to calculate and return the temperature derivative of mass Helmholtz energy of the phase at constant
pressure.

(︂
𝜕𝐴mass

𝜕𝑇

)︂
𝑃

Returns
dA_mass_dT_P [float] The temperature derivative of mass Helmholtz energy of the phase

at constant pressure, [J/mol/K]

dA_mass_dT_V(prop='dA_dT_V')
Method to calculate and return the temperature derivative of mass Helmholtz energy of the phase at constant
volume.

(︂
𝜕𝐴mass

𝜕𝑇

)︂
𝑉

Returns
dA_mass_dT_V [float] The temperature derivative of mass Helmholtz energy of the phase

at constant volume, [J/mol/K]
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dA_mass_dV_P(prop='dA_dV_P')
Method to calculate and return the volume derivative of mass Helmholtz energy of the phase at constant
pressure.

(︂
𝜕𝐴mass

𝜕𝑉

)︂
𝑃

Returns
dA_mass_dV_P [float] The volume derivative of mass Helmholtz energy of the phase at

constant pressure, [J/mol/m^3/mol]

dA_mass_dV_T(prop='dA_dV_T')
Method to calculate and return the volume derivative of mass Helmholtz energy of the phase at constant
temperature.

(︂
𝜕𝐴mass

𝜕𝑉

)︂
𝑇

Returns
dA_mass_dV_T [float] The volume derivative of mass Helmholtz energy of the phase at

constant temperature, [J/mol/m^3/mol]

dCpigs_dT_pure()
Method to calculate and return the first temperature derivative of ideal-gas heat capacities of every compo-
nent in the phase. This method is powered by the HeatCapacityGases objects, except when all components
have the same heat capacity form and a fast implementation has been written for it (currently only polyno-
mials).

𝜕𝐶𝑖𝑔
𝑝

𝜕𝑇

Returns
dCp_ig_dT [list[float]] First temperature derivatives of molar ideal gas heat capacities,

[J/(mol*K^2)]

dCv_dP_T()
Method to calculate the pressure derivative of Cv, constant volume heat capacity, at constant temperature.(︂

𝜕𝐶𝑣

𝜕𝑃

)︂
𝑇

= −𝑇 dPdTV (𝑃 )
𝑑

𝑑𝑃
dVdTP (𝑃 ) − 𝑇 dVdTP (𝑃 )

𝑑

𝑑𝑃
dPdTV (𝑃 ) +

𝑑

𝑑𝑃
Cp (𝑃 )

Returns
dCv_dP_T [float] Pressure derivative of constant volume heat capacity at constant temper-

ature, [J/mol/K/Pa]
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Notes

Requires d2V_dTdP, d2P_dTdP, and d2H_dTdP.

dCv_dT_P()
Method to calculate the temperature derivative of Cv, constant volume heat capacity, at constant pressure.(︂
𝜕𝐶𝑣

𝜕𝑇

)︂
𝑃

= −
𝑇 dPdTV

2 (𝑇 ) 𝑑
𝑑𝑇 dPdVT (𝑇 )

dPdVT
2 (𝑇 )

+
2𝑇 dPdTV (𝑇 ) 𝑑

𝑑𝑇 dPdTV (𝑇 )

dPdVT (𝑇 )
+

dPdTV
2 (𝑇 )

dPdVT (𝑇 )
+

𝑑

𝑑𝑇
Cp (𝑇 )

Returns
dCv_dT_P [float] Temperature derivative of constant volume heat capacity at constant pres-

sure, [J/mol/K^2]

Notes

Requires d2P_dT2_PV, d2P_dVdT_TP, and d2H_dT2.

dCv_mass_dP_T(prop='dCv_dP_T')
Method to calculate and return the pressure derivative of mass Constant-volume heat capacity of the phase
at constant temperature.

(︂
𝜕𝐶𝑣mass

𝜕𝑃

)︂
𝑇

Returns
dCv_mass_dP_T [float] The pressure derivative of mass Constant-volume heat capacity of

the phase at constant temperature, [J/(mol*K)/Pa]

dCv_mass_dT_P(prop='dCv_dT_P')
Method to calculate and return the temperature derivative of mass Constant-volume heat capacity of the
phase at constant pressure.

(︂
𝜕𝐶𝑣mass

𝜕𝑇

)︂
𝑃

Returns
dCv_mass_dT_P [float] The temperature derivative of mass Constant-volume heat capacity

of the phase at constant pressure, [J/(mol*K)/K]

dG_dP()
Method to calculate and return the constant-temperature pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dG_dP [float] Constant-temperature pressure derivative of Gibbs free energy, [J/(mol*Pa)]
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dG_dP_T()
Method to calculate and return the constant-temperature pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑇

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑇

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dG_dP [float] Constant-temperature pressure derivative of Gibbs free energy, [J/(mol*Pa)]

dG_dP_V()
Method to calculate and return the constant-volume pressure derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑃

)︂
𝑉

= −𝑇
(︂
𝜕𝑆

𝜕𝑃

)︂
𝑉

− 𝑆

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

+

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑉

Returns
dG_dP_V [float] Constant-volume pressure derivative of Gibbs free energy, [J/(mol*Pa)]

dG_dT()
Method to calculate and return the constant-pressure temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dG_dT [float] Constant-pressure temperature derivative of Gibbs free energy, [J/(mol*K)]

dG_dT_P()
Method to calculate and return the constant-pressure temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑃

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑃

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dG_dT [float] Constant-pressure temperature derivative of Gibbs free energy, [J/(mol*K)]

dG_dT_V()
Method to calculate and return the constant-volume temperature derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑇

)︂
𝑉

= −𝑇
(︂
𝜕𝑆

𝜕𝑇

)︂
𝑉

− 𝑆 +

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

Returns
dG_dT_V [float] Constant-volume temperature derivative of Gibbs free energy, [J/(mol*K)]

dG_dV_P()
Method to calculate and return the constant-pressure volume derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝐺

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dG_dV_P [float] Constant-pressure volume derivative of Gibbs free energy, [J/(m^3)]

dG_dV_T()
Method to calculate and return the constant-temperature volume derivative of Gibbs free energy.(︂

𝜕𝐺

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝐺

𝜕𝑃

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇
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Returns
dG_dV_T [float] Constant-temperature volume derivative of Gibbs free energy, [J/(m^3)]

dG_mass_dP(prop='dG_dP')
Method to calculate and return the pressure derivative of mass Gibbs free energy of the phase at constant
temperature.

(︂
𝜕𝐺mass

𝜕𝑃

)︂
𝑇

Returns
dG_mass_dP [float] The pressure derivative of mass Gibbs free energy of the phase at con-

stant temperature, [J/mol/Pa]

dG_mass_dP_T(prop='dG_dP_T')
Method to calculate and return the pressure derivative of mass Gibbs free energy of the phase at constant
temperature.

(︂
𝜕𝐺mass

𝜕𝑃

)︂
𝑇

Returns
dG_mass_dP_T [float] The pressure derivative of mass Gibbs free energy of the phase at

constant temperature, [J/mol/Pa]

dG_mass_dP_V(prop='dG_dP_V')
Method to calculate and return the pressure derivative of mass Gibbs free energy of the phase at constant
volume.

(︂
𝜕𝐺mass

𝜕𝑃

)︂
𝑉

Returns
dG_mass_dP_V [float] The pressure derivative of mass Gibbs free energy of the phase at

constant volume, [J/mol/Pa]

dG_mass_dT(prop='dG_dT')
Method to calculate and return the temperature derivative of mass Gibbs free energy of the phase at constant
pressure.

(︂
𝜕𝐺mass

𝜕𝑇

)︂
𝑃

Returns
dG_mass_dT [float] The temperature derivative of mass Gibbs free energy of the phase at

constant pressure, [J/mol/K]
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dG_mass_dT_P(prop='dG_dT_P')
Method to calculate and return the temperature derivative of mass Gibbs free energy of the phase at constant
pressure.

(︂
𝜕𝐺mass

𝜕𝑇

)︂
𝑃

Returns
dG_mass_dT_P [float] The temperature derivative of mass Gibbs free energy of the phase

at constant pressure, [J/mol/K]

dG_mass_dT_V(prop='dG_dT_V')
Method to calculate and return the temperature derivative of mass Gibbs free energy of the phase at constant
volume.

(︂
𝜕𝐺mass

𝜕𝑇

)︂
𝑉

Returns
dG_mass_dT_V [float] The temperature derivative of mass Gibbs free energy of the phase

at constant volume, [J/mol/K]

dG_mass_dV_P(prop='dG_dV_P')
Method to calculate and return the volume derivative of mass Gibbs free energy of the phase at constant
pressure.

(︂
𝜕𝐺mass

𝜕𝑉

)︂
𝑃

Returns
dG_mass_dV_P [float] The volume derivative of mass Gibbs free energy of the phase at

constant pressure, [J/mol/m^3/mol]

dG_mass_dV_T(prop='dG_dV_T')
Method to calculate and return the volume derivative of mass Gibbs free energy of the phase at constant
temperature.

(︂
𝜕𝐺mass

𝜕𝑉

)︂
𝑇

Returns
dG_mass_dV_T [float] The volume derivative of mass Gibbs free energy of the phase at

constant temperature, [J/mol/m^3/mol]

dH_dP_T()
Method to calculate and return the pressure derivative of enthalpy of the phase at constant pressure.

Returns
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dH_dP_T [float] Pressure derivative of enthalpy, [J/(mol*Pa)]

dH_dT_P()
Method to calculate and return the temperature derivative of enthalpy of the phase at constant pressure.

Returns
dH_dT_P [float] Temperature derivative of enthalpy, [J/(mol*K)]

dH_dns()
Method to calculate and return the mole number derivative of the enthalpy of the phase.

𝜕𝐻

𝜕𝑛𝑖

Returns
dH_dns [list[float]] Mole number derivatives of the enthalpy of the phase, [J/mol^2]

dH_mass_dP(prop='dH_dP')
Method to calculate and return the pressure derivative of mass enthalpy of the phase at constant temperature.

(︂
𝜕𝐻mass

𝜕𝑃

)︂
𝑇

Returns
dH_mass_dP [float] The pressure derivative of mass enthalpy of the phase at constant tem-

perature, [J/mol/Pa]

dH_mass_dP_T(prop='dH_dP_T')
Method to calculate and return the pressure derivative of mass enthalpy of the phase at constant temperature.

(︂
𝜕𝐻mass

𝜕𝑃

)︂
𝑇

Returns
dH_mass_dP_T [float] The pressure derivative of mass enthalpy of the phase at constant

temperature, [J/mol/Pa]

dH_mass_dP_V(prop='dH_dP_V')
Method to calculate and return the pressure derivative of mass enthalpy of the phase at constant volume.

(︂
𝜕𝐻mass

𝜕𝑃

)︂
𝑉

Returns
dH_mass_dP_V [float] The pressure derivative of mass enthalpy of the phase at constant

volume, [J/mol/Pa]

dH_mass_dT(prop='dH_dT')
Method to calculate and return the temperature derivative of mass enthalpy of the phase at constant pressure.
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(︂
𝜕𝐻mass

𝜕𝑇

)︂
𝑃

Returns
dH_mass_dT [float] The temperature derivative of mass enthalpy of the phase at constant

pressure, [J/mol/K]

dH_mass_dT_P(prop='dH_dT_P')
Method to calculate and return the temperature derivative of mass enthalpy of the phase at constant pressure.

(︂
𝜕𝐻mass

𝜕𝑇

)︂
𝑃

Returns
dH_mass_dT_P [float] The temperature derivative of mass enthalpy of the phase at constant

pressure, [J/mol/K]

dH_mass_dT_V(prop='dH_dT_V')
Method to calculate and return the temperature derivative of mass enthalpy of the phase at constant volume.

(︂
𝜕𝐻mass

𝜕𝑇

)︂
𝑉

Returns
dH_mass_dT_V [float] The temperature derivative of mass enthalpy of the phase at constant

volume, [J/mol/K]

dH_mass_dV_P(prop='dH_dV_P')
Method to calculate and return the volume derivative of mass enthalpy of the phase at constant pressure.

(︂
𝜕𝐻mass

𝜕𝑉

)︂
𝑃

Returns
dH_mass_dV_P [float] The volume derivative of mass enthalpy of the phase at constant

pressure, [J/mol/m^3/mol]

dH_mass_dV_T(prop='dH_dV_T')
Method to calculate and return the volume derivative of mass enthalpy of the phase at constant temperature.

(︂
𝜕𝐻mass

𝜕𝑉

)︂
𝑇

Returns
dH_mass_dV_T [float] The volume derivative of mass enthalpy of the phase at constant

temperature, [J/mol/m^3/mol]
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dP_dP_A(property='P', differentiate_by='P', at_constant='A')
Method to calculate and return the pressure derivative of pressure of the phase at constant Helmholtz energy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝐴

Returns
dP_dP_A [float] The pressure derivative of pressure of the phase at constant Helmholtz en-

ergy, [Pa/Pa]

dP_dP_G(property='P', differentiate_by='P', at_constant='G')
Method to calculate and return the pressure derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝐺

Returns
dP_dP_G [float] The pressure derivative of pressure of the phase at constant Gibbs energy,

[Pa/Pa]

dP_dP_H(property='P', differentiate_by='P', at_constant='H')
Method to calculate and return the pressure derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝐻

Returns
dP_dP_H [float] The pressure derivative of pressure of the phase at constant enthalpy,

[Pa/Pa]

dP_dP_S(property='P', differentiate_by='P', at_constant='S')
Method to calculate and return the pressure derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝑃

)︂
𝑆

Returns
dP_dP_S [float] The pressure derivative of pressure of the phase at constant entropy, [Pa/Pa]

dP_dP_T()
Method to calculate and return the pressure derivative of pressure of the phase at constant temperature.

Returns
dP_dP_T [float] Pressure derivative of pressure of the phase at constant temperature, [-]

dP_dP_U(property='P', differentiate_by='P', at_constant='U')
Method to calculate and return the pressure derivative of pressure of the phase at constant internal energy.
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(︂
𝜕𝑃

𝜕𝑃

)︂
𝑈

Returns
dP_dP_U [float] The pressure derivative of pressure of the phase at constant internal energy,

[Pa/Pa]

dP_dP_V()
Method to calculate and return the pressure derivative of pressure of the phase at constant volume.

Returns
dP_dP_V [float] Pressure derivative of pressure of the phase at constant volume, [-]

dP_dT()
Method to calculate and return the first temperature derivative of pressure of the phase.

Returns
dP_dT [float] First temperature derivative of pressure, [Pa/K]

dP_dT_A(property='P', differentiate_by='T', at_constant='A')
Method to calculate and return the temperature derivative of pressure of the phase at constant Helmholtz
energy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝐴

Returns
dP_dT_A [float] The temperature derivative of pressure of the phase at constant Helmholtz

energy, [Pa/K]

dP_dT_G(property='P', differentiate_by='T', at_constant='G')
Method to calculate and return the temperature derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝐺

Returns
dP_dT_G [float] The temperature derivative of pressure of the phase at constant Gibbs en-

ergy, [Pa/K]

dP_dT_H(property='P', differentiate_by='T', at_constant='H')
Method to calculate and return the temperature derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝐻

Returns
dP_dT_H [float] The temperature derivative of pressure of the phase at constant enthalpy,

[Pa/K]
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dP_dT_P()
Method to calculate and return the temperature derivative of temperature of the phase at constant pressure.

Returns
dP_dT_P [float] Temperature derivative of temperature, [-]

dP_dT_S(property='P', differentiate_by='T', at_constant='S')
Method to calculate and return the temperature derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑆

Returns
dP_dT_S [float] The temperature derivative of pressure of the phase at constant entropy,

[Pa/K]

dP_dT_U(property='P', differentiate_by='T', at_constant='U')
Method to calculate and return the temperature derivative of pressure of the phase at constant internal
energy.

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑈

Returns
dP_dT_U [float] The temperature derivative of pressure of the phase at constant internal

energy, [Pa/K]

dP_dV()
Method to calculate and return the first volume derivative of pressure of the phase.

Returns
dP_dV [float] First volume derivative of pressure, [Pa*mol/m^3]

dP_dV_A(property='P', differentiate_by='V', at_constant='A')
Method to calculate and return the volume derivative of pressure of the phase at constant Helmholtz energy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝐴

Returns
dP_dV_A [float] The volume derivative of pressure of the phase at constant Helmholtz en-

ergy, [Pa/m^3/mol]

dP_dV_G(property='P', differentiate_by='V', at_constant='G')
Method to calculate and return the volume derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝐺
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Returns
dP_dV_G [float] The volume derivative of pressure of the phase at constant Gibbs energy,

[Pa/m^3/mol]

dP_dV_H(property='P', differentiate_by='V', at_constant='H')
Method to calculate and return the volume derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝐻

Returns
dP_dV_H [float] The volume derivative of pressure of the phase at constant enthalpy,

[Pa/m^3/mol]

dP_dV_P()
Method to calculate and return the volume derivative of pressure of the phase at constant pressure.

Returns
dP_dV_P [float] Volume derivative of pressure of the phase at constant pressure,

[Pa*mol/m^3]

dP_dV_S(property='P', differentiate_by='V', at_constant='S')
Method to calculate and return the volume derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑆

Returns
dP_dV_S [float] The volume derivative of pressure of the phase at constant entropy,

[Pa/m^3/mol]

dP_dV_U(property='P', differentiate_by='V', at_constant='U')
Method to calculate and return the volume derivative of pressure of the phase at constant internal energy.

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑈

Returns
dP_dV_U [float] The volume derivative of pressure of the phase at constant internal energy,

[Pa/m^3/mol]

dP_drho()
Method to calculate and return the molar density derivative of pressure of the phase.

𝜕𝑃

𝜕𝜌
= −𝑉 2

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
dP_drho [float] Molar density derivative of pressure, [Pa*m^3/mol]
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dP_drho_A(property='P', differentiate_by='rho', at_constant='A')
Method to calculate and return the density derivative of pressure of the phase at constant Helmholtz energy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝐴

Returns
dP_drho_A [float] The density derivative of pressure of the phase at constant Helmholtz

energy, [Pa/mol/m^3]

dP_drho_G(property='P', differentiate_by='rho', at_constant='G')
Method to calculate and return the density derivative of pressure of the phase at constant Gibbs energy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝐺

Returns
dP_drho_G [float] The density derivative of pressure of the phase at constant Gibbs energy,

[Pa/mol/m^3]

dP_drho_H(property='P', differentiate_by='rho', at_constant='H')
Method to calculate and return the density derivative of pressure of the phase at constant enthalpy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝐻

Returns
dP_drho_H [float] The density derivative of pressure of the phase at constant enthalpy,

[Pa/mol/m^3]

dP_drho_S(property='P', differentiate_by='rho', at_constant='S')
Method to calculate and return the density derivative of pressure of the phase at constant entropy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝑆

Returns
dP_drho_S [float] The density derivative of pressure of the phase at constant entropy,

[Pa/mol/m^3]

dP_drho_U(property='P', differentiate_by='rho', at_constant='U')
Method to calculate and return the density derivative of pressure of the phase at constant internal energy.

(︂
𝜕𝑃

𝜕𝜌

)︂
𝑈

Returns
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dP_drho_U [float] The density derivative of pressure of the phase at constant internal energy,
[Pa/mol/m^3]

dS_dP_T()
Method to calculate and return the pressure derivative of entropy of the phase at constant pressure.

Returns
dS_dP_T [float] Pressure derivative of entropy, [J/(mol*K*Pa)]

dS_dV_P()
Method to calculate and return the volume derivative of entropy of the phase at constant pressure.

Returns
dS_dV_P [float] Volume derivative of entropy, [J/(K*m^3)]

dS_dV_T()
Method to calculate and return the volume derivative of entropy of the phase at constant temperature.

Returns
dS_dV_T [float] Volume derivative of entropy, [J/(K*m^3)]

dS_dns()
Method to calculate and return the mole number derivative of the entropy of the phase.

𝜕𝑆

𝜕𝑛𝑖

Returns
dS_dns [list[float]] Mole number derivatives of the entropy of the phase, [J/(mol^2*K)]

dS_mass_dP(prop='dS_dP')
Method to calculate and return the pressure derivative of mass entropy of the phase at constant temperature.

(︂
𝜕𝑆mass

𝜕𝑃

)︂
𝑇

Returns
dS_mass_dP [float] The pressure derivative of mass entropy of the phase at constant tem-

perature, [J/(mol*K)/Pa]

dS_mass_dP_T(prop='dS_dP_T')
Method to calculate and return the pressure derivative of mass entropy of the phase at constant temperature.

(︂
𝜕𝑆mass

𝜕𝑃

)︂
𝑇

Returns
dS_mass_dP_T [float] The pressure derivative of mass entropy of the phase at constant tem-

perature, [J/(mol*K)/Pa]

dS_mass_dP_V(prop='dS_dP_V')
Method to calculate and return the pressure derivative of mass entropy of the phase at constant volume.
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(︂
𝜕𝑆mass

𝜕𝑃

)︂
𝑉

Returns
dS_mass_dP_V [float] The pressure derivative of mass entropy of the phase at constant vol-

ume, [J/(mol*K)/Pa]

dS_mass_dT(prop='dS_dT')
Method to calculate and return the temperature derivative of mass entropy of the phase at constant pressure.

(︂
𝜕𝑆mass

𝜕𝑇

)︂
𝑃

Returns
dS_mass_dT [float] The temperature derivative of mass entropy of the phase at constant

pressure, [J/(mol*K)/K]

dS_mass_dT_P(prop='dS_dT_P')
Method to calculate and return the temperature derivative of mass entropy of the phase at constant pressure.

(︂
𝜕𝑆mass

𝜕𝑇

)︂
𝑃

Returns
dS_mass_dT_P [float] The temperature derivative of mass entropy of the phase at constant

pressure, [J/(mol*K)/K]

dS_mass_dT_V(prop='dS_dT_V')
Method to calculate and return the temperature derivative of mass entropy of the phase at constant volume.

(︂
𝜕𝑆mass

𝜕𝑇

)︂
𝑉

Returns
dS_mass_dT_V [float] The temperature derivative of mass entropy of the phase at constant

volume, [J/(mol*K)/K]

dS_mass_dV_P(prop='dS_dV_P')
Method to calculate and return the volume derivative of mass entropy of the phase at constant pressure.

(︂
𝜕𝑆mass

𝜕𝑉

)︂
𝑃

Returns
dS_mass_dV_P [float] The volume derivative of mass entropy of the phase at constant pres-

sure, [J/(mol*K)/m^3/mol]
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dS_mass_dV_T(prop='dS_dV_T')
Method to calculate and return the volume derivative of mass entropy of the phase at constant temperature.

(︂
𝜕𝑆mass

𝜕𝑉

)︂
𝑇

Returns
dS_mass_dV_T [float] The volume derivative of mass entropy of the phase at constant tem-

perature, [J/(mol*K)/m^3/mol]

dT_dP()
Method to calculate and return the constant-volume pressure derivative of temperature of the phase.(︂

𝜕𝑇

𝜕𝑃

)︂
𝑉

=
1(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

Returns
dT_dP [float] Constant-volume pressure derivative of temperature, [K/Pa]

dT_dP_A(property='T', differentiate_by='P', at_constant='A')
Method to calculate and return the pressure derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐴

Returns
dT_dP_A [float] The pressure derivative of temperature of the phase at constant Helmholtz

energy, [K/Pa]

dT_dP_G(property='T', differentiate_by='P', at_constant='G')
Method to calculate and return the pressure derivative of temperature of the phase at constant Gibbs energy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐺

Returns
dT_dP_G [float] The pressure derivative of temperature of the phase at constant Gibbs en-

ergy, [K/Pa]

dT_dP_H(property='T', differentiate_by='P', at_constant='H')
Method to calculate and return the pressure derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝐻

Returns
dT_dP_H [float] The pressure derivative of temperature of the phase at constant enthalpy,

[K/Pa]
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dT_dP_S(property='T', differentiate_by='P', at_constant='S')
Method to calculate and return the pressure derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑆

Returns
dT_dP_S [float] The pressure derivative of temperature of the phase at constant entropy,

[K/Pa]

dT_dP_T()
Method to calculate and return the pressure derivative of temperature of the phase at constant temperature.

Returns
dT_dP_T [float] Pressure derivative of temperature of the phase at constant temperature,

[K/Pa]

dT_dP_U(property='T', differentiate_by='P', at_constant='U')
Method to calculate and return the pressure derivative of temperature of the phase at constant internal
energy.

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑈

Returns
dT_dP_U [float] The pressure derivative of temperature of the phase at constant internal

energy, [K/Pa]

dT_dP_V()
Method to calculate and return the constant-volume pressure derivative of temperature of the phase.(︂

𝜕𝑇

𝜕𝑃

)︂
𝑉

=
1(︀

𝜕𝑃
𝜕𝑇

)︀
𝑉

Returns
dT_dP [float] Constant-volume pressure derivative of temperature, [K/Pa]

dT_dT_A(property='T', differentiate_by='T', at_constant='A')
Method to calculate and return the temperature derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝐴

Returns
dT_dT_A [float] The temperature derivative of temperature of the phase at constant

Helmholtz energy, [K/K]

dT_dT_G(property='T', differentiate_by='T', at_constant='G')
Method to calculate and return the temperature derivative of temperature of the phase at constant Gibbs
energy.
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(︂
𝜕𝑇

𝜕𝑇

)︂
𝐺

Returns
dT_dT_G [float] The temperature derivative of temperature of the phase at constant Gibbs

energy, [K/K]

dT_dT_H(property='T', differentiate_by='T', at_constant='H')
Method to calculate and return the temperature derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝐻

Returns
dT_dT_H [float] The temperature derivative of temperature of the phase at constant en-

thalpy, [K/K]

dT_dT_P()
Method to calculate and return the temperature derivative of temperature of the phase at constant pressure.

Returns
dT_dT_P [float] Temperature derivative of temperature of the phase at constant pressure, [-]

dT_dT_S(property='T', differentiate_by='T', at_constant='S')
Method to calculate and return the temperature derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝑆

Returns
dT_dT_S [float] The temperature derivative of temperature of the phase at constant entropy,

[K/K]

dT_dT_U(property='T', differentiate_by='T', at_constant='U')
Method to calculate and return the temperature derivative of temperature of the phase at constant internal
energy.

(︂
𝜕𝑇

𝜕𝑇

)︂
𝑈

Returns
dT_dT_U [float] The temperature derivative of temperature of the phase at constant internal

energy, [K/K]

dT_dT_V()
Method to calculate and return the temperature derivative of temperature of the phase at constant volume.

Returns
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dT_dT_V [float] Temperature derivative of temperature of the phase at constant volume, [-]

dT_dV()
Method to calculate and return the constant-pressure volume derivative of temperature of the phase.(︂

𝜕𝑇

𝜕𝑉

)︂
𝑃

=
1(︀

𝜕𝑉
𝜕𝑇

)︀
𝑃

Returns
dT_dV [float] Constant-pressure volume derivative of temperature, [K*m^3/(m^3)]

dT_dV_A(property='T', differentiate_by='V', at_constant='A')
Method to calculate and return the volume derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝐴

Returns
dT_dV_A [float] The volume derivative of temperature of the phase at constant Helmholtz

energy, [K/m^3/mol]

dT_dV_G(property='T', differentiate_by='V', at_constant='G')
Method to calculate and return the volume derivative of temperature of the phase at constant Gibbs energy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝐺

Returns
dT_dV_G [float] The volume derivative of temperature of the phase at constant Gibbs en-

ergy, [K/m^3/mol]

dT_dV_H(property='T', differentiate_by='V', at_constant='H')
Method to calculate and return the volume derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝐻

Returns
dT_dV_H [float] The volume derivative of temperature of the phase at constant enthalpy,

[K/m^3/mol]

dT_dV_P()
Method to calculate and return the constant-pressure volume derivative of temperature of the phase.(︂

𝜕𝑇

𝜕𝑉

)︂
𝑃

=
1(︀

𝜕𝑉
𝜕𝑇

)︀
𝑃

Returns
dT_dV [float] Constant-pressure volume derivative of temperature, [K*m^3/(m^3)]
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dT_dV_S(property='T', differentiate_by='V', at_constant='S')
Method to calculate and return the volume derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑆

Returns
dT_dV_S [float] The volume derivative of temperature of the phase at constant entropy,

[K/m^3/mol]

dT_dV_T()
Method to calculate and return the volume derivative of temperature of the phase at constant temperature.

Returns
dT_dV_T [float] Pressure derivative of temperature of the phase at constant temperature,

[K*mol/m^3]

dT_dV_U(property='T', differentiate_by='V', at_constant='U')
Method to calculate and return the volume derivative of temperature of the phase at constant internal energy.

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑈

Returns
dT_dV_U [float] The volume derivative of temperature of the phase at constant internal

energy, [K/m^3/mol]

dT_drho()
Method to calculate and return the molar density derivative of temperature of the phase.

𝜕𝑇

𝜕𝜌
= −𝑉 2

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dT_drho [float] Molar density derivative of temperature, [K*m^3/mol]

dT_drho_A(property='T', differentiate_by='rho', at_constant='A')
Method to calculate and return the density derivative of temperature of the phase at constant Helmholtz
energy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝐴

Returns
dT_drho_A [float] The density derivative of temperature of the phase at constant Helmholtz

energy, [K/mol/m^3]

dT_drho_G(property='T', differentiate_by='rho', at_constant='G')
Method to calculate and return the density derivative of temperature of the phase at constant Gibbs energy.
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(︂
𝜕𝑇

𝜕𝜌

)︂
𝐺

Returns
dT_drho_G [float] The density derivative of temperature of the phase at constant Gibbs

energy, [K/mol/m^3]

dT_drho_H(property='T', differentiate_by='rho', at_constant='H')
Method to calculate and return the density derivative of temperature of the phase at constant enthalpy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝐻

Returns
dT_drho_H [float] The density derivative of temperature of the phase at constant enthalpy,

[K/mol/m^3]

dT_drho_S(property='T', differentiate_by='rho', at_constant='S')
Method to calculate and return the density derivative of temperature of the phase at constant entropy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝑆

Returns
dT_drho_S [float] The density derivative of temperature of the phase at constant entropy,

[K/mol/m^3]

dT_drho_U(property='T', differentiate_by='rho', at_constant='U')
Method to calculate and return the density derivative of temperature of the phase at constant internal energy.

(︂
𝜕𝑇

𝜕𝜌

)︂
𝑈

Returns
dT_drho_U [float] The density derivative of temperature of the phase at constant internal

energy, [K/mol/m^3]

dU_dP()
Method to calculate and return the constant-temperature pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑇

= −𝑃
(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

− 𝑉 +

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dU_dP [float] Constant-temperature pressure derivative of internal energy, [J/(mol*Pa)]
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dU_dP_T()
Method to calculate and return the constant-temperature pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑇

= −𝑃
(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

− 𝑉 +

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑇

Returns
dU_dP [float] Constant-temperature pressure derivative of internal energy, [J/(mol*Pa)]

dU_dP_V()
Method to calculate and return the constant-volume pressure derivative of internal energy.(︂

𝜕𝑈

𝜕𝑃

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑃

)︂
𝑉

− 𝑉

Returns
dU_dP_V [float] Constant-volume pressure derivative of internal energy, [J/(mol*Pa)]

dU_dT()
Method to calculate and return the constant-pressure temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑃

= −𝑃
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

+

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dU_dT [float] Constant-pressure temperature derivative of internal energy, [J/(mol*K)]

dU_dT_P()
Method to calculate and return the constant-pressure temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑃

= −𝑃
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

+

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑃

Returns
dU_dT [float] Constant-pressure temperature derivative of internal energy, [J/(mol*K)]

dU_dT_V()
Method to calculate and return the constant-volume temperature derivative of internal energy.(︂

𝜕𝑈

𝜕𝑇

)︂
𝑉

=

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

− 𝑉

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Returns
dU_dT_V [float] Constant-volume temperature derivative of internal energy, [J/(mol*K)]

dU_dV_P()
Method to calculate and return the constant-pressure volume derivative of internal energy.(︂

𝜕𝑈

𝜕𝑉

)︂
𝑃

=

(︂
𝜕𝑈

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dU_dV_P [float] Constant-pressure volume derivative of internal energy, [J/(m^3)]

dU_dV_T()
Method to calculate and return the constant-temperature volume derivative of internal energy.(︂

𝜕𝑈

𝜕𝑉

)︂
𝑇

=

(︂
𝜕𝑈

𝜕𝑃

)︂
𝑇

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇
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Returns
dU_dV_T [float] Constant-temperature volume derivative of internal energy, [J/(m^3)]

dU_mass_dP(prop='dU_dP')
Method to calculate and return the pressure derivative of mass internal energy of the phase at constant
temperature.

(︂
𝜕𝑈mass

𝜕𝑃

)︂
𝑇

Returns
dU_mass_dP [float] The pressure derivative of mass internal energy of the phase at constant

temperature, [J/mol/Pa]

dU_mass_dP_T(prop='dU_dP_T')
Method to calculate and return the pressure derivative of mass internal energy of the phase at constant
temperature.

(︂
𝜕𝑈mass

𝜕𝑃

)︂
𝑇

Returns
dU_mass_dP_T [float] The pressure derivative of mass internal energy of the phase at con-

stant temperature, [J/mol/Pa]

dU_mass_dP_V(prop='dU_dP_V')
Method to calculate and return the pressure derivative of mass internal energy of the phase at constant
volume.

(︂
𝜕𝑈mass

𝜕𝑃

)︂
𝑉

Returns
dU_mass_dP_V [float] The pressure derivative of mass internal energy of the phase at con-

stant volume, [J/mol/Pa]

dU_mass_dT(prop='dU_dT')
Method to calculate and return the temperature derivative of mass internal energy of the phase at constant
pressure.

(︂
𝜕𝑈mass

𝜕𝑇

)︂
𝑃

Returns
dU_mass_dT [float] The temperature derivative of mass internal energy of the phase at con-

stant pressure, [J/mol/K]
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dU_mass_dT_P(prop='dU_dT_P')
Method to calculate and return the temperature derivative of mass internal energy of the phase at constant
pressure.

(︂
𝜕𝑈mass

𝜕𝑇

)︂
𝑃

Returns
dU_mass_dT_P [float] The temperature derivative of mass internal energy of the phase at

constant pressure, [J/mol/K]

dU_mass_dT_V(prop='dU_dT_V')
Method to calculate and return the temperature derivative of mass internal energy of the phase at constant
volume.

(︂
𝜕𝑈mass

𝜕𝑇

)︂
𝑉

Returns
dU_mass_dT_V [float] The temperature derivative of mass internal energy of the phase at

constant volume, [J/mol/K]

dU_mass_dV_P(prop='dU_dV_P')
Method to calculate and return the volume derivative of mass internal energy of the phase at constant
pressure.

(︂
𝜕𝑈mass

𝜕𝑉

)︂
𝑃

Returns
dU_mass_dV_P [float] The volume derivative of mass internal energy of the phase at con-

stant pressure, [J/mol/m^3/mol]

dU_mass_dV_T(prop='dU_dV_T')
Method to calculate and return the volume derivative of mass internal energy of the phase at constant
temperature.

(︂
𝜕𝑈mass

𝜕𝑉

)︂
𝑇

Returns
dU_mass_dV_T [float] The volume derivative of mass internal energy of the phase at con-

stant temperature, [J/mol/m^3/mol]

dV_dP()
Method to calculate and return the constant-temperature pressure derivative of volume of the phase.(︂

𝜕𝑉

𝜕𝑃

)︂
𝑇

= −
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉
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Returns
dV_dP [float] Constant-temperature pressure derivative of volume, [m^3/(mol*Pa)]

dV_dP_A(property='V', differentiate_by='P', at_constant='A')
Method to calculate and return the pressure derivative of volume of the phase at constant Helmholtz energy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝐴

Returns
dV_dP_A [float] The pressure derivative of volume of the phase at constant Helmholtz en-

ergy, [m^3/mol/Pa]

dV_dP_G(property='V', differentiate_by='P', at_constant='G')
Method to calculate and return the pressure derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝐺

Returns
dV_dP_G [float] The pressure derivative of volume of the phase at constant Gibbs energy,

[m^3/mol/Pa]

dV_dP_H(property='V', differentiate_by='P', at_constant='H')
Method to calculate and return the pressure derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝐻

Returns
dV_dP_H [float] The pressure derivative of volume of the phase at constant enthalpy,

[m^3/mol/Pa]

dV_dP_S(property='V', differentiate_by='P', at_constant='S')
Method to calculate and return the pressure derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑆

Returns
dV_dP_S [float] The pressure derivative of volume of the phase at constant entropy,

[m^3/mol/Pa]

dV_dP_T()
Method to calculate and return the constant-temperature pressure derivative of volume of the phase.(︂

𝜕𝑉

𝜕𝑃

)︂
𝑇

= −
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉
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Returns
dV_dP [float] Constant-temperature pressure derivative of volume, [m^3/(mol*Pa)]

dV_dP_U(property='V', differentiate_by='P', at_constant='U')
Method to calculate and return the pressure derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑈

Returns
dV_dP_U [float] The pressure derivative of volume of the phase at constant internal energy,

[m^3/mol/Pa]

dV_dP_V()
Method to calculate and return the volume derivative of pressure of the phase at constant volume.

Returns
dV_dP_V [float] Pressure derivative of volume of the phase at constant pressure,

[m^3/(mol*Pa)]

dV_dT()
Method to calculate and return the constant-pressure temperature derivative of volume of the phase.(︂

𝜕𝑉

𝜕𝑇

)︂
𝑃

=
−
(︀
𝜕𝑃
𝜕𝑇

)︀
𝑉(︀

𝜕𝑃
𝜕𝑉

)︀
𝑇

Returns
dV_dT [float] Constant-pressure temperature derivative of volume, [m^3/(mol*K)]

dV_dT_A(property='V', differentiate_by='T', at_constant='A')
Method to calculate and return the temperature derivative of volume of the phase at constant Helmholtz
energy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝐴

Returns
dV_dT_A [float] The temperature derivative of volume of the phase at constant Helmholtz

energy, [m^3/mol/K]

dV_dT_G(property='V', differentiate_by='T', at_constant='G')
Method to calculate and return the temperature derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝐺

Returns
dV_dT_G [float] The temperature derivative of volume of the phase at constant Gibbs en-

ergy, [m^3/mol/K]
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dV_dT_H(property='V', differentiate_by='T', at_constant='H')
Method to calculate and return the temperature derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝐻

Returns
dV_dT_H [float] The temperature derivative of volume of the phase at constant enthalpy,

[m^3/mol/K]

dV_dT_P()
Method to calculate and return the constant-pressure temperature derivative of volume of the phase.(︂

𝜕𝑉

𝜕𝑇

)︂
𝑃

=
−
(︀
𝜕𝑃
𝜕𝑇

)︀
𝑉(︀

𝜕𝑃
𝜕𝑉

)︀
𝑇

Returns
dV_dT [float] Constant-pressure temperature derivative of volume, [m^3/(mol*K)]

dV_dT_S(property='V', differentiate_by='T', at_constant='S')
Method to calculate and return the temperature derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑆

Returns
dV_dT_S [float] The temperature derivative of volume of the phase at constant entropy,

[m^3/mol/K]

dV_dT_U(property='V', differentiate_by='T', at_constant='U')
Method to calculate and return the temperature derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑈

Returns
dV_dT_U [float] The temperature derivative of volume of the phase at constant internal

energy, [m^3/mol/K]

dV_dT_V()
Method to calculate and return the temperature derivative of volume of the phase at constant volume.

Returns
dV_dT_V [float] Temperature derivative of volume of the phase at constant volume,

[m^3/(mol*K)]

dV_dV_A(property='V', differentiate_by='V', at_constant='A')
Method to calculate and return the volume derivative of volume of the phase at constant Helmholtz energy.
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(︂
𝜕𝑉

𝜕𝑉

)︂
𝐴

Returns
dV_dV_A [float] The volume derivative of volume of the phase at constant Helmholtz en-

ergy, [m^3/mol/m^3/mol]

dV_dV_G(property='V', differentiate_by='V', at_constant='G')
Method to calculate and return the volume derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝐺

Returns
dV_dV_G [float] The volume derivative of volume of the phase at constant Gibbs energy,

[m^3/mol/m^3/mol]

dV_dV_H(property='V', differentiate_by='V', at_constant='H')
Method to calculate and return the volume derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝐻

Returns
dV_dV_H [float] The volume derivative of volume of the phase at constant enthalpy,

[m^3/mol/m^3/mol]

dV_dV_P()
Method to calculate and return the volume derivative of volume of the phase at constant pressure.

Returns
dV_dV_P [float] Volume derivative of volume of the phase at constant pressure, [-]

dV_dV_S(property='V', differentiate_by='V', at_constant='S')
Method to calculate and return the volume derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝑆

Returns
dV_dV_S [float] The volume derivative of volume of the phase at constant entropy,

[m^3/mol/m^3/mol]

dV_dV_T()
Method to calculate and return the volume derivative of volume of the phase at constant temperature.

Returns
dV_dV_T [float] Volume derivative of volume of the phase at constant temperature, [-]
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dV_dV_U(property='V', differentiate_by='V', at_constant='U')
Method to calculate and return the volume derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝑉

)︂
𝑈

Returns
dV_dV_U [float] The volume derivative of volume of the phase at constant internal energy,

[m^3/mol/m^3/mol]

dV_dns()
Method to calculate and return the mole number derivatives of the molar volume V of the phase.

𝜕𝑉

𝜕𝑛𝑖

Returns
dV_dns [list[float]] Mole number derivatives of the molar volume of the phase, [m^3]

dV_drho_A(property='V', differentiate_by='rho', at_constant='A')
Method to calculate and return the density derivative of volume of the phase at constant Helmholtz energy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝐴

Returns
dV_drho_A [float] The density derivative of volume of the phase at constant Helmholtz

energy, [m^3/mol/mol/m^3]

dV_drho_G(property='V', differentiate_by='rho', at_constant='G')
Method to calculate and return the density derivative of volume of the phase at constant Gibbs energy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝐺

Returns
dV_drho_G [float] The density derivative of volume of the phase at constant Gibbs energy,

[m^3/mol/mol/m^3]

dV_drho_H(property='V', differentiate_by='rho', at_constant='H')
Method to calculate and return the density derivative of volume of the phase at constant enthalpy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝐻

Returns
dV_drho_H [float] The density derivative of volume of the phase at constant enthalpy,

[m^3/mol/mol/m^3]
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dV_drho_S(property='V', differentiate_by='rho', at_constant='S')
Method to calculate and return the density derivative of volume of the phase at constant entropy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝑆

Returns
dV_drho_S [float] The density derivative of volume of the phase at constant entropy,

[m^3/mol/mol/m^3]

dV_drho_U(property='V', differentiate_by='rho', at_constant='U')
Method to calculate and return the density derivative of volume of the phase at constant internal energy.

(︂
𝜕𝑉

𝜕𝜌

)︂
𝑈

Returns
dV_drho_U [float] The density derivative of volume of the phase at constant internal energy,

[m^3/mol/mol/m^3]

dZ_dP()
Method to calculate and return the pressure derivative of compressibility of the phase.

𝜕𝑍

𝜕𝑃
=
𝑉 + 𝑃

(︀
𝜕𝑉
𝜕𝑃

)︀
𝑇

𝑅𝑇

Returns
dZ_dP [float] Pressure derivative of compressibility, [1/Pa]

dZ_dT()
Method to calculate and return the temperature derivative of compressibility of the phase.

𝜕𝑍

𝜕𝑃
= 𝑃

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃
− −𝑉

𝑇

𝑅𝑇

Returns
dZ_dT [float] Temperature derivative of compressibility, [1/K]

dZ_dV()
Method to calculate and return the volume derivative of compressibility of the phase.

𝜕𝑍

𝜕𝑉
=
𝑃 − 𝜌

(︁
𝜕𝑃
𝜕𝜌

)︁
𝑇

𝑅𝑇

Returns
dZ_dV [float] Volume derivative of compressibility, [mol/(m^3)]

dZ_dns()
Method to calculate and return the mole number derivatives of the compressibility factor Z of the phase.

𝜕𝑍

𝜕𝑛𝑖
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Returns
dZ_dns [list[float]] Mole number derivatives of the compressibility factor of the phase,

[1/mol]

dZ_dzs()
Method to calculate and return the mole fraction derivatives of the compressibility factor Z of the phase.

𝜕𝑍

𝜕𝑧𝑖

Returns
dZ_dzs [list[float]] Mole fraction derivatives of the compressibility factor of the phase, [-]

dfugacities_dP()
Method to calculate and return the pressure derivative of the fugacities of the components in the phase.

𝜕𝑓𝑖
𝜕𝑃

= 𝑧𝑖

(︂
𝑃
𝜕𝜑𝑖
𝜕𝑃

+ 𝜑𝑖

)︂
Returns

dfugacities_dP [list[float]] Pressure derivative of fugacities of all components in the phase,
[-]

Notes

For models without pressure dependence of fugacity, the returned result may not be exactly zero due to
inaccuracy in floating point results; results are likely on the order of 1e-14 or lower in that case.

dfugacities_dT()
Method to calculate and return the temperature derivative of fugacities of the phase.

𝜕𝑓𝑖
𝜕𝑇

= 𝑃𝑧𝑖
𝜕 ln𝜑𝑖
𝜕𝑇

Returns
dfugacities_dT [list[float]] Temperature derivative of fugacities of all components in the

phase, [Pa/K]

dfugacities_dns()
Method to calculate and return the mole number derivative of the fugacities of the components in the phase.

if i != j:

𝜕𝑓𝑖
𝜕𝑛𝑗

= 𝑃𝜑𝑖𝑧𝑖

(︂
𝜕 ln𝜑𝑖
𝜕𝑛𝑗

− 1

)︂
if i == j:

𝜕𝑓𝑖
𝜕𝑛𝑗

= 𝑃𝜑𝑖𝑧𝑖

(︂
𝜕 ln𝜑𝑖
𝜕𝑛𝑗

− 1

)︂
+ 𝑃𝜑𝑖

Returns
dfugacities_dns [list[list[float]]] Mole number derivatives of the fugacities of all compo-

nents in the phase, [Pa/mol]

dfugacity_dP()
Method to calculate and return the pressure derivative of fugacity of the phase; provided the phase is 1
component.
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Returns
dfugacity_dP [list[float]] Fugacity first pressure derivative, [-]

dfugacity_dT()
Method to calculate and return the temperature derivative of fugacity of the phase; provided the phase is 1
component.

Returns
dfugacity_dT [list[float]] Fugacity first temperature derivative, [Pa/K]

property dipoles
Dipole moments for each component, [debye].

Returns
dipoles [list[float]] Dipole moments for each component, [debye].

disobaric_expansion_dP()
Method to calculate and return the pressure derivative of isobatic expansion coefficient of the phase.

𝜕𝛽

𝜕𝑃
=

1

𝑉

(︃(︂
𝜕2𝑉

𝜕𝑇𝜕𝑃

)︂
−
(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃

(︀
𝜕𝑉
𝜕𝑃

)︀
𝑇

𝑉

)︃

Returns
dbeta_dP [float] Pressure derivative of isobaric coefficient of a thermal expansion,

[1/(K*Pa)]

disobaric_expansion_dT()
Method to calculate and return the temperature derivative of isobatic expansion coefficient of the phase.

𝜕𝛽

𝜕𝑇
=

1

𝑉

(︃(︂
𝜕2𝑉

𝜕𝑇 2

)︂
𝑃

−
(︂
𝜕𝑉

𝜕𝑇

)︂2

𝑃

/𝑉

)︃

Returns
dbeta_dT [float] Temperature derivative of isobaric coefficient of a thermal expansion,

[1/K^2]

disothermal_compressibility_dT()
Method to calculate and return the temperature derivative of isothermal compressibility of the phase.

𝜕𝜅

𝜕𝑇
= −

(︁
𝜕2𝑉
𝜕𝑃𝜕𝑇

)︁
𝑉

+

(︀
𝜕𝑉
𝜕𝑃

)︀
𝑇

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃

𝑉 2

Returns
dkappa_dT [float] First temperature derivative of isothermal coefficient of compressibility,

[1/(Pa*K)]

dkappa_dT()
Method to calculate and return the temperature derivative of isothermal compressibility of the phase.

𝜕𝜅

𝜕𝑇
= −

(︁
𝜕2𝑉
𝜕𝑃𝜕𝑇

)︁
𝑉

+

(︀
𝜕𝑉
𝜕𝑃

)︀
𝑇

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃

𝑉 2

Returns
dkappa_dT [float] First temperature derivative of isothermal coefficient of compressibility,

[1/(Pa*K)]
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dlnfugacities_dns()
Method to calculate and return the mole number derivative of the log of fugacities of the components in
the phase.

𝜕 ln 𝑓𝑖
𝜕𝑛𝑗

=
1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑛𝑗

Returns
dlnfugacities_dns [list[list[float]]] Mole number derivatives of the log of fugacities of all

components in the phase, [log(Pa)/mol]

dlnfugacities_dzs()
Method to calculate and return the mole fraction derivative of the log of fugacities of the components in
the phase.

𝜕 ln 𝑓𝑖
𝜕𝑧𝑗

=
1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑧𝑗

Returns
dlnfugacities_dzs [list[list[float]]] Mole fraction derivatives of the log of fugacities of all

components in the phase, [log(Pa)]

dlnphis_dP()
Method to calculate and return the pressure derivative of the log of fugacity coefficients of each component
in the phase.

Returns
dlnphis_dP [list[float]] First pressure derivative of log fugacity coefficients, [1/Pa]

dlnphis_dT()
Method to calculate and return the temperature derivative of the log of fugacity coefficients of each com-
ponent in the phase.

Returns
dlnphis_dT [list[float]] First temperature derivative of log fugacity coefficients, [1/K]

dphis_dP()
Method to calculate and return the pressure derivative of fugacity coefficients of the phase.

𝜕𝜑𝑖
𝜕𝑃

= 𝜑𝑖
𝜕 ln𝜑𝑖
𝜕𝑃

Returns
dphis_dP [list[float]] Pressure derivative of fugacity coefficients of all components in the

phase, [1/Pa]

dphis_dT()
Method to calculate and return the temperature derivative of fugacity coefficients of the phase.

𝜕𝜑𝑖
𝜕𝑇

= 𝜑𝑖
𝜕 ln𝜑𝑖
𝜕𝑇

Returns
dphis_dT [list[float]] Temperature derivative of fugacity coefficients of all components in

the phase, [1/K]
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dphis_dzs()
Method to calculate and return the molar composition derivative of fugacity coefficients of the phase.

𝜕𝜑𝑖
𝜕𝑧𝑗

= 𝜑𝑖
𝜕 ln𝜑𝑖
𝜕𝑧𝑗

Returns
dphis_dzs [list[list[float]]] Molar derivative of fugacity coefficients of all components in the

phase, [-]

drho_dP()
Method to calculate and return the pressure derivative of molar density of the phase.

𝜕𝜌

𝜕𝑃
= − 1

𝑉 2

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Returns
drho_dP [float] Pressure derivative of Molar density, [mol/(Pa*m^3)]

drho_dP_A(property='rho', differentiate_by='P', at_constant='A')
Method to calculate and return the pressure derivative of density of the phase at constant Helmholtz energy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝐴

Returns
drho_dP_A [float] The pressure derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/Pa]

drho_dP_G(property='rho', differentiate_by='P', at_constant='G')
Method to calculate and return the pressure derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝐺

Returns
drho_dP_G [float] The pressure derivative of density of the phase at constant Gibbs energy,

[mol/m^3/Pa]

drho_dP_H(property='rho', differentiate_by='P', at_constant='H')
Method to calculate and return the pressure derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝐻

Returns
drho_dP_H [float] The pressure derivative of density of the phase at constant enthalpy,

[mol/m^3/Pa]

drho_dP_S(property='rho', differentiate_by='P', at_constant='S')
Method to calculate and return the pressure derivative of density of the phase at constant entropy.
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(︂
𝜕𝜌

𝜕𝑃

)︂
𝑆

Returns
drho_dP_S [float] The pressure derivative of density of the phase at constant entropy,

[mol/m^3/Pa]

drho_dP_U(property='rho', differentiate_by='P', at_constant='U')
Method to calculate and return the pressure derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝑃

)︂
𝑈

Returns
drho_dP_U [float] The pressure derivative of density of the phase at constant internal energy,

[mol/m^3/Pa]

drho_dT()
Method to calculate and return the temperature derivative of molar density of the phase.

𝜕𝜌

𝜕𝑇
= − 1

𝑉 2

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Returns
drho_dT [float] Temperature derivative of molar density, [mol/(K*m^3)]

drho_dT_A(property='rho', differentiate_by='T', at_constant='A')
Method to calculate and return the temperature derivative of density of the phase at constant Helmholtz
energy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝐴

Returns
drho_dT_A [float] The temperature derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/K]

drho_dT_G(property='rho', differentiate_by='T', at_constant='G')
Method to calculate and return the temperature derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝐺

Returns
drho_dT_G [float] The temperature derivative of density of the phase at constant Gibbs

energy, [mol/m^3/K]
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drho_dT_H(property='rho', differentiate_by='T', at_constant='H')
Method to calculate and return the temperature derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝐻

Returns
drho_dT_H [float] The temperature derivative of density of the phase at constant enthalpy,

[mol/m^3/K]

drho_dT_S(property='rho', differentiate_by='T', at_constant='S')
Method to calculate and return the temperature derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝑆

Returns
drho_dT_S [float] The temperature derivative of density of the phase at constant entropy,

[mol/m^3/K]

drho_dT_U(property='rho', differentiate_by='T', at_constant='U')
Method to calculate and return the temperature derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝑇

)︂
𝑈

Returns
drho_dT_U [float] The temperature derivative of density of the phase at constant internal

energy, [mol/m^3/K]

drho_dT_V()
Method to calculate and return the temperature derivative of molar density of the phase at constant volume.(︂

𝜕𝜌

𝜕𝑇

)︂
𝑉

= 0

Returns
drho_dT_V [float] Temperature derivative of molar density of the phase at constant volume,

[mol/(m^3*K)]

drho_dV_A(property='rho', differentiate_by='V', at_constant='A')
Method to calculate and return the volume derivative of density of the phase at constant Helmholtz energy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝐴

Returns
drho_dV_A [float] The volume derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/m^3/mol]
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drho_dV_G(property='rho', differentiate_by='V', at_constant='G')
Method to calculate and return the volume derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝐺

Returns
drho_dV_G [float] The volume derivative of density of the phase at constant Gibbs energy,

[mol/m^3/m^3/mol]

drho_dV_H(property='rho', differentiate_by='V', at_constant='H')
Method to calculate and return the volume derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝐻

Returns
drho_dV_H [float] The volume derivative of density of the phase at constant enthalpy,

[mol/m^3/m^3/mol]

drho_dV_S(property='rho', differentiate_by='V', at_constant='S')
Method to calculate and return the volume derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝑆

Returns
drho_dV_S [float] The volume derivative of density of the phase at constant entropy,

[mol/m^3/m^3/mol]

drho_dV_T()
Method to calculate and return the volume derivative of molar density of the phase.

𝜕𝜌

𝜕𝑉
= − 1

𝑉 2

Returns
drho_dV_T [float] Molar density derivative of volume, [mol^2/m^6]

drho_dV_U(property='rho', differentiate_by='V', at_constant='U')
Method to calculate and return the volume derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝑉

)︂
𝑈

Returns
drho_dV_U [float] The volume derivative of density of the phase at constant internal energy,

[mol/m^3/m^3/mol]
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drho_drho_A(property='rho', differentiate_by='rho', at_constant='A')
Method to calculate and return the density derivative of density of the phase at constant Helmholtz energy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝐴

Returns
drho_drho_A [float] The density derivative of density of the phase at constant Helmholtz

energy, [mol/m^3/mol/m^3]

drho_drho_G(property='rho', differentiate_by='rho', at_constant='G')
Method to calculate and return the density derivative of density of the phase at constant Gibbs energy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝐺

Returns
drho_drho_G [float] The density derivative of density of the phase at constant Gibbs energy,

[mol/m^3/mol/m^3]

drho_drho_H(property='rho', differentiate_by='rho', at_constant='H')
Method to calculate and return the density derivative of density of the phase at constant enthalpy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝐻

Returns
drho_drho_H [float] The density derivative of density of the phase at constant enthalpy,

[mol/m^3/mol/m^3]

drho_drho_S(property='rho', differentiate_by='rho', at_constant='S')
Method to calculate and return the density derivative of density of the phase at constant entropy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝑆

Returns
drho_drho_S [float] The density derivative of density of the phase at constant entropy,

[mol/m^3/mol/m^3]

drho_drho_U(property='rho', differentiate_by='rho', at_constant='U')
Method to calculate and return the density derivative of density of the phase at constant internal energy.

(︂
𝜕𝜌

𝜕𝜌

)︂
𝑈

Returns
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drho_drho_U [float] The density derivative of density of the phase at constant internal en-
ergy, [mol/m^3/mol/m^3]

drho_mass_dP()
Method to calculate the mass density derivative with respect to pressure, at constant temperature.(︂

𝜕𝜌

𝜕𝑃

)︂
𝑇

=
−MW𝜕𝑉𝑚

𝜕𝑃

1000𝑉 2
𝑚

Returns
drho_mass_dP [float] Pressure derivative of mass density at constant temperature,

[kg/m^3/Pa]

Notes

Requires dV_dP, MW, and V.

This expression is readily obtainable with SymTy:

>>> from sympy import *
>>> P, T, MW = symbols('P, T, MW')
>>> Vm = symbols('Vm', cls=Function)
>>> rho_mass = (Vm(P))**-1*MW/1000
>>> diff(rho_mass, P)
-MW*Derivative(Vm(P), P)/(1000*Vm(P)**2)

drho_mass_dT()
Method to calculate the mass density derivative with respect to temperature, at constant pressure.(︂

𝜕𝜌

𝜕𝑇

)︂
𝑃

=
−MW𝜕𝑉𝑚

𝜕𝑇

1000𝑉 2
𝑚

Returns
drho_mass_dT [float] Temperature derivative of mass density at constant pressure,

[kg/m^3/K]

Notes

Requires dV_dT, MW, and V.

This expression is readily obtainable with SymPy:

>>> from sympy import *
>>> T, P, MW = symbols('T, P, MW')
>>> Vm = symbols('Vm', cls=Function)
>>> rho_mass = (Vm(T))**-1*MW/1000
>>> diff(rho_mass, T)
-MW*Derivative(Vm(T), T)/(1000*Vm(T)**2)

dspeed_of_sound_dP_T()
Method to calculate the pressure derivative of speed of sound at constant temperature in molar units.

(︂
𝜕𝑐

𝜕𝑃

)︂
𝑇

= −

√︁
−Cp (𝑃 )𝑉 2(𝑃 ) dPdVT (𝑃 )

Cv (𝑃 )

(︁
−Cp (𝑃 )𝑉 2(𝑃 ) 𝑑

𝑑𝑃 dPdVT (𝑃 )

2Cv (𝑃 ) − Cp (𝑃 )𝑉 (𝑃 ) dPdVT (𝑃 ) 𝑑
𝑑𝑃 𝑉 (𝑃 )

Cv (𝑃 ) +
Cp (𝑃 )𝑉 2(𝑃 ) dPdVT (𝑃 ) 𝑑

𝑑𝑃 Cv (𝑃 )

2Cv2 (𝑃 )
− 𝑉 2(𝑃 ) dPdVT (𝑃 ) 𝑑

𝑑𝑃 Cp (𝑃 )

2Cv (𝑃 )

)︁
Cv (𝑃 )

Cp (𝑃 )𝑉 2(𝑃 ) dPdVT (𝑃 )
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Returns
dspeed_of_sound_dP_T [float] Pressure derivative of speed of sound at constant tempera-

ture, [m*kg^0.5/s/mol^0.5/Pa]

dspeed_of_sound_dT_P()
Method to calculate the temperature derivative of speed of sound at constant pressure in molar units.

(︂
𝜕𝑐

𝜕𝑇

)︂
𝑃

= −

√︁
−Cp (𝑇 )𝑉 2(𝑇 ) dPdVT (𝑇 )

Cv (𝑇 )

(︁
−Cp (𝑇 )𝑉 2(𝑇 ) 𝑑

𝑑𝑇 dPdVT (𝑇 )

2Cv (𝑇 ) − Cp (𝑇 )𝑉 (𝑇 ) dPdVT (𝑇 ) 𝑑
𝑑𝑇 𝑉 (𝑇 )

Cv (𝑇 ) +
Cp (𝑇 )𝑉 2(𝑇 ) dPdVT (𝑇 ) 𝑑

𝑑𝑇 Cv (𝑇 )

2Cv2 (𝑇 )
− 𝑉 2(𝑇 ) dPdVT (𝑇 ) 𝑑

𝑑𝑇 Cp (𝑇 )

2Cv (𝑇 )

)︁
Cv (𝑇 )

Cp (𝑇 )𝑉 2(𝑇 ) dPdVT (𝑇 )

Returns
dspeed_of_sound_dT_P [float] Temperature derivative of speed of sound at constant pres-

sure, [m*kg^0.5/s/mol^0.5/K]

Notes

Requires the temperature derivative of Cp and Cv both at constant pressure, as wel as the volume and
temperature derivative of pressure, calculated at constant temperature and then pressure respectively. These
can be tricky to obtain.

property economic_statuses
Status of each component in in relation to import and export from various regions, [-].

Returns
economic_statuses [list[dict]] Status of each component in in relation to import and export

from various regions, [-].

force_phase = None
Attribute which can be set to a global Phase object to force the phases identification routines to label it a
certain phase. Accepts values of (‘g’, ‘l’, ‘s’).

property formulas
Formulas of each component, [-].

Returns
formulas [list[str]] Formulas of each component, [-].

classmethod from_json(json_repr)
Method to create a phase from a JSON serialization of another phase.

Parameters
json_repr [dict] JSON-friendly representation, [-]

Returns
phase [Phase] Newly created phase object from the json serialization, [-]
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Notes

It is important that the input string be in the same format as that created by Phase.as_json.

fugacities()
Method to calculate and return the fugacities of the phase.

𝑓𝑖 = 𝑃𝑧𝑖 exp(ln𝜑𝑖)

Returns
fugacities [list[float]] Fugacities, [Pa]

fugacities_at_zs(zs)
Method to directly calculate the figacities at a different composition than the current phase. This is imple-
mented to allow for the possibility of more direct calls to obtain fugacities than is possible with the phase
interface. This base method simply creates a new phase, gets its log fugacity coefficients, exponentiates
them, and multiplies them by P and compositions.

Returns
fugacities [list[float]] Fugacities, [Pa]

fugacities_lowest_Gibbs()
Method to calculate and return the fugacities of the phase.

𝑓𝑖 = 𝑃𝑧𝑖 exp(ln𝜑𝑖)

Returns
fugacities [list[float]] Fugacities, [Pa]

fugacity()
Method to calculate and return the fugacity of the phase; provided the phase is 1 component.

Returns
fugacity [list[float]] Fugacity, [Pa]

gammas()
Method to calculate and return the activity coefficients of the phase, [-].

Activity coefficients are defined as the ratio of the actual fugacity coefficients times the pressure to the
reference pure fugacity coefficients times the reference pressure. The reference pressure can be set to the
actual pressure (the Lewis Randall standard state) which makes the pressures cancel.

𝛾𝑖(𝑇, 𝑃, 𝑥; 𝑓0𝑖 (𝑇, 𝑃 0
𝑖 )) =

𝜑𝑖(𝑇, 𝑃, 𝑥)𝑃

𝜑0𝑖 (𝑇, 𝑃 0
𝑖 )𝑃 0

𝑖

Returns
gammas [list[float]] Activity coefficients, [-]

ideal_gas_basis = False

is_solid = False

isentropic_exponent()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

𝑘 = −𝑉
𝑃

𝐶𝑝

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇
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Returns
k_PV [float] Isentropic exponent of a real fluid, [-]

isentropic_exponent_PT()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑃 (1−𝑘)𝑇 𝑘 = const.

𝑘 =
1

1 − 𝑃
𝐶𝑝

(︀
𝜕𝑉
𝜕𝑇

)︀
𝑃

Returns
k_PT [float] Isentropic exponent of a real fluid, [-]

isentropic_exponent_PV()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

𝑘 = −𝑉
𝑃

𝐶𝑝

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
k_PV [float] Isentropic exponent of a real fluid, [-]

isentropic_exponent_TV()
Method to calculate and return the real gas isentropic exponent of the phase, which satisfies the relationship
𝑇𝑉 𝑘−1 = const.

𝑘 = 1 +
𝑉

𝐶𝑣

(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

Returns
k_TV [float] Isentropic exponent of a real fluid, [-]

isobaric_expansion()
Method to calculate and return the isobatic expansion coefficient of the phase.

𝛽 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

Returns
beta [float] Isobaric coefficient of a thermal expansion, [1/K]

isothermal_bulk_modulus()
Method to calculate and return the isothermal bulk modulus of the phase.

𝐾𝑇 = −𝑉
(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

Returns
isothermal_bulk_modulus [float] Isothermal bulk modulus, [Pa]

isothermal_compressibility()
Method to calculate and return the isothermal compressibility of the phase.

𝜅 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Returns

698 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

kappa [float] Isothermal coefficient of compressibility, [1/Pa]

kappa()
Method to calculate and return the isothermal compressibility of the phase.

𝜅 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

Returns
kappa [float] Isothermal coefficient of compressibility, [1/Pa]

property legal_statuses
Status of each component in in relation to import and export rules from various regions, [-].

Returns
legal_statuses [list[dict]] Status of each component in in relation to import and export rules

from various regions, [-].

lnfugacities()
Method to calculate and return the log of fugacities of the phase.

ln 𝑓𝑖 = ln (𝑃𝑧𝑖 exp(ln𝜑𝑖)) = ln(𝑃 ) + ln(𝑧𝑖) + ln𝜑𝑖

Returns
lnfugacities [list[float]] Log fugacities, [log(Pa)]

lnphi()
Method to calculate and return the log of fugacity coefficient of the phase; provided the phase is 1 compo-
nent.

Returns
lnphi [list[float]] Log fugacity coefficient, [-]

lnphis()
Method to calculate and return the log of fugacity coefficients of each component in the phase.

Returns
lnphis [list[float]] Log fugacity coefficients, [-]

lnphis_G_min()
Method to calculate and return the log fugacity coefficients of the phase. If the phase can have multiple
solutions at its T and P, this method should return those with the lowest Gibbs energy. This needs to be
implemented on phases with that criteria like cubic EOSs.

Returns
lnphis [list[float]] Log fugacity coefficients, [-]

lnphis_at_zs(zs)
Method to directly calculate the log fugacity coefficients at a different composition than the current phase.
This is implemented to allow for the possibility of more direct calls to obtain fugacities than is possible
with the phase interface. This base method simply creates a new phase, gets its log fugacity coefficients,
and returns them.

Returns
lnphis [list[float]] Log fugacity coefficients, [-]

property logPs
Octanol-water partition coefficients for each component, [-].
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Returns
logPs [list[float]] Octanol-water partition coefficients for each component, [-].

log_zs()
Method to calculate and return the log of mole fractions specified. These are used in calculating entropy
and in many other formulas.

ln 𝑧𝑖

Returns
log_zs [list[float]] Log of mole fractions, [-]

model_hash(ignore_phase=False)
Method to compute a hash of a phase.

Parameters
ignore_phase [bool] Whether or not to include the specifc class of the model in the hash

Returns
hash [int] Hash representing the settings of the phase; phases with all identical model pa-

rameters should have the same hash.

molar_water_content()
Method to calculate and return the molar water content; this is the g/mol of the fluid which is coming from
water, [g/mol].

water content = MW𝐻2𝑂𝑤𝐻2𝑂

Returns
molar_water_content [float] Molar water content, [g/mol]

property molecular_diameters
Lennard-Jones molecular diameters for each component, [angstrom].

Returns
molecular_diameters [list[float]] Lennard-Jones molecular diameters for each component,

[angstrom].

mu()

property names
Names for each component, [-].

Returns
names [list[str]] Names for each component, [-].

obj_references = ()
Tuple of object instances which should be stored as json using their own as_json method.

property omegas
Acentric factors for each component, [-].

Returns
omegas [list[float]] Acentric factors for each component, [-].

property phase_STPs
Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].
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Returns
phase_STPs [list[str]] Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].

phi()
Method to calculate and return the fugacity coefficient of the phase; provided the phase is 1 component.

Returns
phi [list[float]] Fugacity coefficient, [-]

phis()
Method to calculate and return the fugacity coefficients of the phase.

𝜑𝑖 = exp(ln𝜑𝑖)

Returns
phis [list[float]] Fugacity coefficients, [-]

pointer_reference_dicts = ()
Tuple of dictionaries for string -> object

pointer_references = ()
Tuple of attributes which should be stored by converting them to a string, and then they will be looked up
in their corresponding pointer_reference_dicts entry.

pseudo_Pc()
Method to calculate and return the pseudocritical pressure calculated using Kay’s rule (linear mole frac-
tions):

𝑃𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑃𝑐,𝑖

Returns
pseudo_Pc [float] Pseudocritical pressure of the phase, [Pa]

pseudo_Tc()
Method to calculate and return the pseudocritical temperature calculated using Kay’s rule (linear mole
fractions):

𝑇𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑇𝑐,𝑖

Returns
pseudo_Tc [float] Pseudocritical temperature of the phase, [K]

pseudo_Vc()
Method to calculate and return the pseudocritical volume calculated using Kay’s rule (linear mole frac-
tions):

𝑉𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑉𝑐,𝑖

Returns
pseudo_Vc [float] Pseudocritical volume of the phase, [m^3/mol]

pseudo_Zc()
Method to calculate and return the pseudocritical compressibility calculated using Kay’s rule (linear mole
fractions):

𝑍𝑐,𝑝𝑠𝑒𝑢𝑑𝑜 =
∑︁
𝑖

𝑧𝑖𝑍𝑐,𝑖
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Returns
pseudo_Zc [float] Pseudocritical compressibility of the phase, [-]

pure_reference_types = ()
Tuple of types of thermo.utils.TDependentProperty or thermo.utils.TPDependentProperty
corresponding to pure_references.

pure_references = ()
Tuple of attribute names which hold lists of thermo.utils.TDependentProperty or thermo.utils.
TPDependentProperty instances.

reference_pointer_dicts = ()
Tuple of dictionaries for object -> string

rho()
Method to calculate and return the molar density of the phase.

𝜌 = 𝑓𝑟𝑎𝑐1𝑉

Returns
rho [float] Molar density, [mol/m^3]

rho_mass()
Method to calculate and return mass density of the phase.

𝜌 =
𝑀𝑊

1000 · 𝑉𝑀
Returns

rho_mass [float] Mass density, [kg/m^3]

rho_mass_liquid_ref()
Method to calculate and return the liquid reference mass density according to the temperature variable
T_liquid_volume_ref of thermo.bulk.BulkSettings and the composition of the phase.

Returns
rho_mass_liquid_ref [float] Liquid mass density at the reference condition, [kg/m^3]

property rhocs
Molar densities at the critical point for each component, [mol/m^3].

Returns
rhocs [list[float]] Molar densities at the critical point for each component, [mol/m^3].

property rhocs_mass
Densities at the critical point for each component, [kg/m^3].

Returns
rhocs_mass [list[float]] Densities at the critical point for each component, [kg/m^3].

property rhog_STPs
Molar gas densities at STP for each component; metastable if normally another state, [mol/m^3].

Returns
rhog_STPs [list[float]] Molar gas densities at STP for each component; metastable if nor-

mally another state, [mol/m^3].

property rhog_STPs_mass
Gas densities at STP for each component; metastable if normally another state, [kg/m^3].
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Returns
rhog_STPs_mass [list[float]] Gas densities at STP for each component; metastable if nor-

mally another state, [kg/m^3].

property rhol_60Fs
Liquid molar densities for each component at 60 °F, [mol/m^3].

Returns
rhol_60Fs [list[float]] Liquid molar densities for each component at 60 °F, [mol/m^3].

property rhol_60Fs_mass
Liquid mass densities for each component at 60 °F, [kg/m^3].

Returns
rhol_60Fs_mass [list[float]] Liquid mass densities for each component at 60 °F, [kg/m^3].

property rhol_STPs
Molar liquid densities at STP for each component, [mol/m^3].

Returns
rhol_STPs [list[float]] Molar liquid densities at STP for each component, [mol/m^3].

property rhol_STPs_mass
Liquid densities at STP for each component, [kg/m^3].

Returns
rhol_STPs_mass [list[float]] Liquid densities at STP for each component, [kg/m^3].

property rhos_Tms
Solid molar densities for each component at their respective melting points, [mol/m^3].

Returns
rhos_Tms [list[float]] Solid molar densities for each component at their respective melting

points, [mol/m^3].

property rhos_Tms_mass
Solid mass densities for each component at their melting point, [kg/m^3].

Returns
rhos_Tms_mass [list[float]] Solid mass densities for each component at their melting point,

[kg/m^3].

scalar = True

sigma()
Calculate and return the surface tension of the phase. For details of the implementation, see
SurfaceTensionMixture.

This property is strictly the ideal-gas to liquid surface tension, not a true inter-phase property.

Returns
sigma [float] Surface tension, [N/m]

property sigma_STPs
Liquid-air surface tensions at 298.15 K and the higher of 101325 Pa or the saturation pressure, [N/m].

Returns
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sigma_STPs [list[float]] Liquid-air surface tensions at 298.15 K and the higher of 101325
Pa or the saturation pressure, [N/m].

property sigma_Tbs
Liquid-air surface tensions at the normal boiling point and 101325 Pa, [N/m].

Returns
sigma_Tbs [list[float]] Liquid-air surface tensions at the normal boiling point and 101325

Pa, [N/m].

property sigma_Tms
Liquid-air surface tensions at the melting point and 101325 Pa, [N/m].

Returns
sigma_Tms [list[float]] Liquid-air surface tensions at the melting point and 101325 Pa,

[N/m].

property similarity_variables
Similarity variables for each component, [mol/g].

Returns
similarity_variables [list[float]] Similarity variables for each component, [mol/g].

property smiless
SMILES identifiers for each component, [-].

Returns
smiless [list[str]] SMILES identifiers for each component, [-].

property solubility_parameters
Solubility parameters for each component at 298.15 K, [Pa^0.5].

Returns
solubility_parameters [list[float]] Solubility parameters for each component at 298.15 K,

[Pa^0.5].

speed_of_sound()
Method to calculate and return the molar speed of sound of the phase.

𝑤 =

[︂
−𝑉 2

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
A similar expression based on molar density is:

𝑤 =

[︂(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
Returns

w [float] Speed of sound for a real gas, [m*kg^0.5/(s*mol^0.5)]

speed_of_sound_mass()
Method to calculate and return the speed of sound of the phase.

𝑤 =

[︂
−𝑉 2 1000

𝑀𝑊

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

𝐶𝑝

𝐶𝑣

]︂1/2
Returns

704 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

w [float] Speed of sound for a real gas, [m/s]

state_hash()
Basic method to calculate a hash of the state of the phase and its model parameters.

Note that the hashes should only be compared on the same system running in the same process!

Returns
state_hash [int] Hash of the object’s model parameters and state, [-]

to(zs, T=None, P=None, V=None)
Method to create a new Phase object with the same constants as the existing Phase but at different conditions.
Mole fractions zs are always required and any two of T, P, and V are required.

Parameters
zs [list[float]] Molar composition of the new phase, [-]

T [float, optional] Temperature of the new phase, [K]

P [float, optional] Pressure of the new phase, [Pa]

V [float, optional] Molar volume of the new phase, [m^3/mol]

Returns
new_phase [Phase] New phase at the specified conditions, [-]

Examples

These sample cases illustrate the three combinations of inputs. Note that some thermodynamic models may
have multiple solutions for some inputs!

>>> from thermo import IdealGas
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21], HeatCapacityGases=[])
>>> phase.to(T=1e5, P=1e3, zs=[.5, .5])
IdealGas(HeatCapacityGases=[], T=100000.0, P=1000.0, zs=[0.5, 0.5])
>>> phase.to(V=1e-4, P=1e3, zs=[.1, .9])
IdealGas(HeatCapacityGases=[], T=0.012027235504, P=1000.0, zs=[0.1, 0.9])
>>> phase.to(T=1e5, V=1e12, zs=[.2, .8])
IdealGas(HeatCapacityGases=[], T=100000.0, P=8.31446261e-07, zs=[0.2, 0.8])

to_TP_zs(T, P, zs)
Method to create a new Phase object with the same constants as the existing Phase but at a different T and
P.

Parameters
zs [list[float]] Molar composition of the new phase, [-]

T [float] Temperature of the new phase, [K]

P [float] Pressure of the new phase, [Pa]

Returns
new_phase [Phase] New phase at the specified conditions, [-]
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Notes

This method is marginally faster than Phase.to as it does not need to check what the inputs are.

Examples

>>> from thermo import IdealGas
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21], HeatCapacityGases=[])
>>> phase.to_TP_zs(T=1e5, P=1e3, zs=[.5, .5])
IdealGas(HeatCapacityGases=[], T=100000.0, P=1000.0, zs=[0.5, 0.5])

value(name)
Method to retrieve a property from a string. This more or less wraps getattr.

name could be a python property like ‘Tms’ or a callable method like ‘H’.

Parameters
name [str] String representing the property, [-]

Returns
value [various] Value specified, [various]

ws()
Method to calculate and return the mass fractions of the phase, [-]

Returns
ws [list[float]] Mass fractions, [-]

ws_no_water()
Method to calculate and return the mass fractions of all species in the phase, normalized to a water-free
basis (the mass fraction of water returned is zero).

Returns
ws_no_water [list[float]] Mass fractions on a water free basis, [-]

zs_no_water()
Method to calculate and return the mole fractions of all species in the phase, normalized to a water-free
basis (the mole fraction of water returned is zero).

Returns
zs_no_water [list[float]] Mole fractions on a water free basis, [-]

7.22.2 Ideal Gas Equation of State

class thermo.phases.IdealGas(HeatCapacityGases=None, Hfs=None, Gfs=None, T=None, P=None,
zs=None)

Bases: thermo.phases.phase.Phase

Class for representing an ideal gas as a phase object. All departure properties are zero.

𝑃 =
𝑅𝑇

𝑉

Parameters
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HeatCapacityGases [list[HeatCapacityGas]] Objects proiding pure-component heat capacity
correlations, [-]

Hfs [list[float]] Molar ideal-gas standard heats of formation at 298.15 K and 1 atm, [J/mol]

Gfs [list[float]] Molar ideal-gas standard Gibbs energies of formation at 298.15 K and 1 atm,
[J/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

zs [list[float], optional] Mole fractions of each component, [-]

Examples

T-P initialization for oxygen and nitrogen, using Poling’s polynomial heat capacities:

>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13, R*1.
→˓57e-09, R*7e-08, R*-0.000261, R*3.539])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12, R*-6e-
→˓09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21],␣
→˓HeatCapacityGases=HeatCapacityGases)
>>> phase.Cp()
29.1733530

Methods

Cp() Method to calculate and return the molar heat capac-
ity of the phase.

H() Method to calculate and return the enthalpy of the
phase.

S() Method to calculate and return the entropy of the
phase.

d2H_dP2() Method to calculate and return the second pressure
derivative of molar enthalpy of the phase.

d2H_dT2() Method to calculate and return the first temperature
derivative of molar heat capacity of the phase.

d2P_dT2() Method to calculate and return the second tempera-
ture derivative of pressure of the phase.

d2P_dTdV() Method to calculate and return the second derivative
of pressure with respect to temperature and volume
of the phase.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the phase.

d2S_dP2() Method to calculate and return the second pressure
derivative of molar entropy of the phase.

dH_dP() Method to calculate and return the first pressure
derivative of molar enthalpy of the phase.

dH_dP_V() Method to calculate and return the pressure derivative
of molar enthalpy at constant volume of the phase.

continues on next page
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Table 81 – continued from previous page
dH_dT_V() Method to calculate and return the molar heat capac-

ity of the phase.
dH_dV_P() Method to calculate and return the volume derivative

of molar enthalpy at constant pressure of the phase.
dH_dV_T() Method to calculate and return the volume deriva-

tive of molar enthalpy at constant temperature of the
phase.

dP_dT() Method to calculate and return the first temperature
derivative of pressure of the phase.

dP_dV() Method to calculate and return the first volume
derivative of pressure of the phase.

dS_dP() Method to calculate and return the first pressure
derivative of molar entropy of the phase.

dS_dP_V() Method to calculate and return the first pressure
derivative of molar entropy at constant volume of the
phase.

dS_dT() Method to calculate and return the first temperature
derivative of molar entropy of the phase.

dS_dT_V() Method to calculate and return the first temperature
derivative of molar entropy at constant volume of the
phase.

dlnphis_dP() Method to calculate and return the pressure derivative
of the log of fugacity coefficients of each component
in the phase.

dlnphis_dT() Method to calculate and return the temperature
derivative of the log of fugacity coefficients of each
component in the phase.

dphis_dP() Method to calculate and return the pressure deriva-
tive of fugacity coefficients of each component in the
phase.

dphis_dT() Method to calculate and return the temperature
derivative of fugacity coefficients of each component
in the phase.

fugacities() Method to calculate and return the fugacities of each
component in the phase.

lnphis() Method to calculate and return the log of fugacity co-
efficients of each component in the phase.

phis() Method to calculate and return the fugacity coeffi-
cients of each component in the phase.

Cp()
Method to calculate and return the molar heat capacity of the phase.

𝐶𝑝 =
∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

H()
Method to calculate and return the enthalpy of the phase.

𝐻 =
∑︁
𝑖

𝑧𝑖𝐻
𝑖𝑔
𝑖

708 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Returns
H [float] Molar enthalpy, [J/(mol)]

S()
Method to calculate and return the entropy of the phase.

𝑆 =
∑︁
𝑖

𝑧𝑖𝑆
𝑖𝑔
𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−𝑅

∑︁
𝑖

𝑧𝑖 ln(𝑧𝑖)

Returns
S [float] Molar entropy, [J/(mol*K)]

__repr__()
Method to create a string representation of the phase object, with the goal of making it easy to obtain
standalone code which reproduces the current state of the phase. This is extremely helpful in creating new
test cases.

Returns
recreation [str] String which is valid Python and recreates the current state of the object if

ran, [-]

Examples

>>> from thermo import HeatCapacityGas, IdealGas
>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13,␣
→˓R*1.57e-09, R*7e-08, R*-0.000261, R*3.539])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12,␣
→˓R*-6e-09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21],␣
→˓HeatCapacityGases=HeatCapacityGases)
>>> phase
IdealGas(HeatCapacityGases=[HeatCapacityGas(extrapolation="linear", method=
→˓"POLY_FIT", poly_fit=(50.0, 1000.0, [-8.231317991971707e-12, 1.
→˓3053706310500586e-08, 5.820123832707268e-07, -0.0021700747433379955, 29.
→˓424883205644317])), HeatCapacityGas(extrapolation="linear", method="POLY_FIT",
→˓ poly_fit=(50.0, 1000.0, [1.48828880864943e-11, -4.9886775708919434e-08, 5.
→˓4709164027448316e-05, -0.014916145936966912, 30.18149930389626]))], T=300,␣
→˓P=100000.0, zs=[0.79, 0.21])

d2H_dP2()
Method to calculate and return the second pressure derivative of molar enthalpy of the phase.

𝜕2𝐻

𝜕𝑃 2
= 0

Returns
d2H_dP2 [float] Second pressure derivative of molar enthalpy, [J/(mol*Pa^2)]

d2H_dT2()
Method to calculate and return the first temperature derivative of molar heat capacity of the phase.

𝜕𝐶𝑝

𝜕𝑇
=
∑︁
𝑖

𝑧𝑖
𝜕𝐶𝑖𝑔

𝑝,𝑖

𝜕𝑇
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Returns
d2H_dT2 [float] Second temperature derivative of enthalpy, [J/(mol*K^2)]

d2P_dT2()
Method to calculate and return the second temperature derivative of pressure of the phase.

𝜕2𝑃

𝜕𝑇 2
= 0

Returns
d2P_dT2 [float] Second temperature derivative of pressure, [Pa/K^2]

d2P_dTdV()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the phase.

𝜕2𝑃

𝜕𝑉 𝜕𝑇
=

−𝑃 2

𝑅𝑇 2

Returns
d2P_dTdV [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_dV2()
Method to calculate and return the second volume derivative of pressure of the phase.

𝜕2𝑃

𝜕𝑉 2
=

2𝑃 3

𝑅2𝑇 2

Returns
d2P_dV2 [float] Second volume derivative of pressure, [Pa*mol^2/m^6]

d2S_dP2()
Method to calculate and return the second pressure derivative of molar entropy of the phase.

𝜕2𝑆

𝜕𝑃 2
=

𝑅

𝑃 2

Returns
d2S_dP2 [float] Second pressure derivative of molar entropy, [J/(mol*K*Pa^2)]

dH_dP()
Method to calculate and return the first pressure derivative of molar enthalpy of the phase.

𝜕𝐻

𝜕𝑃
= 0

Returns
dH_dP [float] First pressure derivative of molar enthalpy, [J/(mol*Pa)]

dH_dP_V()
Method to calculate and return the pressure derivative of molar enthalpy at constant volume of the phase.(︂

𝜕𝐻

𝜕𝑃

)︂
𝑉

= 𝐶𝑝

(︂
𝜕𝑇

𝜕𝑃

)︂
𝑉

Returns
dH_dP_V [float] First pressure derivative of molar enthalpy at constant volume, [J/(mol*Pa)]
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dH_dT_V()
Method to calculate and return the molar heat capacity of the phase.

𝐶𝑝 =
∑︁
𝑖

𝑧𝑖𝐶
𝑖𝑔
𝑝,𝑖

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

dH_dV_P()
Method to calculate and return the volume derivative of molar enthalpy at constant pressure of the phase.(︂

𝜕𝐻

𝜕𝑉

)︂
𝑃

= 𝐶𝑝

(︂
𝜕𝑇

𝜕𝑉

)︂
𝑃

Returns
dH_dV_T [float] First pressure derivative of molar enthalpy at constant volume, [J/(m^3)]

dH_dV_T()
Method to calculate and return the volume derivative of molar enthalpy at constant temperature of the phase.(︂

𝜕𝐻

𝜕𝑉

)︂
𝑇

= 0

Returns
dH_dV_T [float] First pressure derivative of molar enthalpy at constant volume, [J/(m^3)]

dP_dT()
Method to calculate and return the first temperature derivative of pressure of the phase.

𝜕𝑃

𝜕𝑇
=
𝑃

𝑇

Returns
dP_dT [float] First temperature derivative of pressure, [Pa/K]

dP_dV()
Method to calculate and return the first volume derivative of pressure of the phase.

𝜕𝑃

𝜕𝑉
=

−𝑃 2

𝑅𝑇

Returns
dP_dV [float] First volume derivative of pressure, [Pa*mol/m^3]

dS_dP()
Method to calculate and return the first pressure derivative of molar entropy of the phase.

𝜕𝑆

𝜕𝑃
= −𝑅

𝑃

Returns
dS_dP [float] First pressure derivative of molar entropy, [J/(mol*K*Pa)]

dS_dP_V()
Method to calculate and return the first pressure derivative of molar entropy at constant volume of the phase.(︂

𝜕𝑆

𝜕𝑃

)︂
𝑉

=
−𝑅
𝑃

+
𝐶𝑝

𝑇

𝜕𝑇

𝜕𝑃
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Returns
dS_dP_V [float] First pressure derivative of molar entropy at constant volume,

[J/(mol*K*Pa)]

dS_dT()
Method to calculate and return the first temperature derivative of molar entropy of the phase.

𝜕𝑆

𝜕𝑇
=
𝐶𝑝

𝑇

Returns
dS_dT [float] First temperature derivative of molar entropy, [J/(mol*K^2)]

dS_dT_V()
Method to calculate and return the first temperature derivative of molar entropy at constant volume of the
phase. (︂

𝜕𝑆

𝜕𝑇

)︂
𝑉

=
𝐶𝑝

𝑇
− 𝑅

𝑃

𝜕𝑃

𝜕𝑇

Returns
dS_dT_V [float] First temperature derivative of molar entropy at constant volume,

[J/(mol*K^2)]

dlnphis_dP()
Method to calculate and return the pressure derivative of the log of fugacity coefficients of each component
in the phase.

𝜕 ln𝜑𝑖
𝜕𝑃

= 0

Returns
dlnphis_dP [list[float]] Log fugacity coefficients, [1/Pa]

dlnphis_dT()
Method to calculate and return the temperature derivative of the log of fugacity coefficients of each com-
ponent in the phase.

𝜕 ln𝜑𝑖
𝜕𝑇

= 0

Returns
dlnphis_dT [list[float]] Log fugacity coefficients, [1/K]

dphis_dP()
Method to calculate and return the pressure derivative of fugacity coefficients of each component in the
phase.

𝜕𝜑𝑖
𝜕𝑃

= 0

Returns
dphis_dP [list[float]] Pressure derivative of fugacity fugacity coefficients, [1/Pa]

dphis_dT()
Method to calculate and return the temperature derivative of fugacity coefficients of each component in the
phase.

𝜕𝜑𝑖
𝜕𝑇

= 0
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Returns
dphis_dT [list[float]] Temperature derivative of fugacity fugacity coefficients, [1/K]

fugacities()
Method to calculate and return the fugacities of each component in the phase.

fugacitiy𝑖 = 𝑧𝑖𝑃

Returns
fugacities [list[float]] Fugacities, [Pa]

Examples

>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13,␣
→˓R*1.57e-09, R*7e-08, R*-0.000261, R*3.539])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12,␣
→˓R*-6e-09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21],␣
→˓HeatCapacityGases=HeatCapacityGases)
>>> phase.fugacities()
[79000.0, 21000.0]

lnphis()
Method to calculate and return the log of fugacity coefficients of each component in the phase.

ln𝜑𝑖 = 0.0

Returns
lnphis [list[float]] Log fugacity coefficients, [-]

phis()
Method to calculate and return the fugacity coefficients of each component in the phase.

𝜑𝑖 = 1

Returns
phis [list[float]] Fugacity fugacity coefficients, [-]

7.22.3 Cubic Equations of State

Gas Phases

class thermo.phases.CEOSGas(eos_class, eos_kwargs, HeatCapacityGases=None, Hfs=None, Gfs=None,
Sfs=None, T=None, P=None, zs=None)

Bases: thermo.phases.phase.Phase

Class for representing a cubic equation of state gas phase as a phase object. All departure properties are actually
calculated by the code in thermo.eos and thermo.eos_mix.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 2 + 𝛿𝑉 + 𝜖

Parameters
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eos_class [thermo.eos_mix.GCEOSMIX] EOS class, [-]

eos_kwargs [dict] Parameters to be passed to the created EOS, [-]

HeatCapacityGases [list[HeatCapacityGas]] Objects proiding pure-component heat capacity
correlations, [-]

Hfs [list[float]] Molar ideal-gas standard heats of formation at 298.15 K and 1 atm, [J/mol]

Gfs [list[float]] Molar ideal-gas standard Gibbs energies of formation at 298.15 K and 1 atm,
[J/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

zs [list[float], optional] Mole fractions of each component, [-]

Examples

T-P initialization for oxygen and nitrogen with the PR EOS, using Poling’s polynomial heat capacities:

>>> from thermo import HeatCapacityGas, PRMIX, CEOSGas
>>> eos_kwargs = dict(Tcs=[154.58, 126.2], Pcs=[5042945.25, 3394387.5], omegas=[0.
→˓021, 0.04], kijs=[[0.0, -0.0159], [-0.0159, 0.0]])
>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13, R*1.
→˓57e-09, R*7e-08, R*-0.000261, R*3.539])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12, R*-6e-
→˓09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = CEOSGas(eos_class=PRMIX, eos_kwargs=eos_kwargs, T=300, P=1e5, zs=[.79, .
→˓21], HeatCapacityGases=HeatCapacityGases)
>>> phase.Cp()
29.2285050

Methods

Cp() Method to calculate and return the constant-pressure
heat capacity of the phase.

Cv() Method to calculate and return the constant-volume
heat capacity Cv of the phase.

H() Method to calculate and return the enthalpy of the
phase.

S() Method to calculate and return the entropy of the
phase.

V_iter([force]) Method to calculate and return the volume of the
phase in a way suitable for a TV resolution to con-
verge on the same pressure.

d2P_dT2() Method to calculate and return the second tempera-
ture derivative of pressure of the phase.

d2P_dTdV() Method to calculate and return the second derivative
of pressure with respect to temperature and volume
of the phase.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the phase.

continues on next page
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Table 82 – continued from previous page
dP_dT() Method to calculate and return the first temperature

derivative of pressure of the phase.
dP_dV() Method to calculate and return the first volume

derivative of pressure of the phase.
dS_dT_V() Method to calculate and return the first temperature

derivative of molar entropy at constant volume of the
phase.

dlnphis_dP() Method to calculate and return the first pressure
derivative of the log of fugacity coefficients of each
component in the phase.

dlnphis_dT() Method to calculate and return the first temperature
derivative of the log of fugacity coefficients of each
component in the phase.

lnphis() Method to calculate and return the log of fugacity co-
efficients of each component in the phase.

to_TP_zs(T, P, zs[, other_eos]) Method to create a new Phase object with the same
constants as the existing Phase but at a different T and
P.

Cp()
Method to calculate and return the constant-pressure heat capacity of the phase.

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

Cv()
Method to calculate and return the constant-volume heat capacity Cv of the phase.

𝐶𝑣 = 𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

+ 𝐶𝑝

Returns
Cv [float] Constant volume molar heat capacity, [J/(mol*K)]

H()
Method to calculate and return the enthalpy of the phase. The reference state for most subclasses is an
ideal-gas enthalpy of zero at 298.15 K and 101325 Pa.

Returns
H [float] Molar enthalpy, [J/(mol)]

S()
Method to calculate and return the entropy of the phase. The reference state for most subclasses is an
ideal-gas entropy of zero at 298.15 K and 101325 Pa.

Returns
S [float] Molar entropy, [J/(mol*K)]

V_iter(force=False)
Method to calculate and return the volume of the phase in a way suitable for a TV resolution to converge
on the same pressure. This often means the return value of this method is an mpmath mpf. This dummy
method simply returns the implemented V method.

Returns
V [float or mpf] Molar volume, [m^3/mol]
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__repr__()
Method to create a string representation of the phase object, with the goal of making it easy to obtain
standalone code which reproduces the current state of the phase. This is extremely helpful in creating new
test cases.

Returns
recreation [str] String which is valid Python and recreates the current state of the object if

ran, [-]

Examples

>>> from thermo import HeatCapacityGas, PRMIX, CEOSGas
>>> eos_kwargs = dict(Tcs=[154.58, 126.2], Pcs=[5042945.25, 3394387.5],␣
→˓omegas=[0.021, 0.04], kijs=[[0.0, -0.0159], [-0.0159, 0.0]])
>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13,␣
→˓R*1.57e-09, R*7e-08, R*-0.000261, R*3.539])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12,␣
→˓R*-6e-09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = CEOSGas(eos_class=PRMIX, eos_kwargs=eos_kwargs, T=300, P=1e5, zs=[.
→˓79, .21], HeatCapacityGases=HeatCapacityGases)
>>> phase
CEOSGas(eos_class=PRMIX, eos_kwargs={"Tcs": [154.58, 126.2], "Pcs": [5042945.25,
→˓ 3394387.5], "omegas": [0.021, 0.04], "kijs": [[0.0, -0.0159], [-0.0159, 0.
→˓0]]}, HeatCapacityGases=[HeatCapacityGas(extrapolation="linear", method="POLY_
→˓FIT", poly_fit=(50.0, 1000.0, [-8.231317991971707e-12, 1.3053706310500586e-08,
→˓ 5.820123832707268e-07, -0.0021700747433379955, 29.424883205644317])),␣
→˓HeatCapacityGas(extrapolation="linear", method="POLY_FIT", poly_fit=(50.0,␣
→˓1000.0, [1.48828880864943e-11, -4.9886775708919434e-08, 5.4709164027448316e-
→˓05, -0.014916145936966912, 30.18149930389626]))], T=300, P=100000.0, zs=[0.79,
→˓ 0.21])

d2P_dT2()
Method to calculate and return the second temperature derivative of pressure of the phase.(︂

𝜕2𝑃

𝜕𝑇 2

)︂
𝑉

= −
𝑎𝑑2𝛼(𝑇 )

𝑑𝑇 2

𝑉 2 + 𝑉 𝛿 + 𝜖

Returns
d2P_dT2 [float] Second temperature derivative of pressure, [Pa/K^2]

d2P_dTdV()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the phase. (︂

𝜕2𝑃

𝜕𝑇𝜕𝑉

)︂
= − 𝑅

(𝑉 − 𝑏)
2 +

𝑎 (2𝑉 + 𝛿) 𝑑𝛼(𝑇 )
𝑑𝑇

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

Returns
d2P_dTdV [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_dV2()
Method to calculate and return the second volume derivative of pressure of the phase.(︂

𝜕2𝑃

𝜕𝑉 2

)︂
𝑇

= 2

(︃
𝑅𝑇

(𝑉 − 𝑏)
3 − 𝑎 (2𝑉 + 𝛿)

2
𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
3 +

𝑎𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

)︃
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Returns
d2P_dV2 [float] Second volume derivative of pressure, [Pa*mol^2/m^6]

dP_dT()
Method to calculate and return the first temperature derivative of pressure of the phase.(︂

𝜕𝑃

𝜕𝑇

)︂
𝑉

=
𝑅

𝑉 − 𝑏
−

𝑎𝑑𝛼(𝑇 )
𝑑𝑇

𝑉 2 + 𝑉 𝛿 + 𝜖

Returns
dP_dT [float] First temperature derivative of pressure, [Pa/K]

dP_dV()
Method to calculate and return the first volume derivative of pressure of the phase.(︂

𝜕𝑃

𝜕𝑉

)︂
𝑇

= − 𝑅𝑇

(𝑉 − 𝑏)
2 − 𝑎 (−2𝑉 − 𝛿)𝛼(𝑇 )

(𝑉 2 + 𝑉 𝛿 + 𝜖)
2

Returns
dP_dV [float] First volume derivative of pressure, [Pa*mol/m^3]

dS_dT_V()
Method to calculate and return the first temperature derivative of molar entropy at constant volume of the
phase. (︂

𝜕𝑆

𝜕𝑇

)︂
𝑉

=
𝐶𝑖𝑔

𝑝

𝑇
− 𝑅

𝑃

𝜕𝑃

𝜕𝑇
+

(︂
𝜕𝑆𝑑𝑒𝑝

𝜕𝑇

)︂
𝑉

Returns
dS_dT_V [float] First temperature derivative of molar entropy at constant volume,

[J/(mol*K^2)]

dlnphis_dP()
Method to calculate and return the first pressure derivative of the log of fugacity coefficients of each com-
ponent in the phase. The calculation is performed by thermo.eos_mix.GCEOSMIX.dlnphis_dP or a
simpler formula in the case of most specific models.

Returns
dlnphis_dP [list[float]] First pressure derivative of log fugacity coefficients, [1/Pa]

dlnphis_dT()
Method to calculate and return the first temperature derivative of the log of fugacity coefficients of each
component in the phase. The calculation is performed by thermo.eos_mix.GCEOSMIX.dlnphis_dT or
a simpler formula in the case of most specific models.

Returns
dlnphis_dT [list[float]] First temperature derivative of log fugacity coefficients, [1/K]

lnphis()
Method to calculate and return the log of fugacity coefficients of each component in the phase. The calcu-
lation is performed by thermo.eos_mix.GCEOSMIX.fugacity_coefficients or a simpler formula in
the case of most specific models.

Returns
lnphis [list[float]] Log fugacity coefficients, [-]
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to_TP_zs(T, P, zs, other_eos=None)
Method to create a new Phase object with the same constants as the existing Phase but at a different T and
P. This method has a special parameter other_eos.

This is added to allow a gas-type phase to be created from a liquid-type phase at the same conditions (and
vice-versa), as GCEOSMIX objects were designed to have vapor and liquid properties in the same phase.
This argument is mostly for internal use.

Parameters
zs [list[float]] Molar composition of the new phase, [-]

T [float] Temperature of the new phase, [K]

P [float] Pressure of the new phase, [Pa]

other_eos [obj:GCEOSMIX <thermo.eos_mix.GCEOSMIX> object] Other equation of state
object at the same conditions, [-]

Returns
new_phase [Phase] New phase at the specified conditions, [-]

Notes

This method is marginally faster than Phase.to as it does not need to check what the inputs are.

Examples

>>> from thermo.eos_mix import PRMIX
>>> eos_kwargs = dict(Tcs=[305.32, 369.83], Pcs=[4872000.0, 4248000.0],␣
→˓omegas=[0.098, 0.152])
>>> gas = CEOSGas(PRMIX, T=300.0, P=1e6, zs=[.2, .8], eos_kwargs=eos_kwargs)
>>> liquid = CEOSLiquid(PRMIX, T=500.0, P=1e7, zs=[.3, .7], eos_kwargs=eos_
→˓kwargs)
>>> new_liq = liquid.to_TP_zs(T=gas.T, P=gas.P, zs=gas.zs, other_eos=gas.eos_
→˓mix)
>>> new_liq
CEOSLiquid(eos_class=PRMIX, eos_kwargs={"Tcs": [305.32, 369.83], "Pcs":␣
→˓[4872000.0, 4248000.0], "omegas": [0.098, 0.152]}, HeatCapacityGases=[],␣
→˓T=300.0, P=1000000.0, zs=[0.2, 0.8])
>>> new_liq.eos_mix is gas.eos_mix
True

Liquid Phases

class thermo.phases.CEOSLiquid(eos_class, eos_kwargs, HeatCapacityGases=None, Hfs=None, Gfs=None,
Sfs=None, T=None, P=None, zs=None)

Bases: thermo.phases.phase.Phase

Class for representing a cubic equation of state gas phase as a phase object. All departure properties are actually
calculated by the code in thermo.eos and thermo.eos_mix.

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎𝛼(𝑇 )

𝑉 2 + 𝛿𝑉 + 𝜖

718 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Parameters
eos_class [thermo.eos_mix.GCEOSMIX] EOS class, [-]

eos_kwargs [dict] Parameters to be passed to the created EOS, [-]

HeatCapacityGases [list[HeatCapacityGas]] Objects proiding pure-component heat capacity
correlations, [-]

Hfs [list[float]] Molar ideal-gas standard heats of formation at 298.15 K and 1 atm, [J/mol]

Gfs [list[float]] Molar ideal-gas standard Gibbs energies of formation at 298.15 K and 1 atm,
[J/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

zs [list[float], optional] Mole fractions of each component, [-]

Examples

T-P initialization for oxygen and nitrogen with the PR EOS, using Poling’s polynomial heat capacities:

>>> from thermo import HeatCapacityGas, PRMIX, CEOSLiquid
>>> eos_kwargs = dict(Tcs=[154.58, 126.2], Pcs=[5042945.25, 3394387.5], omegas=[0.
→˓021, 0.04], kijs=[[0.0, -0.0159], [-0.0159, 0.0]])
>>> HeatCapacityGases = [HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*-9.9e-13, R*1.
→˓57e-09, R*7e-08, R*-0.000261, R*3.539])),
... HeatCapacityGas(poly_fit=(50.0, 1000.0, [R*1.79e-12, R*-6e-
→˓09, R*6.58e-06, R*-0.001794, R*3.63]))]
>>> phase = CEOSLiquid(eos_class=PRMIX, eos_kwargs=eos_kwargs, T=300, P=1e5, zs=[.
→˓79, .21], HeatCapacityGases=HeatCapacityGases)
>>> phase.Cp()
29.2285050

7.22.4 Activity Based Liquids

class thermo.phases.GibbsExcessLiquid(VaporPressures, VolumeLiquids=None, HeatCapacityGases=None,
GibbsExcessModel=None, eos_pure_instances=None,
EnthalpyVaporizations=None, HeatCapacityLiquids=None,
VolumeSupercriticalLiquids=None, use_Hvap_caloric=False,
use_Poynting=False, use_phis_sat=False, use_Tait=False,
use_eos_volume=False, Hfs=None, Gfs=None, Sfs=None,
henry_components=None, henry_data=None, T=None, P=None,
zs=None, Psat_extrpolation='AB', equilibrium_basis=None,
caloric_basis=None)

Bases: thermo.phases.phase.Phase

Phase based on combining Raoult’s law with a GibbsExcess model, optionally including saturation fugacity
coefficient corrections (if the vapor phase is a cubic equation of state) and Poynting correction factors (if more
accuracy is desired).

The equilibrium equation options (controlled by equilibrium_basis) are as follows:

• ‘Psat’: 𝜑𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖

𝑃

• ‘Poynting&PhiSat’: 𝜑𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖 𝜑𝑠𝑎𝑡

𝑖 Poynting𝑖
𝑃
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• ‘Poynting’: 𝜑𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖 Poynting𝑖

𝑃

• ‘PhiSat’: 𝜑𝑖 =
𝛾𝑖𝑃

𝑠𝑎𝑡
𝑖 𝜑𝑠𝑎𝑡

𝑖

𝑃

In all cases, the activity coefficient is derived from the GibbsExcess model specified as input; use the
IdealSolution class as an input to set the activity coefficients to one.

The enthalpy H and entropy S (and other caloric properties U, G, A) equation options are similar to the equilib-
rium ones. If the same option is selected for equilibrium_basis and caloric_basis, the phase will be thermody-
namically consistent. This is recommended for many reasons. The full ‘Poynting&PhiSat’ equations for H and
S are as follows; see GibbsExcessLiquid.H and GibbsExcessLiquid.S for all of the other equations:

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝑅𝑇 2

(︃
𝜕𝜑sat,𝑖
𝜕𝑇

𝜑sat,𝑖
+

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+

Poynting
𝜕𝑇

Poynting

)︃
+

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︃
𝑇

𝜕𝜑sat,𝑖
𝜕𝑇

𝜑sat,𝑖
+ 𝑇

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+ 𝑇

Poynting
𝜕𝑇

Poynting
+ ln(𝑃sat,𝑖) + ln

(︂
Poynting · 𝜑sat,𝑖

𝑃

)︂)︃
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃
An additional caloric mode is Hvap, which uses enthalpy of vaporization; this mode can never be thermodynam-
ically consistent, but is still widely used.

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝐻𝑣𝑎𝑝,𝑖 +

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︂
ln𝑃sat,𝑖 + ln

(︂
1

𝑃

)︂)︂
+
𝐻𝑣𝑎𝑝,𝑖

𝑇
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃

Warning: Note that above the critical point, there is no definition for what vapor pressure is. The vapor
pressure also tends to reach zero at temperatures in the 4-20 K range. These aspects mean extrapolation in the
supercritical and very low temperature region is critical to ensure the equations will still converge. Extrapo-
lation can be performed using either the equation 𝑃 sat = exp

(︀
𝐴− 𝐵

𝑇

)︀
or 𝑃 sat = exp

(︀
𝐴+ 𝐵

𝑇 + 𝐶 · ln𝑇
)︀

by setting Psat_extrpolation to either ‘AB’ or ‘ABC’ respectively. The extremely low temperature region’s
issue is solved by calculating the logarithm of vapor pressures instead of the actual value. While floating
point values in Python (doubles) can reach a minimum value of around 1e-308, if only the logarithm of that
number is computed no issues arise. Both of these features only work when the vapor pressure correlations
are polynomials.

Warning: When using ‘PhiSat’ as an option, note that the factor cannot be calculated when a compound is
supercritical, as there is no longer any vapor-liquid pure-component equilibrium (by definition).

Parameters
VaporPressures [list[thermo.vapor_pressure.VaporPressure]] Objects holding vapor

pressure data and methods, [-]

VolumeLiquids [list[thermo.volume.VolumeLiquid], optional] Objects holding liquid vol-
ume data and methods; required for Poynting factors and volumetric properties, [-]

HeatCapacityGases [list[thermo.heat_capacity.HeatCapacityGas], optional] Objects
proiding pure-component heat capacity correlations; required for caloric properties, [-]

GibbsExcessModel [GibbsExcess, optional] Configured instance for calculating activity co-
efficients and excess properties; set to IdealSolution if not provided, [-]
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eos_pure_instances [list[thermo.eos.GCEOS], optional] Cubic equation of state object in-
stances for each pure component, [-]

EnthalpyVaporizations [list[thermo.phase_change.EnthalpyVaporization], optional]
Objects holding enthalpy of vaporization data and methods; used only with the ‘Hvap’ op-
tional, [-]

HeatCapacityLiquids [list[thermo.heat_capacity.HeatCapacityLiquid], optional] Ob-
jects holding liquid heat capacity data and methods; not used at present, [-]

VolumeSupercriticalLiquids [list[thermo.volume.VolumeLiquid], optional] Objects hold-
ing liquid volume data and methods but that are used for supercritical temperatures on a
per-component basis only; required for Poynting factors and volumetric properties at super-
critical conditions; VolumeLiquids is used if not provided, [-]

Hfs [list[float], optional] Molar ideal-gas standard heats of formation at 298.15 K and 1 atm,
[J/mol]

Gfs [list[float], optional] Molar ideal-gas standard Gibbs energies of formation at 298.15 K and
1 atm, [J/mol]

T [float, optional] Temperature, [K]

P [float, optional] Pressure, [Pa]

zs [list[float], optional] Mole fractions of each component, [-]

equilibrium_basis [str, optional] Which set of equilibrium equations to use when calculating
fugacities and related properties; valid options are ‘Psat’, ‘Poynting&PhiSat’, ‘Poynting’,
‘PhiSat’, [-]

caloric_basis [str, optional] Which set of caloric equations to use when calculating fugaci-
ties and related properties; valid options are ‘Psat’, ‘Poynting&PhiSat’, ‘Poynting’, ‘PhiSat’,
‘Hvap’ [-]

Psat_extrpolation [str, optional] One of ‘AB’ or ‘ABC’; configures extrapolation for vapor pres-
sure, [-]

use_Hvap_caloric [bool, optional] If True, enthalpy and entropy will be calculated using ideal-
gas heat capacity and the heat of vaporization of the fluid only. This forces enthalpy to be
pressure-independent. This supersedes other options which would otherwise impact these
properties. The molar volume of the fluid has no impact on enthalpy or entropy if this option
is True. This option is not thermodynamically consistent, but is still often an assumption that
is made.

Methods

Cp() Method to calculate and return the constant-pressure
heat capacity of the phase.

H() Method to calculate the enthalpy of the
GibbsExcessLiquid phase.

Poyntings() Method to calculate and return the Poynting pressure
correction factors of the phase, [-].

S() Method to calculate the entropy of the
GibbsExcessLiquid phase.

gammas() Method to calculate and return the activity coeffi-
cients of the phase, [-].

continues on next page
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Table 83 – continued from previous page
phis_sat() Method to calculate and return the saturation fugacity

coefficient correction factors of the phase, [-].

Cp()
Method to calculate and return the constant-pressure heat capacity of the phase.

Returns
Cp [float] Molar heat capacity, [J/(mol*K)]

H()
Method to calculate the enthalpy of the GibbsExcessLiquid phase. Depending on the settings of the
phase, this can include the effects of activity coefficients gammas, pressure correction terms Poyntings,
and pure component saturation fugacities phis_sat as well as the pure component vapor pressures.

When caloric_basis is ‘Poynting&PhiSat’:

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝑅𝑇 2

(︃
𝜕𝜑sat,𝑖
𝜕𝑇

𝜑sat,𝑖
+

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+

Poynting
𝜕𝑇

Poynting

)︃
+

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

When caloric_basis is ‘PhiSat’:

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝑅𝑇 2

(︃
𝜕𝜑sat,𝑖
𝜕𝑇

𝜑sat,𝑖
+

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖

)︃
+

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

When caloric_basis is ‘Poynting’:

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝑅𝑇 2

(︃
+

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+

Poynting
𝜕𝑇

Poynting

)︃
+

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

When caloric_basis is ‘Psat’:

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝑅𝑇 2

(︃
+

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖

)︃
+

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

When caloric_basis is ‘Hvap’:

𝐻 = 𝐻excess +
∑︁
𝑖

𝑧𝑖

[︃
−𝐻𝑣𝑎𝑝,𝑖 +

∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔𝑑𝑇

]︃

Returns
H [float] Enthalpy of the phase, [J/(mol)]

Poyntings()
Method to calculate and return the Poynting pressure correction factors of the phase, [-].

Poynting𝑖 = exp

(︂
𝑉𝑚,𝑖(𝑃 − 𝑃𝑠𝑎𝑡)

𝑅𝑇

)︂
Returns

Poyntings [list[float]] Poynting pressure correction factors, [-]
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Notes

The above formula is correct for pressure-independent molar volumes. When the volume does depend on
pressure, the full expression is:

Poynting = exp

⎡⎣∫︀ 𝑃

𝑃 𝑠𝑎𝑡
𝑖

𝑉 𝑙
𝑖 𝑑𝑃

𝑅𝑇

⎤⎦
When a specified model e.g. the Tait equation is used, an analytical integral of this term is normally
available.

S()
Method to calculate the entropy of the GibbsExcessLiquid phase. Depending on the settings of the
phase, this can include the effects of activity coefficients gammas, pressure correction terms Poyntings,
and pure component saturation fugacities phis_sat as well as the pure component vapor pressures.

When caloric_basis is ‘Poynting&PhiSat’:

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︃
𝑇

𝜕𝜑sat,𝑖
𝜕𝑇

𝜑sat,𝑖
+ 𝑇

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+ 𝑇

Poynting
𝜕𝑇

Poynting
+ ln(𝑃sat,𝑖) + ln

(︂
Poynting · 𝜑sat,𝑖

𝑃

)︂)︃
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃
When caloric_basis is ‘PhiSat’:

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︃
𝑇

𝜕𝜑sat,𝑖
𝜕𝑇

𝜑sat,𝑖
+ 𝑇

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+ ln(𝑃sat,𝑖) + ln

(︂
𝜑sat,𝑖

𝑃

)︂)︃
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃
When caloric_basis is ‘Poynting’:

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︃
𝑇

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+ 𝑇

Poynting
𝜕𝑇

Poynting
+ ln(𝑃sat,𝑖) + ln

(︂
Poynting

𝑃

)︂)︃
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃
When caloric_basis is ‘Psat’:

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︃
𝑇

𝜕𝑃sat,𝑖
𝜕𝑇

𝑃sat,𝑖
+ ln(𝑃sat,𝑖) + ln

(︂
1

𝑃

)︂)︃
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃
When caloric_basis is ‘Hvap’:

𝑆 = 𝑆excess −𝑅
∑︁
𝑖

𝑧𝑖 ln 𝑧𝑖 −𝑅 ln

(︂
𝑃

𝑃𝑟𝑒𝑓

)︂
−
∑︁
𝑖

𝑧𝑖

[︃
𝑅

(︂
ln𝑃sat,𝑖 + ln

(︂
1

𝑃

)︂)︂
+
𝐻𝑣𝑎𝑝,𝑖

𝑇
−
∫︁ 𝑇

𝑇,𝑟𝑒𝑓

𝐶𝑝,𝑖𝑔,𝑖

𝑇
𝑑𝑇

]︃
Returns

S [float] Entropy of the phase, [J/(mol*K)]

gammas()
Method to calculate and return the activity coefficients of the phase, [-]. This is a direct call to
GibbsExcess.gammas.

Returns
gammas [list[float]] Activity coefficients, [-]

phis_sat()
Method to calculate and return the saturation fugacity coefficient correction factors of the phase, [-].

These are calculated from the provided pure-component equations of state. This term should only be used
with a consistent vapor-phase cubic equation of state.

Returns
phis_sat [list[float]] Saturation fugacity coefficient correction factors, [-]
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Notes

Warning: This factor cannot be calculated when a compound is supercritical, as there is no longer any
vapor-liquid pure-component equilibrium (by definition).

7.22.5 Fundamental Equations of State

HelmholtzEOS is the base class for all Helmholtz energy fundamental equations of state.

class thermo.phases.HelmholtzEOS
Bases: thermo.phases.phase.Phase

Methods

Cp() Method to calculate and return the constant-pressure
heat capacity of the phase.

Cv() Method to calculate and return the constant-volume
heat capacity Cv of the phase.

H() Method to calculate and return the enthalpy of the
phase.

S() Method to calculate and return the entropy of the
phase.

V_iter([force]) Method to calculate and return the volume of the
phase in a way suitable for a TV resolution to con-
verge on the same pressure.

d2P_dT2() Method to calculate and return the second tempera-
ture derivative of pressure of the phase.

d2P_dTdV() Method to calculate and return the second derivative
of pressure with respect to temperature and volume
of the phase.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the phase.

dH_dP() Method to calculate and return the pressure derivative
of enthalpy of the phase at constant pressure.

dP_dT() Method to calculate and return the first temperature
derivative of pressure of the phase.

dP_dV() Method to calculate and return the first volume
derivative of pressure of the phase.

dS_dP() Method to calculate and return the pressure derivative
of entropy of the phase at constant pressure.

lnphis() Method to calculate and return the log of fugacity co-
efficients of each component in the phase.

to_TP_zs(T, P, zs) Method to create a new Phase object with the same
constants as the existing Phase but at a different T and
P.

Cp()
Method to calculate and return the constant-pressure heat capacity of the phase.

Returns
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Cp [float] Molar heat capacity, [J/(mol*K)]

Cv()
Method to calculate and return the constant-volume heat capacity Cv of the phase.

𝐶𝑣 = 𝑇

(︂
𝜕𝑃

𝜕𝑇

)︂2

𝑉

/

(︂
𝜕𝑃

𝜕𝑉

)︂
𝑇

+ 𝐶𝑝

Returns
Cv [float] Constant volume molar heat capacity, [J/(mol*K)]

H()
Method to calculate and return the enthalpy of the phase. The reference state for most subclasses is an
ideal-gas enthalpy of zero at 298.15 K and 101325 Pa.

Returns
H [float] Molar enthalpy, [J/(mol)]

S()
Method to calculate and return the entropy of the phase. The reference state for most subclasses is an
ideal-gas entropy of zero at 298.15 K and 101325 Pa.

Returns
S [float] Molar entropy, [J/(mol*K)]

V_iter(force=False)
Method to calculate and return the volume of the phase in a way suitable for a TV resolution to converge
on the same pressure. This often means the return value of this method is an mpmath mpf. This dummy
method simply returns the implemented V method.

Returns
V [float or mpf] Molar volume, [m^3/mol]

__repr__()
Method to create a string representation of the phase object, with the goal of making it easy to obtain
standalone code which reproduces the current state of the phase. This is extremely helpful in creating new
test cases.

Returns
recreation [str] String which is valid Python and recreates the current state of the object if

ran, [-]

Examples

>>> from thermo import IAPWS95Gas
>>> phase = IAPWS95Gas(T=300, P=1e5, zs=[1])
>>> phase
IAPWS95Gas(T=300, P=100000.0, zs=[1.0])

d2P_dT2()
Method to calculate and return the second temperature derivative of pressure of the phase.

Returns
d2P_dT2 [float] Second temperature derivative of pressure, [Pa/K^2]
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d2P_dTdV()
Method to calculate and return the second derivative of pressure with respect to temperature and volume
of the phase.

Returns
d2P_dTdV [float] Second volume derivative of pressure, [mol*Pa^2/(J*K)]

d2P_dV2()
Method to calculate and return the second volume derivative of pressure of the phase.

Returns
d2P_dV2 [float] Second volume derivative of pressure, [Pa*mol^2/m^6]

dH_dP()
Method to calculate and return the pressure derivative of enthalpy of the phase at constant pressure.

Returns
dH_dP_T [float] Pressure derivative of enthalpy, [J/(mol*Pa)]

dP_dT()
Method to calculate and return the first temperature derivative of pressure of the phase.

Returns
dP_dT [float] First temperature derivative of pressure, [Pa/K]

dP_dV()
Method to calculate and return the first volume derivative of pressure of the phase.

Returns
dP_dV [float] First volume derivative of pressure, [Pa*mol/m^3]

dS_dP()
Method to calculate and return the pressure derivative of entropy of the phase at constant pressure.

Returns
dS_dP_T [float] Pressure derivative of entropy, [J/(mol*K*Pa)]

lnphis()
Method to calculate and return the log of fugacity coefficients of each component in the phase.

Returns
lnphis [list[float]] Log fugacity coefficients, [-]

to_TP_zs(T, P, zs)
Method to create a new Phase object with the same constants as the existing Phase but at a different T and
P.

Parameters
zs [list[float]] Molar composition of the new phase, [-]

T [float] Temperature of the new phase, [K]

P [float] Pressure of the new phase, [Pa]

Returns
new_phase [Phase] New phase at the specified conditions, [-]
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Notes

This method is marginally faster than Phase.to as it does not need to check what the inputs are.

Examples

>>> from thermo import IdealGas
>>> phase = IdealGas(T=300, P=1e5, zs=[.79, .21], HeatCapacityGases=[])
>>> phase.to_TP_zs(T=1e5, P=1e3, zs=[.5, .5])
IdealGas(HeatCapacityGases=[], T=100000.0, P=1000.0, zs=[0.5, 0.5])

IAPWS95 is the base class for the IAPWS-95 formulation for water; IAPWS95Gas and IAPWS95Liquid are the gas and
liquid sub-phases respectively.

class thermo.phases.IAPWS95(T=None, P=None, zs=None)
Bases: thermo.phases.helmholtz_eos.HelmholtzEOS

Methods

k() Calculate and return the thermal conductivity of wa-
ter according to the IAPWS.

mu() Calculate and return the viscosity of water according
to the IAPWS.

k()
Calculate and return the thermal conductivity of water according to the IAPWS. For details, see
chemicals.thermal_conductivity.k_IAPWS.

Returns
k [float] Thermal conductivity of water, [W/m/K]

mu()
Calculate and return the viscosity of water according to the IAPWS. For details, see chemicals.
viscosity.mu_IAPWS.

Returns
mu [float] Viscosity of water, [Pa*s]

class thermo.phases.IAPWS95Gas(T=None, P=None, zs=None)
Bases: thermo.phases.iapws_phase.IAPWS95

class thermo.phases.IAPWS95Liquid(T=None, P=None, zs=None)
Bases: thermo.phases.iapws_phase.IAPWS95

DryAirLemmon is an implementation of thermophysical properties of air by Lemmon (2000).

class thermo.phases.DryAirLemmon(T=None, P=None, zs=None)
Bases: thermo.phases.helmholtz_eos.HelmholtzEOS
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Methods

k() Calculate and return the thermal conductivity of
air according to Lemmon and Jacobsen (2004) For
details, see chemicals.thermal_conductivity.
k_air_lemmon.

mu() Calculate and return the viscosity of air according to
the Lemmon and Jacobsen (2003) .

k()
Calculate and return the thermal conductivity of air according to Lemmon and Jacobsen (2004) For details,
see chemicals.thermal_conductivity.k_air_lemmon.

Returns
k [float] Thermal conductivity of air, [W/m/K]

mu()
Calculate and return the viscosity of air according to the Lemmon and Jacobsen (2003) . For details, see
chemicals.viscosity.mu_air_lemmon.

Returns
mu [float] Viscosity of air, [Pa*s]

7.22.6 CoolProp Wrapper

class thermo.phases.CoolPropGas(backend, fluid, T=None, P=None, zs=None, Hfs=None, Gfs=None,
Sfs=None)

Bases: thermo.phases.coolprop_phase.CoolPropPhase

class thermo.phases.CoolPropLiquid(backend, fluid, T=None, P=None, zs=None, Hfs=None, Gfs=None,
Sfs=None)

Bases: thermo.phases.coolprop_phase.CoolPropPhase

7.23 Phase Change Properties (thermo.phase_change)

This module contains implementations of thermo.utils.TDependentProperty representing enthalpy of vaporiza-
tion and enthalpy of sublimation. A variety of estimation and data methods are available as included in the chemicals
library.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Enthalpy of Vaporization

• Enthalpy of Sublimation
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7.23.1 Enthalpy of Vaporization

class thermo.phase_change.EnthalpyVaporization(CASRN='', Tb=None, Tc=None, Pc=None,
omega=None, similarity_variable=None, Psat=None,
Zl=None, Zg=None, extrapolation='Watson',
**kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with heat of vaporization as a function of temperature. Consists of three constant value data
sources, one source of tabular information, three coefficient-based methods, nine corresponding-states estima-
tors, and the external library CoolProp.

Parameters
Tb [float, optional] Boiling point, [K]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

omega [float, optional] Acentric factor, [-]

similarity_variable [float, optional] similarity variable, n_atoms/MW, [mol/g]

Psat [float or callable, optional] Vapor pressure at T or callable for the same, [Pa]

Zl [float or callable, optional] Compressibility of liquid at T or callable for the same, [-]

Zg [float or callable, optional] Compressibility of gas at T or callable for the same, [-]

CASRN [str, optional] The CAS number of the chemical

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.phase_change.MK

chemicals.phase_change.SMK

chemicals.phase_change.Velasco

chemicals.phase_change.Clapeyron

chemicals.phase_change.Riedel

chemicals.phase_change.Chen

chemicals.phase_change.Vetere

chemicals.phase_change.Liu

chemicals.phase_change.Watson
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Notes

To iterate over all methods, use the list stored in enthalpy_vaporization_methods.

CLAPEYRON: The Clapeyron fundamental model desecribed in Clapeyron. This is the model which uses
Zl, Zg, and Psat, all of which must be set at each temperature change to allow recalculation of the heat of
vaporization.

MORGAN_KOBAYASHI: The MK CSP model equation documented in MK.

SIVARAMAN_MAGEE_KOBAYASHI: The SMK CSP model equation documented in SMK.

VELASCO: The Velasco CSP model equation documented in Velasco.

PITZER: The Pitzer CSP model equation documented in Pitzer.

RIEDEL: The Riedel CSP model equation, valid at the boiling point only, documented in Riedel. This is
adjusted with the Watson equation unless Tc is not available.

CHEN: The Chen CSP model equation, valid at the boiling point only, documented in Chen. This is adjusted
with the Watson equation unless Tc is not available.

VETERE: The Vetere CSP model equation, valid at the boiling point only, documented in Vetere. This is
adjusted with the Watson equation unless Tc is not available.

LIU: The Liu CSP model equation, valid at the boiling point only, documented in Liu. This is adjusted with
the Watson equation unless Tc is not available.

CRC_HVAP_TB: The constant value available in [4] at the normal boiling point. This is adusted with the
Watson equation unless Tc is not available. Data is available for 707 chemicals.

CRC_HVAP_298: The constant value available in [4] at 298.15 K. This is adusted with the Watson equation
unless Tc is not available. Data is available for 633 chemicals.

GHARAGHEIZI_HVAP_298: The constant value available in [5] at 298.15 K. This is adusted with the Watson
equation unless Tc is not available. Data is available for 2730 chemicals.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [3]. Very slow but accurate.

VDI_TABULAR: Tabular data in [4] along the saturation curve; interpolation is as set by the user or the default.

VDI_PPDS: Coefficients for a equation form developed by the PPDS, published openly in [3]. Extrapolates
poorly at low temperatures.

DIPPR_PERRY_8E: A collection of 344 coefficient sets from the DIPPR database published openly in [6].
Provides temperature limits for all its fluids. chemicals.dippr.EQ106 is used for its fluids.

ALIBAKHSHI: One-constant limited temperature range regression method presented in [7], with constants for
~2000 chemicals from the DIPPR database. Valid up to 100 K below the critical point, and 50 K under the
boiling point.
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References

[1], [2], [3], [4], [5], [6], [7]

Attributes
interpolation_T
interpolation_property
interpolation_property_inv

Methods

calculate(T, method) Method to calculate heat of vaporization of a liquid
at temperature T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

Watson_exponent = 0.38
Exponent used in the Watson equation

calculate(T, method)
Method to calculate heat of vaporization of a liquid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate heat of vaporization, [K]

method [str] Name of the method to use

Returns
Hvap [float] Heat of vaporization of the liquid at T, [J/mol]

interpolation_T = None
No interpolation transformation by default.

interpolation_property = None
No interpolation transformation by default.

interpolation_property_inv = None
No interpolation transformation by default.

name = 'Enthalpy of vaporization'

property_max = 1000000.0
Maximum valid of heat of vaporization. Set to twice the value in the available data.

property_min = 0
Mimimum valid value of heat of vaporization. This occurs at the critical point exactly.

ranked_methods = ['COOLPROP', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'MORGAN_KOBAYASHI',
'SIVARAMAN_MAGEE_KOBAYASHI', 'VELASCO', 'PITZER', 'VDI_TABULAR', 'ALIBAKHSHI',
'CRC_HVAP_TB', 'CRC_HVAP_298', 'GHARAGHEIZI_HVAP_298', 'CLAPEYRON', 'RIEDEL',
'CHEN', 'VETERE', 'LIU']

Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. For CSP methods, the models are considered valid
from 0 K to the critical point. For tabular data, extrapolation outside of the range is used if
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tabular_extrapolation_permitted is set; if it is, the extrapolation is considered valid for all tem-
peratures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

The constant methods CRC_HVAP_TB, CRC_HVAP_298, and GHARAGHEIZI_HVAP are adjusted
for temperature dependence according to the Watson equation, with a temperature exponent as set in
Watson_exponent, usually regarded as 0.38. However, if Tc is not set, then the adjustment cannot be
made. In that case the methods are considered valid for within 5 K of their boiling point or 298.15 K as
appropriate.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'J/mol'

thermo.phase_change.enthalpy_vaporization_methods = ['DIPPR_PERRY_8E', 'VDI_PPDS',
'COOLPROP', 'VDI_TABULAR', 'MORGAN_KOBAYASHI', 'SIVARAMAN_MAGEE_KOBAYASHI', 'VELASCO',
'PITZER', 'ALIBAKHSHI', 'CRC_HVAP_TB', 'CRC_HVAP_298', 'GHARAGHEIZI_HVAP_298',
'CLAPEYRON', 'RIEDEL', 'CHEN', 'VETERE', 'LIU']

Holds all methods available for the EnthalpyVaporization class, for use in iterating over them.

7.23.2 Enthalpy of Sublimation

class thermo.phase_change.EnthalpySublimation(CASRN='', Tm=None, Tt=None, Cpg=None, Cps=None,
Hvap=None, extrapolation='linear', **kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with heat of sublimation as a function of temperature. Consists of one temperature-dependent
method based on the heat of sublimation at 298.15 K.

Parameters
CASRN [str, optional] The CAS number of the chemical

Tm [float, optional] Normal melting temperature, [K]

Tt [float, optional] Triple point temperature, [K]

Cpg [float or callable, optional] Gaseous heat capacity at a given temperature or callable for the
same, [J/mol/K]

Cps [float or callable, optional] Solid heat capacity at a given temperature or callable for the
same, [J/mol/K]

Hvap [float of callable, optional] Enthalpy of Vaporization at a given temperature or callable for
the same, [J/mol]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]
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method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

Notes

To iterate over all methods, use the list stored in enthalpy_sublimation_methods.

WEBBOOK_HSUB: Enthalpy of sublimation at a constant temperature of 298.15 K as given in [3].

GHARAGHEIZI_HSUB_298: Enthalpy of sublimation at a constant temperature of 298 K as given in [1].

GHARAGHEIZI_HSUB: Enthalpy of sublimation at a constant temperature of 298 K as given in [1] are ad-
justed using the solid and gas heat capacity functions to correct for any temperature.

CRC_HFUS_HVAP_TM: Enthalpies of fusion in [1] are corrected to be enthalpies of sublimation by adding
the enthalpy of vaporization at the fusion temperature, and then adjusted using the solid and gas heat ca-
pacity functions to correct for any temperature.

References

[1], [2], [3]

Attributes
interpolation_T
interpolation_property
interpolation_property_inv

Methods

calculate(T, method) Method to calculate heat of sublimation of a solid at
temperature T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate heat of sublimation of a solid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate heat of sublimation, [K]

method [str] Name of the method to use

Returns
Hsub [float] Heat of sublimation of the solid at T, [J/mol]

interpolation_T = None
No interpolation transformation by default.

interpolation_property = None
No interpolation transformation by default.

interpolation_property_inv = None
No interpolation transformation by default.
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name = 'Enthalpy of sublimation'

property_max = 1000000.0
Maximum valid of heat of sublimation. A theoretical concept only.

property_min = 0
Mimimum valid value of heat of vaporization. A theoretical concept only.

ranked_methods = ['WEBBOOK_HSUB', 'GHARAGHEIZI_HSUB', 'CRC_HFUS_HVAP_TM',
'GHARAGHEIZI_HSUB_298']

test_method_validity(T, method)
Method to check the validity of a method. For tabular data, extrapolation outside of the range is used if
tabular_extrapolation_permitted is set; if it is, the extrapolation is considered valid for all temper-
atures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'J/mol'

thermo.phase_change.enthalpy_sublimation_methods = ['WEBBOOK_HSUB', 'GHARAGHEIZI_HSUB',
'CRC_HFUS_HVAP_TM', 'GHARAGHEIZI_HSUB_298']

Holds all methods available for the EnthalpySublimation class, for use in iterating over them.

7.24 Legacy Property Packages (thermo.property_package)

Warning: These classes were a first attempt at rigorous multiphase equilibrium. They may be useful in some
special cases but they are not complete and further development will not happen. They were never documented as
well.

It is recommended to switch over to the thermo.flash interface which seeks to be more modular, easier to maintain
and extend, higher-performance, and easier to modify.

7.25 Phase Identification (thermo.phase_identification)

This module contains functions for identifying phases as liquid, solid, and gas.

Solid identification is easy using the phase identification parameter. There is never more than one gas by
definition. For pure species, the phase identification parameter is a clear vapor-liquid differentiator in the subcritical
region and it provides line starting at the critical point for the supercritical region.

However for mixtures, there is no clear calcuation that can be performed to identify the phase of a mixture. Many
different criteria that have been proposed are included here. The phase identification parameter or PIP. is
recommended in general and is the default.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.
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• Phase Identification

– Main Interface

– Secondary Interfaces

– Scoring Functions

• Sorting Phases

7.25.1 Phase Identification

Main Interface

thermo.phase_identification.identify_sort_phases(phases, betas, constants, correlations, settings,
skip_solids=False)

Identify and sort all phases given the provided parameters.

Parameters
phases [list[Phase]] Phases to be identified and sorted, [-]

betas [list[float]] Phase molar fractions, [-]

constants [ChemicalConstantsPackage] Constants used in the identification, [-]

correlations [PropertyCorrelationsPackage] Correlations used in the identification, [-]

settings [BulkSettings] Settings object controlling the phase ID, [-]

skip_solids [bool] Set this to True if no phases are provided which can represent a solid phase,
[-]

Returns
gas [Phase] Gas phase, if one was identified, [-]

liquids [list[Phase]] Liquids that were identified and sorted, [-]

solids [list[Phase]] Solids that were identified and sorted, [-]

betas [list[float]] Sorted phase molar fractions, in order (gas, liquids. . . , solids. . . ) [-]

Notes

This step is very important as although phase objects are designed to represent a single phase, cubic equations of
state can be switched back and forth by the flash algorithms. Thermodynamics doesn’t care about gases, liquids,
or solids; it just cares about minimizing Gibbs energy!
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Examples

A butanol-water-ethanol flash yields three phases. For brevity we skip the flash and initialize our gas, liq0, and
liq1 object with the correct phase composition. Then we identify the phases into liquid, gas, and solid.

>>> from thermo import ChemicalConstantsPackage, PropertyCorrelationsPackage,␣
→˓HeatCapacityGas, SRKMIX, CEOSGas, CEOSLiquid
>>> constants = ChemicalConstantsPackage(Tcs=[563.0, 647.14, 514.0], Vcs=[0.000274,␣
→˓5.6e-05, 0.000168], Pcs=[4414000.0, 22048320.0, 6137000.0], omegas=[0.59, 0.344,␣
→˓0.635], MWs=[74.1216, 18.01528, 46.06844], CASs=['71-36-3', '7732-18-5', '64-17-5
→˓'])
>>> properties = PropertyCorrelationsPackage(constants=constants, skip_missing=True,
... HeatCapacityGases=[HeatCapacityGas(load_
→˓data=False, poly_fit=(50.0, 1000.0, [-3.787200194613107e-20, 1.7692887427654656e-
→˓16, -3.445247207129205e-13, 3.612771874320634e-10, -2.1953250181084466e-07, 7.
→˓707135849197655e-05, -0.014658388538054169, 1.5642629364740657, -7.
→˓614560475001724])),
... HeatCapacityGas(load_data=False, poly_
→˓fit=(50.0, 1000.0, [5.543665000518528e-22, -2.403756749600872e-18, 4.
→˓2166477594350336e-15, -3.7965208514613565e-12, 1.823547122838406e-09, -4.
→˓3747690853614695e-07, 5.437938301211039e-05, -0.003220061088723078, 33.
→˓32731489750759])),
... HeatCapacityGas(load_data=False, poly_
→˓fit=(50.0, 1000.0, [-1.162767978165682e-20, 5.4975285700787494e-17, -1.
→˓0861242757337942e-13, 1.1582703354362728e-10, -7.160627710867427e-08, 2.
→˓5392014654765875e-05, -0.004732593693568646, 0.5072291035198603, 20.
→˓037826650765965])),], )
>>> eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
>>> gas = CEOSGas(SRKMIX, eos_kwargs, HeatCapacityGases=properties.
→˓HeatCapacityGases)
>>> liq = CEOSLiquid(SRKMIX, eos_kwargs, HeatCapacityGases=properties.
→˓HeatCapacityGases)
>>> T, P = 361, 1e5
>>> gas = gas.to(T=T, P=P, zs=[0.2384009970908655, 0.5786839935180925, 0.
→˓1829150093910419])
>>> liq0 = liq.to(T=T, P=P, zs=[7.619975052238032e-05, 0.9989622883894993, 0.
→˓0009615118599781474])
>>> liq1 = liq.to(T=T, P=P, zs=[0.6793120076703771, 0.19699746328631124, 0.
→˓12369052904331178])
>>> res = identity_phase_states(phases=[liq0, liq1, gas], constants=constants,␣
→˓correlations=properties, VL_method='PIP')
>>> res[0] is gas, res[1][0] is liq0, res[1][1] is liq1, res[2]
(True, True, True, [])
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Secondary Interfaces

thermo.phase_identification.identity_phase_states(phases, constants, correlations, VL_method='PIP',
S_method='d2P_dVdT', VL_ID_settings=None,
S_ID_settings=None, skip_solids=False)

Identify and the actial phase of all the given phases given the provided settings.

Parameters
phases [list[Phase]] Phases to be identified and sorted, [-]

constants [ChemicalConstantsPackage] Constants used in the identification, [-]

correlations [PropertyCorrelationsPackage] Correlations used in the identification, [-]

VL_method [str, optional] One of VL_ID_METHODS, [-]

S_method [str, optional] One of S_ID_METHODS, [-]

VL_ID_settings [dict[str][float] or None, optional] Additional configuration options for vapor-
liquid phase ID, [-]

S_ID_settings [dict[str][float] or None, optional] Additional configuration options for solid-
liquid phase ID, [-]

skip_solids [bool] Set this to True if no phases are provided which can represent a solid phase,
[-]

Returns
gas [Phase] Gas phase, if one was identified, [-]

liquids [list[Phase]] Liquids that were identified and sorted, [-]

solids [list[Phase]] Solids that were identified and sorted, [-]

thermo.phase_identification.VL_ID_METHODS = ['Tpc', 'Vpc', 'Tpc Vpc weighted', 'Tpc Vpc',
'Wilson', 'Poling', 'PIP', 'Bennett-Schmidt', 'Traces']

List of all the methods available to perform the Vapor-Liquid phase ID.

thermo.phase_identification.S_ID_METHODS = ['d2P_dVdT']
List of all the methods available to perform the solid-liquid phase ID.

Scoring Functions

thermo.phase_identification.score_phases_VL(phases, constants, correlations, method)
Score all phases given the provided parameters and a selected method.

A score above zero indicates a potential gas. More than one phase may have a score above zero, in which case
the highest scoring phase is the gas, and the other is a liquid.

Parameters
phases [list[thermo.phases.Phase]] Phases to be identified and sorted, [-]

constants [ChemicalConstantsPackage] Constants used in the identification, [-]

correlations [PropertyCorrelationsPackage] Correlations used in the identification, [-]

method [str] Setting configuring how the scoring is performed; one of ‘Tpc’, ‘Vpc’, ‘Tpc Vpc
weighted’, ‘Tpc Vpc’, ‘Wilson’, ‘Poling’, ‘PIP’, ‘Bennett-Schmidt’, ‘Traces’, [-]

Returns
scores [list[float]] Scores for the phases in the order provided, [-]
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Examples

>>> from thermo import ChemicalConstantsPackage, PropertyCorrelationsPackage,␣
→˓CEOSGas, CEOSLiquid, PRMIX, HeatCapacityGas
>>> constants = ChemicalConstantsPackage(CASs=['124-38-9', '110-54-3'], Vcs=[9.4e-
→˓05, 0.000368], MWs=[44.0095, 86.17536], names=['carbon dioxide', 'hexane'],␣
→˓omegas=[0.2252, 0.2975], Pcs=[7376460.0, 3025000.0], Tbs=[194.67, 341.87],␣
→˓Tcs=[304.2, 507.6], Tms=[216.65, 178.075])
>>> correlations = PropertyCorrelationsPackage(constants=constants, skip_
→˓missing=True, HeatCapacityGases=[HeatCapacityGas(poly_fit=(50.0, 1000.0, [-3.
→˓1115474168865828e-21, 1.39156078498805e-17, -2.5430881416264243e-14, 2.
→˓4175307893014295e-11, -1.2437314771044867e-08, 3.1251954264658904e-06, -0.
→˓00021220221928610925, 0.000884685506352987, 29.266811602924644])),␣
→˓HeatCapacityGas(poly_fit=(200.0, 1000.0, [1.3740654453881647e-21, -8.
→˓344496203280677e-18, 2.2354782954548568e-14, -3.4659555330048226e-11, 3.
→˓410703030634579e-08, -2.1693611029230923e-05, 0.008373280796376588, -1.
→˓356180511425385, 175.67091124888998]))])
>>> T, P, zs = 300.0, 1e6, [.5, .5]
>>> eos_kwargs = {'Pcs': constants.Pcs, 'Tcs': constants.Tcs, 'omegas': constants.
→˓omegas}
>>> gas = CEOSGas(PRMIX, eos_kwargs, HeatCapacityGases=correlations.
→˓HeatCapacityGases, T=T, P=P, zs=zs)
>>> liq = CEOSLiquid(PRMIX, eos_kwargs, HeatCapacityGases=correlations.
→˓HeatCapacityGases, T=T, P=P, zs=zs)

A sampling of different phase identification methods is below:

>>> score_phases_VL([gas, liq], constants, correlations, method='PIP')
[1.6409446310, -7.5692120928]
>>> score_phases_VL([gas, liq], constants, correlations, method='Vpc')
[0.00144944049, -0.0001393075288]
>>> score_phases_VL([gas, liq], constants, correlations, method='Tpc Vpc')
[113.181283525, -29.806038704]
>>> score_phases_VL([gas, liq], constants, correlations, method='Bennett-Schmidt')
[0.0003538299416, -2.72255439503e-05]
>>> score_phases_VL([gas, liq], constants, correlations, method='Poling')
[0.1767828268, -0.004516837897]

thermo.phase_identification.score_phases_S(phases, constants, correlations, method='d2P_dVdT',
S_ID_settings=None)

Score all phases according to how wolid they appear given the provided parameters and a selected method.

A score above zero indicates a solid. More than one phase may have a score above zero. A score under zero
means the phase is a liquid or gas.

Parameters
phases [list[thermo.phases.Phase]] Phases to be identified and sorted, [-]

constants [ChemicalConstantsPackage] Constants used in the identification, [-]

correlations [PropertyCorrelationsPackage] Correlations used in the identification, [-]

method [str] Setting configuring how the scoring is performed; one of (‘d2P_dVdT’,), [-]

S_ID_settings [dict[str][float] or None, optional] Additional configuration options for solid-
liquid phase ID, [-]
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Returns
scores [list[float]] Scores for the phases in the order provided, [-]

thermo.phase_identification.vapor_score_traces(zs, CASs, Tcs, trace_CASs=['74-82-8', '7727-37-9'],
min_trace=0.0)

Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using
the concept of which phase has the most of the lightest compound. This nicely sidesteps issues in many other
methods, at the expense that it cannot be applied when there is only one phase and it is not smart enough to
handle liquid-liquid cases.

If no trace components are present, the component with the lowest critical temperature’s concentration is returned.
Because of the way this is implemented, the score is always larger than 1.0.

Parameters
zs [list[float]] Mole fractions of the phase being identified, [-]

CASs [list[str]] CAS numbers of all components, [-]

Tcs [list[float]] Critical temperatures of all species, [K]

trace_CASs [list[str]] Trace components to use for identification; if more than one component
is given, the first component present in both CASs and trace_CASs is the one used, [-]

min_trace [float] Minimum concentration to make a phase appear vapor-like; subtracted from
the concentration which would otherwise be returned, [-]

Returns
score [float] Vapor like score, [-]

Examples

A flash of equimolar CO2/n-hexane at 300 K and 1 MPa is computed, and there is a two phase solution. The
phase must be identified for each result:

Liquid-like phase:

>>> vapor_score_traces(zs=[.218, .782], Tcs=[304.2, 507.6], CASs=['124-38-9', '110-
→˓54-3'])
0.218

Vapor-like phase:

>>> vapor_score_traces(zs=[.975, .025], Tcs=[304.2, 507.6], CASs=['124-38-9', '110-
→˓54-3'])
0.975

thermo.phase_identification.vapor_score_Tpc(T, Tcs, zs)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
following criteria

𝑇 −
∑︁
𝑖

𝑧𝑖𝑇𝑐,𝑖

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of all species, [K]
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zs [list[float]] Mole fractions of the phase being identified, [-]

Returns
score [float] Vapor like score, [-]

Examples

A flash of equimolar CO2/n-hexane at 300 K and 1 MPa is computed, and there is a two phase solution. The
phase must be identified for each result:

Liquid-like phase:

>>> vapor_score_Tpc(T=300.0, Tcs=[304.2, 507.6], zs=[0.21834418746784942, 0.
→˓7816558125321506])
-163.18879226903942

Vapor-like phase:

>>> vapor_score_Tpc(T=300.0, Tcs=[304.2, 507.6], zs=[0.9752234962374878, 0.
→˓024776503762512052])
-9.239540865294941

In this result, the vapor phase is not identified as a gas at all! It has a mass density of ~ 20 kg/m^3, which would
usually be called a gas by most people.

thermo.phase_identification.vapor_score_Vpc(V, Vcs, zs)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
following criteria

𝑉 −
∑︁
𝑖

𝑧𝑖𝑉𝑐,𝑖

Parameters
V [float] Molar volume, [m^3/mol]

Vcs [list[float]] Critical molar volumes of all species, [m^3/mol]

zs [list[float]] Mole fractions of the phase being identified, [-]

Returns
score [float] Vapor like score, [-]

Examples

A flash of equimolar CO2/n-hexane at 300 K and 1 MPa is computed, and there is a two phase solution. The
phase must be identified for each result:

Liquid-like phase:

>>> vapor_score_Vpc(V=0.00011316308855449715, Vcs=[9.4e-05, 0.000368], zs=[0.
→˓21834418746784942, 0.7816558125321506])
-0.000195010604079

Vapor-like phase:
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>>> vapor_score_Vpc(V=0.0023406573328250335, Vcs=[9.4e-05, 0.000368], zs=[0.
→˓9752234962374878, 0.024776503762512052])
0.002239868570

thermo.phase_identification.vapor_score_Tpc_weighted(T, Tcs, Vcs, zs, r1=1.0)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
following criteria, said to be implemented in ECLIPSE [1]:

𝑇 − 𝑇𝑝𝑐

𝑇𝑝,𝑐 = 𝑟1

∑︀
𝑗 𝑥𝑗𝑉𝑐,𝑗𝑇𝑐,𝑗∑︀

𝑗 𝑥𝑗𝑉𝑐,𝑗

Parameters
T [float] Temperature, [K]

Tcs [list[float]] Critical temperatures of all species, [K]

Vcs [list[float]] Critical molar volumes of all species, [m^3/mol]

zs [list[float]] Mole fractions of the phase being identified, [-]

r1 [float] Tuning factor, [-]

Returns
score [float] Vapor like score, [-]

References

[1]

Examples

A flash of equimolar CO2/n-hexane at 300 K and 1 MPa is computed, and there is a two phase solution. The
phase must be identified for each result:

Liquid-like phase:

>>> vapor_score_Tpc_weighted(T=300.0, Tcs=[304.2, 507.6], Vcs=[9.4e-05, 0.000368],␣
→˓zs=[0.21834418746784942, 0.7816558125321506])
-194.0535694431

Vapor-like phase:

>>> vapor_score_Tpc_weighted(T=300.0, Tcs=[304.2, 507.6], Vcs=[9.4e-05, 0.000368],␣
→˓zs=[0.9752234962374878, 0.024776503762512052])
-22.60037521107

As can be seen, the CO2-phase is incorrectly identified as a liquid.

thermo.phase_identification.vapor_score_Tpc_Vpc(T, V, Tcs, Vcs, zs)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
following criteria, said to be implemented in Multiflash [1]:

𝑉 𝑇 2 − 𝑉𝑝𝑐𝑇
2
𝑝𝑐
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Parameters
T [float] Temperature, [K]

V [float] Molar volume, [m^3/mol]

Tcs [list[float]] Critical temperatures of all species, [K]

Vcs [list[float]] Critical molar volumes of all species, [m^3/mol]

zs [list[float]] Mole fractions of the phase being identified, [-]

Returns
score [float] Vapor like score, [-]

References

[1]

Examples

A flash of equimolar CO2/n-hexane at 300 K and 1 MPa is computed, and there is a two phase solution. The
phase must be identified for each result:

Liquid-like phase:

>>> vapor_score_Tpc_Vpc(T=300.0, V=0.00011316308855449715, Tcs=[304.2, 507.6],␣
→˓Vcs=[9.4e-05, 0.000368], zs=[0.21834418746784942, 0.7816558125321506])
-55.932094761

Vapor-like phase:

>>> vapor_score_Tpc_Vpc(T=300.0, V=0.0023406573328250335, Tcs=[304.2, 507.6],␣
→˓Vcs=[9.4e-05, 0.000368], zs=[0.9752234962374878, 0.024776503762512052])
201.020821992

thermo.phase_identification.vapor_score_Wilson(T, P, zs, Tcs, Pcs, omegas)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
Rachford-Rice Wilson method of Perschke [1].

After calculating Wilson’s K values, the following expression is evaluated at 𝑉
𝐹 = 0.5; the result is the score.

∑︁
𝑖

𝑧𝑖(𝐾𝑖 − 1)

1 + 𝑉
𝐹 (𝐾𝑖 − 1)

Parameters
T [float] Temperature, [K]

P [float] Pressure, [Pa]

zs [list[float]] Mole fractions of the phase being identified, [-]

Tcs [list[float]] Critical temperatures of all species, [K]

Pcs [list[float]] Critical pressures of all species, [Pa]

omegas [list[float]] Acentric factors of all species, [-]

Returns
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score [float] Vapor like score, [-]

References

[1]

Examples

A flash of equimolar CO2/n-hexane at 300 K and 1 MPa is computed, and there is a two phase solution. The
phase must be identified for each result:

Liquid-like phase:

>>> vapor_score_Wilson(T=300.0, P=1e6, zs=[.218, .782], Tcs=[304.2, 507.6],␣
→˓Pcs=[7376460.0, 3025000.0], omegas=[0.2252, 0.2975])
-1.16644793

Vapor-like phase:

>>> vapor_score_Wilson(T=300.0, P=1e6, zs=[.975, .025], Tcs=[304.2, 507.6],␣
→˓Pcs=[7376460.0, 3025000.0], omegas=[0.2252, 0.2975])
1.397678492

This method works well in many conditions, like the Wilson equation itself, but fundamentally it cannot do a
great job because it is not tied to the phase model itself.

A dew point flash at P = 100 Pa for the same mixture shows both phases being identified as vapor-like:

>>> T_dew = 206.40935716944634
>>> P = 100.0
>>> vapor_score_Wilson(T=T_dew, P=P, zs=[0.5, 0.5], Tcs=[304.2, 507.6],␣
→˓Pcs=[7376460.0, 3025000.0], omegas=[0.2252, 0.2975])
1.074361930956633
>>> vapor_score_Wilson(T=T_dew, P=P, zs=[0.00014597910182360052, 0.
→˓9998540208981763], Tcs=[304.2, 507.6], Pcs=[7376460.0, 3025000.0], omegas=[0.2252,
→˓ 0.2975])
0.15021784286075726

thermo.phase_identification.vapor_score_Poling(kappa)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
isothermal compressibility kappa concept by Poling [1].

score = (𝜅− 0.005atm−1)

Parameters
kappa [float] Isothermal coefficient of compressibility, [1/Pa]

Returns
score [float] Vapor like score, [-]
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Notes

A second criteria which is not implemented as it does not fit with the scoring concept is for liquids:

0.9

𝑃
< 𝛽 <

3

𝑃

References

[1]

Examples

CO2 vapor properties computed with Peng-Robinson at 300 K and 1 bar:

>>> vapor_score_Poling(1.0054239121594122e-05)
1.013745778995

n-hexane liquid properties computed with Peng-Robinson at 300 K and 10 bar:

>>> vapor_score_Poling(2.121777078782957e-09)
-0.00478501093

thermo.phase_identification.vapor_score_PIP(V, dP_dT, dP_dV, d2P_dV2, d2P_dVdT)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
PIP concept.

score = −(Π − 1)

Π = 𝑉

[︃
𝜕2𝑃
𝜕𝑉 𝜕𝑇
𝜕𝑃
𝜕𝑇

−
𝜕2𝑃
𝜕𝑉 2

𝜕𝑃
𝜕𝑉

]︃
Parameters

V [float] Molar volume at T and P, [m^3/mol]

dP_dT [float] Derivative of P with respect to T, [Pa/K]

dP_dV [float] Derivative of P with respect to V, [Pa*mol/m^3]

d2P_dV2 [float] Second derivative of P with respect to V, [Pa*mol^2/m^6]

d2P_dVdT [float] Second derivative of P with respect to both V and T, [Pa*mol/m^3/K]

Returns
score [float] Vapor like score, [-]

References

[1]
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Examples

CO2 vapor properties computed with Peng-Robinson at 300 K and 1 bar:

>>> vapor_score_PIP(0.024809176851423774, 337.0119286073647, -4009021.959558917,␣
→˓321440573.3615088, -13659.63987996052)
0.016373735005

n-hexane liquid properties computed with Peng-Robinson at 300 K and 10 bar:

>>> vapor_score_PIP(0.00013038156684574785, 578477.8796379718, -3614798144591.8984,␣
→˓4.394997991022487e+17, -20247865009.795322)
-10.288635225

thermo.phase_identification.vapor_score_Bennett_Schmidt(dbeta_dT)
Compute a vapor score representing how vapor-like a phase is (higher, above zero = more vapor like) using the
Bennet-Schmidt temperature derivative of isobaric expansion suggestion.

score = −
(︂
𝜕𝛽

𝜕𝑇

)︂
Parameters

dbeta_dT [float] Temperature derivative of isobaric coefficient of a thermal expansion, [1/K^2]

Returns
score [float] Vapor like score, [-]

References

[1]

Examples

CO2 vapor properties computed with Peng-Robinson at 300 K and 1 bar:

>>> vapor_score_Bennett_Schmidt(-1.1776172267959163e-05)
1.1776172267959163e-05

n-hexane liquid properties computed with Peng-Robinson at 300 K and 10 bar:

>>> vapor_score_Bennett_Schmidt(7.558572848883679e-06)
-7.558572848883679e-06

7.25.2 Sorting Phases

thermo.phase_identification.sort_phases(liquids, solids, constants, settings)
Identify and sort all phases given the provided parameters. This is not a thermodynamic concept; it is just a
convinience method to make the results of the flash more consistent, because the flash algorithms don’t care
about density or ordering the phases.

Parameters
liquids [list[Phase]] Liquids that were identified, [-]
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solids [list[Phase]] Solids that were identified, [-]

constants [ChemicalConstantsPackage] Constants used in the identification, [-]

correlations [PropertyCorrelationsPackage] Correlations used in the identification, [-]

settings [BulkSettings] Settings object controlling the phase sorting, [-]

Returns
liquids [list[Phase]] Liquids that were identified and sorted, [-]

solids [list[Phase]] Solids that were identified and sorted, [-]

Notes

The settings object uses the preferences liquid_sort_method, liquid_sort_prop, liquid_sort_cmps, liq-
uid_sort_cmps_neg, and phase_sort_higher_first.

7.26 Regular Solution Gibbs Excess Model (thermo.regular_solution)

This module contains a class RegularSolution for performing activity coefficient calculations with the regular so-
lution model.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Regular Solution Class

• Regular Solution Regression Calculations

7.26.1 Regular Solution Class

class thermo.regular_solution.RegularSolution(T, xs, Vs, SPs, lambda_coeffs=None)
Bases: thermo.activity.GibbsExcess

Class for representing an a liquid with excess gibbs energy represented by the Regular Solution model. This
model is not temperature dependent and has limited predictive ability, but can be used without interaction pa-
rameters. This model is described in [1].

𝐺𝐸 =

∑︀
𝑚

∑︀
𝑛(𝑥𝑚𝑥𝑛𝑉𝑚𝑉𝑛𝐴𝑚𝑛)∑︀

𝑚 𝑥𝑚𝑉𝑚

𝐴𝑚𝑛 = 0.5(𝛿𝑚 − 𝛿𝑛)2 − 𝛿𝑚𝛿𝑛𝑘𝑚𝑛

In the above equation, 𝛿 represents the solubility parameters, and 𝑘𝑚𝑛 is the interaction coefficient between m
and n. The model makes no assumption about the symmetry of this parameter.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Vs [list[float]] Molar volumes of each compond at a reference temperature (often 298.15 K),
[m^3/mol]
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SPs [list[float]] Solubility parameters of each compound; normally at a reference temperature
of 298.15 K, [Pa^0.5]

lambda_coeffs [list[list[float]], optional] Optional interaction parameters, [-]

Notes

In addition to the methods presented here, the methods of its base class thermo.activity.GibbsExcess are
available as well.

Additional equations of note are as follows.

𝐺𝐸 = 𝐻𝐸

𝑆𝐸 = 0

𝛿 =

√︂
∆𝐻𝑣𝑎𝑝 −𝑅𝑇

𝑉𝑚

References

[1], [2], [3], [4]

Examples

Example 1
From [2], calculate the activity coefficients at infinite dilution for the system benzene-cyclohexane at 253.15 K
using the regular solution model (example 5.20, with unit conversion in-line):

>>> from scipy.constants import calorie
>>> GE = RegularSolution(T=353.15, xs=[.5, .5], Vs=[89E-6, 109E-6], SPs=[9.
→˓2*(calorie*1e6)**0.5, 8.2*(calorie*1e6)**0.5])
>>> GE.gammas_infinite_dilution()
[1.1352128394, 1.16803058378]

This matches the solution given of [1.135, 1.168].

Example 2
Benzene and cyclohexane calculation from [3], without interaction parameters.

>>> GE = RegularSolution(T=353, xs=[0.01, 0.99], Vs=[8.90e-05, 1.09e-04], SPs=[9.
→˓2*(calorie/1e-6)**0.5, 8.2*(calorie/1e-6)**0.5])
>>> GE.gammas()
[1.1329295, 1.00001039]

Example 3
Another common model is the Flory-Huggins model. This isn’t implemented as a separate model, but it is
possible to modify the activity coefficient results of RegularSolution to obtain the activity coefficients from
the Flory-Huggins model anyway. ChemSep [4] implements the Flory-Huggins model and calls it the regular
solution model, so results can’t be compared with ChemSep except when making the following manual solution.
The example below uses parameters from ChemSep for ethanol and water.
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>>> GE = RegularSolution(T=298.15, xs=[0.5, 0.5], Vs=[0.05868e-3, 0.01807e-3],␣
→˓SPs=[26140.0, 47860.0])
>>> GE.gammas() # Regular solution activity coefficients
[1.8570955489, 7.464567232]
>>> lngammass = [log(g) for g in GE.gammas()]
>>> thetas = [GE.Vs[i]/sum(GE.xs[i]*GE.Vs[i] for i in range(GE.N)) for i in␣
→˓range(GE.N)]
>>> gammas_flory_huggins = [exp(lngammass[i] + log(thetas[i]) + 1 - thetas[i]) for␣
→˓i in range(GE.N)]
>>> gammas_flory_huggins
[1.672945693, 5.9663471]

This matches the values calculated from ChemSep exactly.

Attributes
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Vs [list[float]] Molar volumes of each compond at a reference temperature (often 298.15 K), [K]

SPs [list[float]] Solubility parameters of each compound; normally at a reference temperature
of 298.15 K, [Pa^0.5]

lambda_coeffs [list[list[float]]] Interaction parameters, [-]

Methods

GE() Calculate and return the excess Gibbs energy of a liq-
uid phase using the regular solution model.

d2GE_dT2() Calculate and return the second temperature deriva-
tive of excess Gibbs energy of a liquid phas.

d2GE_dTdxs() Calculate and return the temperature derivative of
mole fraction derivatives of excess Gibbs energy.

d2GE_dxixjs() Calculate and return the second mole fraction deriva-
tives of excess Gibbs energy of a liquid phase using
the regular solution model.

d3GE_dT3() Calculate and return the third temperature derivative
of excess Gibbs energy of a liquid phase.

d3GE_dxixjxks() Calculate and return the third mole fraction deriva-
tives of excess Gibbs energy.

dGE_dT() Calculate and return the temperature derivative of ex-
cess Gibbs energy of a liquid phase.

dGE_dxs() Calculate and return the mole fraction derivatives of
excess Gibbs energy of a liquid phase using the reg-
ular solution model.

to_T_xs(T, xs) Method to construct a new RegularSolution in-
stance at temperature T, and mole fractions xs with
the same parameters as the existing object.
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GE()
Calculate and return the excess Gibbs energy of a liquid phase using the regular solution model.

𝐺𝐸 =

∑︀
𝑚

∑︀
𝑛(𝑥𝑚𝑥𝑛𝑉𝑚𝑉𝑛𝐴𝑚𝑛)∑︀

𝑚 𝑥𝑚𝑉𝑚

𝐴𝑚𝑛 = 0.5(𝛿𝑚 − 𝛿𝑛)2 − 𝛿𝑚𝛿𝑛𝑘𝑚𝑛

Returns
GE [float] Excess Gibbs energy, [J/mol]

d2GE_dT2()
Calculate and return the second temperature derivative of excess Gibbs energy of a liquid phas.

𝜕2𝑔𝐸

𝜕𝑇 2
= 0

Returns
d2GE_dT2 [float] Second temperature derivative of excess Gibbs energy, [J/(mol*K^2)]

d2GE_dTdxs()
Calculate and return the temperature derivative of mole fraction derivatives of excess Gibbs energy.

𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑇
= 0

Returns
d2GE_dTdxs [list[float]] Temperature derivative of mole fraction derivatives of excess

Gibbs energy, [J/(mol*K)]

d2GE_dxixjs()
Calculate and return the second mole fraction derivatives of excess Gibbs energy of a liquid phase using
the regular solution model.

𝜕2𝐺𝐸

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝑉𝑗(𝑉𝑖𝐺

𝐸 −𝐻𝑖𝑗)

(
∑︀

𝑚 𝑉𝑚𝑥𝑚)2
−

𝑉𝑖
𝜕𝐺𝐸

𝜕𝑥𝑗∑︀
𝑚 𝑉𝑚𝑥𝑚

+
𝑉𝑖𝑉𝑗 [𝛿𝑖𝛿𝑗(𝑘𝑗𝑖 + 𝑘𝑖𝑗) + (𝛿𝑖 − 𝛿𝑗)

2]∑︀
𝑚 𝑉𝑚𝑥𝑚

Returns
d2GE_dxixjs [list[list[float]]] Second mole fraction derivatives of excess Gibbs energy,

[J/mol]

d3GE_dT3()
Calculate and return the third temperature derivative of excess Gibbs energy of a liquid phase.

𝜕3𝑔𝐸

𝜕𝑇 3
= 0

Returns
d3GE_dT3 [float] Third temperature derivative of excess Gibbs energy, [J/(mol*K^3)]

d3GE_dxixjxks()
Calculate and return the third mole fraction derivatives of excess Gibbs energy.

𝜕3𝐺𝐸

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
=

−2𝑉𝑖𝑉𝑗𝑉𝑘𝐺
𝐸 + 2𝑉𝑗𝑉𝑘𝐻𝑖𝑗

(
∑︀

𝑚 𝑉𝑚𝑥𝑚)3
+
𝑉𝑖

(︁
𝑉𝑗

𝜕𝐺𝐸

𝜕𝑥𝑘
+ 𝑉𝑘

𝜕𝐺𝐸

𝜕𝑥𝑗

)︁
(
∑︀

𝑚 𝑉𝑚𝑥𝑚)2
−

𝑉𝑖
𝜕2𝐺𝐸

𝜕𝑥𝑗𝜕𝑥𝑘∑︀
𝑚 𝑉𝑚𝑥𝑚

− 𝑉𝑖𝑉𝑗𝑉𝑘[𝛿𝑖(𝛿𝑗(𝑘𝑖𝑗 + 𝑘𝑗𝑖) + 𝛿𝑘(𝑘𝑖𝑘 + 𝑘𝑘𝑖)) + (𝛿𝑖 − 𝛿𝑗)
2 + (𝛿𝑖 − 𝛿𝑘)2]

(
∑︀

𝑚 𝑉𝑚𝑥𝑚)2

Returns
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d3GE_dxixjxks [list[list[list[float]]]] Third mole fraction derivatives of excess Gibbs en-
ergy, [J/mol]

dGE_dT()
Calculate and return the temperature derivative of excess Gibbs energy of a liquid phase.

𝜕𝑔𝐸

𝜕𝑇
= 0

Returns
dGE_dT [float] First temperature derivative of excess Gibbs energy, [J/(mol*K)]

dGE_dxs()
Calculate and return the mole fraction derivatives of excess Gibbs energy of a liquid phase using the regular
solution model.

𝜕𝐺𝐸

𝜕𝑥𝑖
=

−𝑉𝑖𝐺𝐸 +
∑︀

𝑚 𝑉𝑖𝑉𝑚𝑥𝑚[𝛿𝑖𝛿𝑚(𝑘𝑚𝑖 + 𝑘𝑖𝑚) + (𝛿𝑖 − 𝛿𝑚)2]∑︀
𝑚 𝑉𝑚𝑥𝑚

Returns
dGE_dxs [list[float]] Mole fraction derivatives of excess Gibbs energy, [J/mol]

to_T_xs(T, xs)
Method to construct a new RegularSolution instance at temperature T, and mole fractions xs with the
same parameters as the existing object.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions of each component, [-]

Returns
obj [RegularSolution] New RegularSolution object at the specified conditions [-]

7.26.2 Regular Solution Regression Calculations

thermo.regular_solution.regular_solution_gammas_binaries(xs, Vs, SPs, Ts, lambda12, lambda21,
gammas=None)

Calculates activity coefficients with the regular solution model at fixed lambda values for a binary system at
a series of mole fractions at specified temperatures. This is used for regression of lambda parameters. This
function is highly optimized, and operates on multiple points at a time.

ln 𝛾1 =
𝑉1𝜑

2
2

𝑅𝑇

[︀
(SP1 − SP2)2 + 𝜆12SP1SP2 + 𝜆21SP1SP2

]︀
ln 𝛾2 =

𝑉2𝜑
2
1

𝑅𝑇

[︀
(SP1 − SP2)2 + 𝜆12SP1SP2 + 𝜆21SP1SP2

]︀
𝜑1 =

𝑥1𝑉1
𝑥1𝑉1 + 𝑥2𝑉2

𝜑2 =
𝑥2𝑉2

𝑥1𝑉1 + 𝑥2𝑉2

Parameters
xs [list[float]] Liquid mole fractions of each species in the format x0_0, x1_0, (component 1

point1, component 2 point 1), x0_1, x1_1, (component 1 point2, component 2 point 2), . . .
size pts*2 [-]
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Vs [list[float]] Molar volumes of each of the two components, [m^3/mol]

SPs [list[float]] Solubility parameters of each of the two components, [Pa^0.5]

Ts [flist[float]] Temperatures of each composition point; half the length of xs, [K]

lambda12 [float] lambda parameter for 12, [-]

lambda21 [float] lambda parameter for 21, [-]

gammas [list[float], optional] Array to store the activity coefficient for each species in the liquid
mixture, indexed the same as xs; can be omitted or provided for slightly better performance
[-]

Returns
gammas [list[float]] Activity coefficient for each species in the liquid mixture, indexed the same

as xs, [-]

Examples

>>> regular_solution_gammas_binaries([.1, .9, 0.3, 0.7, .85, .15], Vs=[7.421e-05, 8.
→˓068e-05], SPs=[19570.2, 18864.7], Ts=[300.0, 400.0, 500.0], lambda12=0.1759,␣
→˓lambda21=0.7991)
[6818.90697, 1.105437, 62.6628, 2.01184, 1.181434, 137.6232]

7.27 Streams (thermo.stream)

class thermo.stream.EnergyStream(Q, medium=None)
Bases: object

Attributes
Hm
Q
energy
energy_calc
medium

Methods

copy

Hm = None

Q = None

copy()

property energy

property energy_calc
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medium = None

class thermo.stream.EquilibriumStream(flasher, zs=None, ws=None, Vfls=None, Vfgs=None, ns=None,
ms=None, Qls=None, Qgs=None, n=None, m=None, Q=None,
T=None, P=None, VF=None, H=None, H_mass=None, S=None,
S_mass=None, energy=None, Vf_TP=None, Q_TP=None,
hot_start=None, existing_flash=None)

Bases: thermo.equilibrium.EquilibriumState

Attributes
CASs CAS registration numbers for each component, [-].

Carcinogens Status of each component in cancer causing registries, [-].

Ceilings Ceiling exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

EnthalpySublimations Wrapper to obtain the list of EnthalpySublimations objects of the as-
sociated PropertyCorrelationsPackage.

EnthalpyVaporizations Wrapper to obtain the list of EnthalpyVaporizations objects of the
associated PropertyCorrelationsPackage.

GWPs Global Warming Potentials for each component (impact/mass chemical)/(impact/mass
CO2), [-].

Gfgs Ideal gas standard molar Gibbs free energy of formation for each component, [J/mol].

Gfgs_mass Ideal gas standard Gibbs free energy of formation for each component, [J/kg].

Hcs Higher standard molar heats of combustion for each component, [J/mol].

Hcs_lower Lower standard molar heats of combustion for each component, [J/mol].

Hcs_lower_mass Lower standard heats of combustion for each component, [J/kg].

Hcs_mass Higher standard heats of combustion for each component, [J/kg].

HeatCapacityGasMixture Wrapper to obtain the list of HeatCapacityGasMixture objects of
the associated PropertyCorrelationsPackage.

HeatCapacityGases Wrapper to obtain the list of HeatCapacityGases objects of the associated
PropertyCorrelationsPackage.

HeatCapacityLiquidMixture Wrapper to obtain the list of HeatCapacityLiquidMixture ob-
jects of the associated PropertyCorrelationsPackage.

HeatCapacityLiquids Wrapper to obtain the list of HeatCapacityLiquids objects of the asso-
ciated PropertyCorrelationsPackage.

HeatCapacitySolidMixture Wrapper to obtain the list of HeatCapacitySolidMixture objects
of the associated PropertyCorrelationsPackage.

HeatCapacitySolids Wrapper to obtain the list of HeatCapacitySolids objects of the associ-
ated PropertyCorrelationsPackage.

Hf_STPs Standard state molar enthalpies of formation for each component, [J/mol].

Hf_STPs_mass Standard state mass enthalpies of formation for each component, [J/kg].

Hfgs Ideal gas standard molar enthalpies of formation for each component, [J/mol].

Hfgs_mass Ideal gas standard enthalpies of formation for each component, [J/kg].

Hfus_Tms Molar heats of fusion for each component at their respective melting points, [J/mol].

Hfus_Tms_mass Heats of fusion for each component at their respective melting points, [J/kg].
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Hsub_Tts Heats of sublimation for each component at their respective triple points, [J/mol].

Hsub_Tts_mass Heats of sublimation for each component at their respective triple points,
[J/kg].

Hvap_298s Molar heats of vaporization for each component at 298.15 K, [J/mol].

Hvap_298s_mass Heats of vaporization for each component at 298.15 K, [J/kg].

Hvap_Tbs Molar heats of vaporization for each component at their respective normal boiling
points, [J/mol].

Hvap_Tbs_mass Heats of vaporization for each component at their respective normal boiling
points, [J/kg].

IDs Alias of CASs.

InChI_Keys InChI Keys for each component, [-].

InChIs InChI strings for each component, [-].

LF Method to return the liquid fraction of the equilibrium state.

LFLs Lower flammability limits for each component, [-].

MWs Similatiry variables for each component, [g/mol].

ODPs Ozone Depletion Potentials for each component (impact/mass chemical)/(impact/mass
CFC-11), [-].

PSRK_groups PSRK subgroup: count groups for each component, [-].

P_calc
Parachors Parachors for each component, [N^0.25*m^2.75/mol].

Pcs Critical pressures for each component, [Pa].

PermittivityLiquids Wrapper to obtain the list of PermittivityLiquids objects of the associ-
ated PropertyCorrelationsPackage.

Psat_298s Vapor pressures for each component at 298.15 K, [Pa].

Pts Triple point pressures for each component, [Pa].

PubChems Pubchem IDs for each component, [-].

Q
Q_calc
Qgs
Qgs_calc
Qls
Qls_calc
RI_Ts Temperatures at which the refractive indexes were reported for each component, [K].

RIs Refractive indexes for each component, [-].

S0gs Ideal gas absolute molar entropies at 298.15 K at 1 atm for each component, [J/(mol*K)].

S0gs_mass Ideal gas absolute entropies at 298.15 K at 1 atm for each component, [J/(kg*K)].

STELs Short term exposure limits to chemicals (and their units; ppm or mg/m^3), [various].

Sfgs Ideal gas standard molar entropies of formation for each component, [J/(mol*K)].
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Sfgs_mass Ideal gas standard entropies of formation for each component, [J/(kg*K)].

Skins Whether each compound can be absorbed through the skin or not, [-].

StielPolars Stiel polar factors for each component, [-].

Stockmayers Lennard-Jones Stockmayer parameters (depth of potential-energy minimum over
k) for each component, [K].

SublimationPressures Wrapper to obtain the list of SublimationPressures objects of the as-
sociated PropertyCorrelationsPackage.

SurfaceTensionMixture Wrapper to obtain the list of SurfaceTensionMixture objects of the
associated PropertyCorrelationsPackage.

SurfaceTensions Wrapper to obtain the list of SurfaceTensions objects of the associated
PropertyCorrelationsPackage.

TWAs Time-weighted average exposure limits to chemicals (and their units; ppm or mg/m^3),
[various].

T_calc
Tautoignitions Autoignition temperatures for each component, [K].

Tbs Boiling temperatures for each component, [K].

Tcs Critical temperatures for each component, [K].

Tflashs Flash point temperatures for each component, [K].

ThermalConductivityGasMixture Wrapper to obtain the list of ThermalConductivityGas-
Mixture objects of the associated PropertyCorrelationsPackage.

ThermalConductivityGases Wrapper to obtain the list of ThermalConductivityGases objects
of the associated PropertyCorrelationsPackage.

ThermalConductivityLiquidMixture Wrapper to obtain the list of ThermalConductiv-
ityLiquidMixture objects of the associated PropertyCorrelationsPackage.

ThermalConductivityLiquids Wrapper to obtain the list of ThermalConductivityLiquids
objects of the associated PropertyCorrelationsPackage.

Tms Melting temperatures for each component, [K].

Tts Triple point temperatures for each component, [K].

UFLs Upper flammability limits for each component, [-].

UNIFAC_Dortmund_groups UNIFAC_Dortmund_group: count groups for each component, [-
].

UNIFAC_Qs UNIFAC Q parameters for each component, [-].

UNIFAC_Rs UNIFAC R parameters for each component, [-].

UNIFAC_groups UNIFAC_group: count groups for each component, [-].

VF Method to return the vapor fraction of the equilibrium state.

VF_calc
Van_der_Waals_areas Unnormalized Van der Waals areas for each component, [m^2/mol].

Van_der_Waals_volumes Unnormalized Van der Waals volumes for each component,
[m^3/mol].
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VaporPressures Wrapper to obtain the list of VaporPressures objects of the associated
PropertyCorrelationsPackage.

Vcs Critical molar volumes for each component, [m^3/mol].

ViscosityGasMixture Wrapper to obtain the list of ViscosityGasMixture objects of the asso-
ciated PropertyCorrelationsPackage.

ViscosityGases Wrapper to obtain the list of ViscosityGases objects of the associated
PropertyCorrelationsPackage.

ViscosityLiquidMixture Wrapper to obtain the list of ViscosityLiquidMixture objects of the
associated PropertyCorrelationsPackage.

ViscosityLiquids Wrapper to obtain the list of ViscosityLiquids objects of the associated
PropertyCorrelationsPackage.

Vmg_STPs Gas molar volumes for each component at STP; metastable if normally another state,
[m^3/mol].

Vml_60Fs Liquid molar volumes for each component at 60 °F, [m^3/mol].

Vml_STPs Liquid molar volumes for each component at STP, [m^3/mol].

Vml_Tms Liquid molar volumes for each component at their respective melting points,
[m^3/mol].

Vms_Tms Solid molar volumes for each component at their respective melting points, [m^3/mol].

VolumeGasMixture Wrapper to obtain the list of VolumeGasMixture objects of the associated
PropertyCorrelationsPackage.

VolumeGases Wrapper to obtain the list of VolumeGases objects of the associated
PropertyCorrelationsPackage.

VolumeLiquidMixture Wrapper to obtain the list of VolumeLiquidMixture objects of the as-
sociated PropertyCorrelationsPackage.

VolumeLiquids Wrapper to obtain the list of VolumeLiquids objects of the associated
PropertyCorrelationsPackage.

VolumeSolidMixture Wrapper to obtain the list of VolumeSolidMixture objects of the asso-
ciated PropertyCorrelationsPackage.

VolumeSolids Wrapper to obtain the list of VolumeSolids objects of the associated
PropertyCorrelationsPackage.

Zcs Critical compressibilities for each component, [-].

atomss Breakdown of each component into its elements and their counts, as a dict, [-].

betas_liquids Method to calculate and return the fraction of the liquid phase that each liquid
phase is, by molar phase fraction.

betas_mass Method to calculate and return the mass fraction of all of the phases in the system.

betas_mass_liquids Method to calculate and return the fraction of the liquid phase that each
liquid phase is, by mass phase fraction.

betas_mass_states Method to return the mass phase fractions of each of the three fundamen-
tal types of phases.

betas_states Method to return the molar phase fractions of each of the three fundamental
types of phases.
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betas_volume Method to calculate and return the volume fraction of all of the phases in the
system.

betas_volume_liquids Method to calculate and return the fraction of the liquid phase that
each liquid phase is, by volume phase fraction.

betas_volume_states Method to return the volume phase fractions of each of the three fun-
damental types of phases.

charges Charge number (valence) for each component, [-].

composition_specified Always needs a composition

conductivities Electrical conductivities for each component, [S/m].

conductivity_Ts Temperatures at which the electrical conductivities for each component
were measured, [K].

dipoles Dipole moments for each component, [debye].

economic_statuses Status of each component in in relation to import and export from various
regions, [-].

energy
energy_calc
energy_reactive
energy_reactive_calc
flow_specified Always needs a flow specified

formulas Formulas of each component, [-].

heaviest_liquid The liquid-like phase with the highest mass density, [-]

legal_statuses Status of each component in in relation to import and export rules from var-
ious regions, [-].

lightest_liquid The liquid-like phase with the lowest mass density, [-]

liquid_bulk
logPs Octanol-water partition coefficients for each component, [-].

molecular_diameters Lennard-Jones molecular diameters for each component, [angstrom].

ms_calc
n_calc
names Names for each component, [-].

non_pressure_spec_specified Cannot have a stream without an energy-type spec.

ns_calc
omegas Acentric factors for each component, [-].

phase Method to calculate and return a string representing the phase of the mixture.

phase_STPs Standard states (‘g’, ‘l’, or ‘s’) for each component, [-].

property_package
quality Method to return the mass vapor fraction of the equilibrium state.

rhocs Molar densities at the critical point for each component, [mol/m^3].
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rhocs_mass Densities at the critical point for each component, [kg/m^3].

rhog_STPs Molar gas densities at STP for each component; metastable if normally another state,
[mol/m^3].

rhog_STPs_mass Gas densities at STP for each component; metastable if normally another
state, [kg/m^3].

rhol_60Fs Liquid molar densities for each component at 60 °F, [mol/m^3].

rhol_60Fs_mass Liquid mass densities for each component at 60 °F, [kg/m^3].

rhol_STPs Molar liquid densities at STP for each component, [mol/m^3].

rhol_STPs_mass Liquid densities at STP for each component, [kg/m^3].

rhos_Tms Solid molar densities for each component at their respective melting points,
[mol/m^3].

rhos_Tms_mass Solid mass densities for each component at their melting point, [kg/m^3].

sigma_STPs Liquid-air surface tensions at 298.15 K and the higher of 101325 Pa or the satura-
tion pressure, [N/m].

sigma_Tbs Liquid-air surface tensions at the normal boiling point and 101325 Pa, [N/m].

sigma_Tms Liquid-air surface tensions at the melting point and 101325 Pa, [N/m].

similarity_variables Similarity variables for each component, [mol/g].

smiless SMILES identifiers for each component, [-].

solid_bulk
solubility_parameters Solubility parameters for each component at 298.15 K, [Pa^0.5].

specified_composition_vars number of composition variables

specified_flow_vars Always needs only one flow specified

specified_state_vars Always needs two states

state_specified Always needs a state

state_specs Returns a list of tuples of (state_variable, state_value) representing the thermo-
dynamic state of the system.

water_index The index of the component water in the components.

water_phase The liquid-like phase with the highest water mole fraction, [-]

water_phase_index The liquid-like phase with the highest mole fraction of water, [-]

zs_calc

Methods

A() Method to calculate and return the Helmholtz energy
of the phase.

API([phase]) Method to calculate and return the API of the phase.
A_dep() Method to calculate and return the departure

Helmholtz energy of the phase.
continues on next page
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A_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas

Helmholtz energy of formation of the phase (as if
the phase was an ideal gas).

A_ideal_gas([phase]) Method to calculate and return the ideal-gas
Helmholtz energy of the phase.

A_mass([phase]) Method to calculate and return mass Helmholtz en-
ergy of the phase.

A_reactive() Method to calculate and return the Helmholtz free en-
ergy of the phase on a reactive basis.

Bvirial([phase]) Method to calculate and return the B virial coefficient
of the phase at its current conditions.

Cp() Method to calculate and return the constant-
temperature and constant phase-fraction heat
capacity of the bulk phase.

Cp_Cv_ratio() Method to calculate and return the Cp/Cv ratio of the
phase.

Cp_Cv_ratio_ideal_gas([phase]) Method to calculate and return the ratio of the ideal-
gas heat capacity to its constant-volume heat capac-
ity.

Cp_dep([phase]) Method to calculate and return the difference between
the actual Cp and the ideal-gas heat capacity 𝐶𝑖𝑔

𝑝 of
the phase.

Cp_ideal_gas([phase]) Method to calculate and return the ideal-gas heat ca-
pacity of the phase.

Cp_mass([phase]) Method to calculate and return mass constant pres-
sure heat capacity of the phase.

Cv() Method to calculate and return the constant-volume
heat capacity Cv of the phase.

Cv_dep([phase]) Method to calculate and return the difference between
the actual Cv and the ideal-gas constant volume heat
capacity 𝐶𝑖𝑔

𝑣 of the phase.
Cv_ideal_gas([phase]) Method to calculate and return the ideal-gas constant

volume heat capacity of the phase.
Cv_mass([phase]) Method to calculate and return mass constant volume

heat capacity of the phase.
G() Method to calculate and return the Gibbs free energy

of the phase.
G_dep() Method to calculate and return the departure Gibbs

free energy of the phase.
G_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas Gibbs

free energy of formation of the phase (as if the phase
was an ideal gas).

G_ideal_gas([phase]) Method to calculate and return the ideal-gas Gibbs
free energy of the phase.

G_mass([phase]) Method to calculate and return mass Gibbs energy of
the phase.

G_reactive() Method to calculate and return the Gibbs free energy
of the phase on a reactive basis.

H() Method to calculate and return the constant-
temperature and constant phase-fraction enthalpy of
the bulk phase.

continues on next page
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H_C_ratio([phase]) Method to calculate and return the atomic ratio of hy-

drogen atoms to carbon atoms, based on the current
composition of the phase.

H_C_ratio_mass([phase]) Method to calculate and return the mass ratio of hy-
drogen atoms to carbon atoms, based on the current
composition of the phase.

H_dep([phase]) Method to calculate and return the difference between
the actual H and the ideal-gas enthalpy of the phase.

H_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas enthalpy
of formation of the phase (as if the phase was an ideal
gas).

H_ideal_gas([phase]) Method to calculate and return the ideal-gas enthalpy
of the phase.

H_mass([phase]) Method to calculate and return mass enthalpy of the
phase.

H_reactive() Method to calculate and return the constant-
temperature and constant phase-fraction reactive
enthalpy of the bulk phase.

Hc([phase]) Method to calculate and return the molar ideal-gas
higher heat of combustion of the object, [J/mol]

Hc_lower([phase]) Method to calculate and return the molar ideal-gas
lower heat of combustion of the object, [J/mol]

Hc_lower_mass([phase]) Method to calculate and return the mass ideal-gas
lower heat of combustion of the object, [J/mol]

Hc_lower_normal([phase]) Method to calculate and return the volumetric ideal-
gas lower heat of combustion of the object using the
normal gas volume, [J/m^3]

Hc_lower_standard([phase]) Method to calculate and return the volumetric ideal-
gas lower heat of combustion of the object using the
standard gas volume, [J/m^3]

Hc_mass([phase]) Method to calculate and return the mass ideal-gas
higher heat of combustion of the object, [J/mol]

Hc_normal([phase]) Method to calculate and return the volumetric ideal-
gas higher heat of combustion of the object using the
normal gas volume, [J/m^3]

Hc_standard([phase]) Method to calculate and return the volumetric ideal-
gas higher heat of combustion of the object using the
standard gas volume, [J/m^3]

Joule_Thomson() Method to calculate and return the Joule-Thomson
coefficient of the bulk according to the selected cal-
culation methodology.

Ks(phase[, phase_ref]) Method to calculate and return the K-values of each
phase.

MW([phase]) Method to calculate and return the molecular weight
of the phase.

PIP() Method to calculate and return the phase identifica-
tion parameter of the phase.

Pmc([phase]) Method to calculate and return the mechanical criti-
cal pressure of the phase.

continues on next page
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S() Method to calculate and return the constant-

temperature and constant phase-fraction entropy of
the bulk phase.

SG([phase]) Method to calculate and return the standard liquid
specific gravity of the phase, using constant liquid
pure component densities not calculated by the phase
object, at 60 °F.

SG_gas([phase]) Method to calculate and return the specific gravity of
the phase with respect to a gas reference density.

S_dep([phase]) Method to calculate and return the difference between
the actual S and the ideal-gas entropy of the phase.

S_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas entropy
of formation of the phase (as if the phase was an ideal
gas).

S_ideal_gas([phase]) Method to calculate and return the ideal-gas entropy
of the phase.

S_mass([phase]) Method to calculate and return mass entropy of the
phase.

S_reactive() Method to calculate and return the constant-
temperature and constant phase-fraction reactive
entropy of the bulk phase.

StreamArgs() Goal to create a StreamArgs instance, with the user
specified variables always being here.

Tmc([phase]) Method to calculate and return the mechanical criti-
cal temperature of the phase.

U() Method to calculate and return the internal energy of
the phase.

U_dep() Method to calculate and return the departure internal
energy of the phase.

U_formation_ideal_gas([phase]) Method to calculate and return the ideal-gas internal
energy of formation of the phase (as if the phase was
an ideal gas).

U_ideal_gas([phase]) Method to calculate and return the ideal-gas internal
energy of the phase.

U_mass([phase]) Method to calculate and return mass internal energy
of the phase.

U_reactive() Method to calculate and return the internal energy of
the phase on a reactive basis.

V() Method to calculate and return the molar volume of
the bulk phase.

V_dep() Method to calculate and return the departure (from
ideal gas behavior) molar volume of the phase.

V_gas([phase]) Method to calculate and return the ideal-gas molar
volume of the phase at the chosen reference tempera-
ture and pressure, according to the temperature vari-
able T_gas_ref and pressure variable P_gas_ref of
the thermo.bulk.BulkSettings.

continues on next page
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V_gas_normal([phase]) Method to calculate and return the ideal-gas mo-

lar volume of the phase at the normal temperature
and pressure, according to the temperature variable
T_normal and pressure variable P_normal of the
thermo.bulk.BulkSettings.

V_gas_standard([phase]) Method to calculate and return the ideal-gas mo-
lar volume of the phase at the standard temperature
and pressure, according to the temperature variable
T_standard and pressure variable P_standard of the
thermo.bulk.BulkSettings.

V_ideal_gas([phase]) Method to calculate and return the ideal-gas molar
volume of the phase.

V_iter([phase, force]) Method to calculate and return the volume of the
phase in a way suitable for a TV resolution to con-
verge on the same pressure.

V_liquid_ref([phase]) Method to calculate and return the liquid refer-
ence molar volume according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

V_liquids_ref() Method to calculate and return the liquid refer-
ence molar volumes according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings.

V_mass([phase]) Method to calculate and return the specific volume of
the phase.

Vfgs([phase]) Method to calculate and return the ideal-gas volume
fractions of the components of the phase.

Vfls([phase]) Method to calculate and return the ideal-liquid vol-
ume fractions of the components of the phase,
using the standard liquid densities at the tem-
perature variable T_liquid_volume_ref of thermo.
bulk.BulkSettings and the composition of the
phase.

Vmc([phase]) Method to calculate and return the mechanical criti-
cal volume of the phase.

Wobbe_index([phase]) Method to calculate and return the molar Wobbe in-
dex of the object, [J/mol].

Wobbe_index_lower([phase]) Method to calculate and return the molar lower
Wobbe index of the

Wobbe_index_lower_mass([phase]) Method to calculate and return the lower mass Wobbe
index of the object, [J/kg].

Wobbe_index_lower_normal([phase]) Method to calculate and return the volumetric normal
lower Wobbe index of the object, [J/m^3].

Wobbe_index_lower_standard([phase]) Method to calculate and return the volumetric stan-
dard lower Wobbe index of the object, [J/m^3].

Wobbe_index_mass([phase]) Method to calculate and return the mass Wobbe index
of the object, [J/kg].

Wobbe_index_normal([phase]) Method to calculate and return the volumetric normal
Wobbe index of the object, [J/m^3].

Wobbe_index_standard([phase]) Method to calculate and return the volumetric stan-
dard Wobbe index of the object, [J/m^3].

continues on next page
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Z() Method to calculate and return the compressibility

factor of the phase.
Zmc([phase]) Method to calculate and return the mechanical criti-

cal compressibility of the phase.
alpha([phase]) Method to calculate and return the thermal diffusivity

of the equilibrium state.
atom_fractions([phase]) Method to calculate and return the atomic composi-

tion of the phase; returns a dictionary of atom frac-
tion (by count), containing only those elements who
are present.

atom_mass_fractions([phase]) Method to calculate and return the atomic mass frac-
tions of the phase; returns a dictionary of atom frac-
tion (by mass), containing only those elements who
are present.

d2P_dT2() Method to calculate and return the second tempera-
ture derivative of pressure of the bulk according to
the selected calculation methodology.

d2P_dT2_frozen() Method to calculate and return the second constant-
volume derivative of pressure with respect to temper-
ature of the bulk phase, at constant phase fractions
and phase compositions.

d2P_dTdV() Method to calculate and return the second deriva-
tive of pressure with respect to temperature and vol-
ume of the bulk according to the selected calculation
methodology.

d2P_dTdV_frozen() Method to calculate and return the second derivative
of pressure with respect to volume and temperature of
the bulk phase, at constant phase fractions and phase
compositions.

d2P_dV2() Method to calculate and return the second volume
derivative of pressure of the bulk according to the se-
lected calculation methodology.

d2P_dV2_frozen() Method to calculate and return the constant-
temperature second derivative of pressure with
respect to volume of the bulk phase, at constant
phase fractions and phase compositions.

dA_dP() Method to calculate and return the constant-
temperature pressure derivative of Helmholtz
energy.

dA_dP_T() Method to calculate and return the constant-
temperature pressure derivative of Helmholtz
energy.

dA_dP_V() Method to calculate and return the constant-volume
pressure derivative of Helmholtz energy.

dA_dT() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dA_dT_P() Method to calculate and return the constant-pressure
temperature derivative of Helmholtz energy.

dA_dT_V() Method to calculate and return the constant-volume
temperature derivative of Helmholtz energy.

continues on next page
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dA_dV_P() Method to calculate and return the constant-pressure

volume derivative of Helmholtz energy.
dA_dV_T() Method to calculate and return the constant-

temperature volume derivative of Helmholtz energy.
dA_mass_dP() Method to calculate and return the pressure derivative

of mass Helmholtz energy of the phase at constant
temperature.

dA_mass_dP_T() Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
temperature.

dA_mass_dP_V() Method to calculate and return the pressure derivative
of mass Helmholtz energy of the phase at constant
volume.

dA_mass_dT() Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant pressure.

dA_mass_dT_P() Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant pressure.

dA_mass_dT_V() Method to calculate and return the temperature
derivative of mass Helmholtz energy of the phase at
constant volume.

dA_mass_dV_P() Method to calculate and return the volume derivative
of mass Helmholtz energy of the phase at constant
pressure.

dA_mass_dV_T() Method to calculate and return the volume derivative
of mass Helmholtz energy of the phase at constant
temperature.

dCv_dP_T() Method to calculate the pressure derivative of Cv,
constant volume heat capacity, at constant tempera-
ture.

dCv_dT_P() Method to calculate the temperature derivative of Cv,
constant volume heat capacity, at constant pressure.

dCv_mass_dP_T() Method to calculate and return the pressure derivative
of mass Constant-volume heat capacity of the phase
at constant temperature.

dCv_mass_dT_P() Method to calculate and return the temperature
derivative of mass Constant-volume heat capacity of
the phase at constant pressure.

dG_dP() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dP_T() Method to calculate and return the constant-
temperature pressure derivative of Gibbs free
energy.

dG_dP_V() Method to calculate and return the constant-volume
pressure derivative of Gibbs free energy.

dG_dT() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

dG_dT_P() Method to calculate and return the constant-pressure
temperature derivative of Gibbs free energy.

continues on next page
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dG_dT_V() Method to calculate and return the constant-volume

temperature derivative of Gibbs free energy.
dG_dV_P() Method to calculate and return the constant-pressure

volume derivative of Gibbs free energy.
dG_dV_T() Method to calculate and return the constant-

temperature volume derivative of Gibbs free energy.
dG_mass_dP() Method to calculate and return the pressure derivative

of mass Gibbs free energy of the phase at constant
temperature.

dG_mass_dP_T() Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
temperature.

dG_mass_dP_V() Method to calculate and return the pressure derivative
of mass Gibbs free energy of the phase at constant
volume.

dG_mass_dT() Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant pressure.

dG_mass_dT_P() Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant pressure.

dG_mass_dT_V() Method to calculate and return the temperature
derivative of mass Gibbs free energy of the phase at
constant volume.

dG_mass_dV_P() Method to calculate and return the volume derivative
of mass Gibbs free energy of the phase at constant
pressure.

dG_mass_dV_T() Method to calculate and return the volume derivative
of mass Gibbs free energy of the phase at constant
temperature.

dH_dP() Method to calculate and return the pressure derivative
of enthalpy of the phase at constant pressure.

dH_dP_T() Method to calculate and return the pressure derivative
of enthalpy of the phase at constant pressure.

dH_dT() Method to calculate and return the constant-
temperature and constant phase-fraction heat
capacity of the bulk phase.

dH_dT_P() Method to calculate and return the temperature
derivative of enthalpy of the phase at constant pres-
sure.

dH_mass_dP() Method to calculate and return the pressure deriva-
tive of mass enthalpy of the phase at constant tem-
perature.

dH_mass_dP_T() Method to calculate and return the pressure deriva-
tive of mass enthalpy of the phase at constant tem-
perature.

dH_mass_dP_V() Method to calculate and return the pressure derivative
of mass enthalpy of the phase at constant volume.

dH_mass_dT() Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
pressure.

continues on next page
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dH_mass_dT_P() Method to calculate and return the temperature

derivative of mass enthalpy of the phase at constant
pressure.

dH_mass_dT_V() Method to calculate and return the temperature
derivative of mass enthalpy of the phase at constant
volume.

dH_mass_dV_P() Method to calculate and return the volume derivative
of mass enthalpy of the phase at constant pressure.

dH_mass_dV_T() Method to calculate and return the volume derivative
of mass enthalpy of the phase at constant tempera-
ture.

dP_dP_A() Method to calculate and return the pressure derivative
of pressure of the phase at constant Helmholtz energy.

dP_dP_G() Method to calculate and return the pressure derivative
of pressure of the phase at constant Gibbs energy.

dP_dP_H() Method to calculate and return the pressure derivative
of pressure of the phase at constant enthalpy.

dP_dP_S() Method to calculate and return the pressure derivative
of pressure of the phase at constant entropy.

dP_dP_U() Method to calculate and return the pressure derivative
of pressure of the phase at constant internal energy.

dP_dT() Method to calculate and return the first temperature
derivative of pressure of the bulk according to the se-
lected calculation methodology.

dP_dT_A() Method to calculate and return the temperature
derivative of pressure of the phase at constant
Helmholtz energy.

dP_dT_G() Method to calculate and return the temperature
derivative of pressure of the phase at constant Gibbs
energy.

dP_dT_H() Method to calculate and return the temperature
derivative of pressure of the phase at constant en-
thalpy.

dP_dT_S() Method to calculate and return the temperature
derivative of pressure of the phase at constant en-
tropy.

dP_dT_U() Method to calculate and return the temperature
derivative of pressure of the phase at constant internal
energy.

dP_dT_frozen() Method to calculate and return the constant-volume
derivative of pressure with respect to temperature of
the bulk phase, at constant phase fractions and phase
compositions.

dP_dV() Method to calculate and return the first volume
derivative of pressure of the bulk according to the se-
lected calculation methodology.

dP_dV_A() Method to calculate and return the volume derivative
of pressure of the phase at constant Helmholtz energy.

dP_dV_G() Method to calculate and return the volume derivative
of pressure of the phase at constant Gibbs energy.

continues on next page
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dP_dV_H() Method to calculate and return the volume derivative

of pressure of the phase at constant enthalpy.
dP_dV_S() Method to calculate and return the volume derivative

of pressure of the phase at constant entropy.
dP_dV_U() Method to calculate and return the volume derivative

of pressure of the phase at constant internal energy.
dP_dV_frozen() Method to calculate and return the constant-

temperature derivative of pressure with respect to
volume of the bulk phase, at constant phase fractions
and phase compositions.

dP_drho_A() Method to calculate and return the density derivative
of pressure of the phase at constant Helmholtz energy.

dP_drho_G() Method to calculate and return the density derivative
of pressure of the phase at constant Gibbs energy.

dP_drho_H() Method to calculate and return the density derivative
of pressure of the phase at constant enthalpy.

dP_drho_S() Method to calculate and return the density derivative
of pressure of the phase at constant entropy.

dP_drho_U() Method to calculate and return the density derivative
of pressure of the phase at constant internal energy.

dS_dP() Method to calculate and return the pressure derivative
of entropy of the phase at constant pressure.

dS_dP_T() Method to calculate and return the pressure derivative
of entropy of the phase at constant pressure.

dS_dV_P() Method to calculate and return the volume derivative
of entropy of the phase at constant pressure.

dS_dV_T() Method to calculate and return the volume derivative
of entropy of the phase at constant temperature.

dS_mass_dP() Method to calculate and return the pressure derivative
of mass entropy of the phase at constant temperature.

dS_mass_dP_T() Method to calculate and return the pressure derivative
of mass entropy of the phase at constant temperature.

dS_mass_dP_V() Method to calculate and return the pressure derivative
of mass entropy of the phase at constant volume.

dS_mass_dT() Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
pressure.

dS_mass_dT_P() Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
pressure.

dS_mass_dT_V() Method to calculate and return the temperature
derivative of mass entropy of the phase at constant
volume.

dS_mass_dV_P() Method to calculate and return the volume derivative
of mass entropy of the phase at constant pressure.

dS_mass_dV_T() Method to calculate and return the volume derivative
of mass entropy of the phase at constant temperature.

dT_dP_A() Method to calculate and return the pressure derivative
of temperature of the phase at constant Helmholtz en-
ergy.
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dT_dP_G() Method to calculate and return the pressure derivative

of temperature of the phase at constant Gibbs energy.
dT_dP_H() Method to calculate and return the pressure derivative

of temperature of the phase at constant enthalpy.
dT_dP_S() Method to calculate and return the pressure derivative

of temperature of the phase at constant entropy.
dT_dP_U() Method to calculate and return the pressure deriva-

tive of temperature of the phase at constant internal
energy.

dT_dT_A() Method to calculate and return the temperature
derivative of temperature of the phase at constant
Helmholtz energy.

dT_dT_G() Method to calculate and return the temperature
derivative of temperature of the phase at constant
Gibbs energy.

dT_dT_H() Method to calculate and return the temperature
derivative of temperature of the phase at constant en-
thalpy.

dT_dT_S() Method to calculate and return the temperature
derivative of temperature of the phase at constant en-
tropy.

dT_dT_U() Method to calculate and return the temperature
derivative of temperature of the phase at constant in-
ternal energy.

dT_dV_A() Method to calculate and return the volume derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_dV_G() Method to calculate and return the volume derivative
of temperature of the phase at constant Gibbs energy.

dT_dV_H() Method to calculate and return the volume derivative
of temperature of the phase at constant enthalpy.

dT_dV_S() Method to calculate and return the volume derivative
of temperature of the phase at constant entropy.

dT_dV_U() Method to calculate and return the volume derivative
of temperature of the phase at constant internal en-
ergy.

dT_drho_A() Method to calculate and return the density derivative
of temperature of the phase at constant Helmholtz en-
ergy.

dT_drho_G() Method to calculate and return the density derivative
of temperature of the phase at constant Gibbs energy.

dT_drho_H() Method to calculate and return the density derivative
of temperature of the phase at constant enthalpy.

dT_drho_S() Method to calculate and return the density derivative
of temperature of the phase at constant entropy.

dT_drho_U() Method to calculate and return the density derivative
of temperature of the phase at constant internal en-
ergy.

dU_dP() Method to calculate and return the constant-
temperature pressure derivative of internal energy.

continues on next page
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Table 90 – continued from previous page
dU_dP_T() Method to calculate and return the constant-

temperature pressure derivative of internal energy.
dU_dP_V() Method to calculate and return the constant-volume

pressure derivative of internal energy.
dU_dT() Method to calculate and return the constant-pressure

temperature derivative of internal energy.
dU_dT_P() Method to calculate and return the constant-pressure

temperature derivative of internal energy.
dU_dT_V() Method to calculate and return the constant-volume

temperature derivative of internal energy.
dU_dV_P() Method to calculate and return the constant-pressure

volume derivative of internal energy.
dU_dV_T() Method to calculate and return the constant-

temperature volume derivative of internal energy.
dU_mass_dP() Method to calculate and return the pressure deriva-

tive of mass internal energy of the phase at constant
temperature.

dU_mass_dP_T() Method to calculate and return the pressure deriva-
tive of mass internal energy of the phase at constant
temperature.

dU_mass_dP_V() Method to calculate and return the pressure deriva-
tive of mass internal energy of the phase at constant
volume.

dU_mass_dT() Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant pressure.

dU_mass_dT_P() Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant pressure.

dU_mass_dT_V() Method to calculate and return the temperature
derivative of mass internal energy of the phase at con-
stant volume.

dU_mass_dV_P() Method to calculate and return the volume derivative
of mass internal energy of the phase at constant pres-
sure.

dU_mass_dV_T() Method to calculate and return the volume derivative
of mass internal energy of the phase at constant tem-
perature.

dV_dP_A() Method to calculate and return the pressure derivative
of volume of the phase at constant Helmholtz energy.

dV_dP_G() Method to calculate and return the pressure derivative
of volume of the phase at constant Gibbs energy.

dV_dP_H() Method to calculate and return the pressure derivative
of volume of the phase at constant enthalpy.

dV_dP_S() Method to calculate and return the pressure derivative
of volume of the phase at constant entropy.

dV_dP_U() Method to calculate and return the pressure derivative
of volume of the phase at constant internal energy.

dV_dT_A() Method to calculate and return the temperature
derivative of volume of the phase at constant
Helmholtz energy.

continues on next page
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dV_dT_G() Method to calculate and return the temperature

derivative of volume of the phase at constant Gibbs
energy.

dV_dT_H() Method to calculate and return the temperature
derivative of volume of the phase at constant en-
thalpy.

dV_dT_S() Method to calculate and return the temperature
derivative of volume of the phase at constant entropy.

dV_dT_U() Method to calculate and return the temperature
derivative of volume of the phase at constant inter-
nal energy.

dV_dV_A() Method to calculate and return the volume derivative
of volume of the phase at constant Helmholtz energy.

dV_dV_G() Method to calculate and return the volume derivative
of volume of the phase at constant Gibbs energy.

dV_dV_H() Method to calculate and return the volume derivative
of volume of the phase at constant enthalpy.

dV_dV_S() Method to calculate and return the volume derivative
of volume of the phase at constant entropy.

dV_dV_U() Method to calculate and return the volume derivative
of volume of the phase at constant internal energy.

dV_drho_A() Method to calculate and return the density derivative
of volume of the phase at constant Helmholtz energy.

dV_drho_G() Method to calculate and return the density derivative
of volume of the phase at constant Gibbs energy.

dV_drho_H() Method to calculate and return the density derivative
of volume of the phase at constant enthalpy.

dV_drho_S() Method to calculate and return the density derivative
of volume of the phase at constant entropy.

dV_drho_U() Method to calculate and return the density derivative
of volume of the phase at constant internal energy.

drho_dP_A() Method to calculate and return the pressure derivative
of density of the phase at constant Helmholtz energy.

drho_dP_G() Method to calculate and return the pressure derivative
of density of the phase at constant Gibbs energy.

drho_dP_H() Method to calculate and return the pressure derivative
of density of the phase at constant enthalpy.

drho_dP_S() Method to calculate and return the pressure derivative
of density of the phase at constant entropy.

drho_dP_U() Method to calculate and return the pressure derivative
of density of the phase at constant internal energy.

drho_dT_A() Method to calculate and return the temperature
derivative of density of the phase at constant
Helmholtz energy.

drho_dT_G() Method to calculate and return the temperature
derivative of density of the phase at constant Gibbs
energy.

drho_dT_H() Method to calculate and return the temperature
derivative of density of the phase at constant en-
thalpy.

continues on next page
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drho_dT_S() Method to calculate and return the temperature

derivative of density of the phase at constant entropy.
drho_dT_U() Method to calculate and return the temperature

derivative of density of the phase at constant internal
energy.

drho_dV_A() Method to calculate and return the volume derivative
of density of the phase at constant Helmholtz energy.

drho_dV_G() Method to calculate and return the volume derivative
of density of the phase at constant Gibbs energy.

drho_dV_H() Method to calculate and return the volume derivative
of density of the phase at constant enthalpy.

drho_dV_S() Method to calculate and return the volume derivative
of density of the phase at constant entropy.

drho_dV_U() Method to calculate and return the volume derivative
of density of the phase at constant internal energy.

drho_drho_A() Method to calculate and return the density derivative
of density of the phase at constant Helmholtz energy.

drho_drho_G() Method to calculate and return the density derivative
of density of the phase at constant Gibbs energy.

drho_drho_H() Method to calculate and return the density derivative
of density of the phase at constant enthalpy.

drho_drho_S() Method to calculate and return the density derivative
of density of the phase at constant entropy.

drho_drho_U() Method to calculate and return the density derivative
of density of the phase at constant internal energy.

isentropic_exponent() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

isentropic_exponent_PT() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃 (1−𝑘)𝑇 𝑘 = const.

isentropic_exponent_PV() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑃𝑉 𝑘 = const.

isentropic_exponent_TV() Method to calculate and return the real gas isentropic
exponent of the phase, which satisfies the relationship
𝑇𝑉 𝑘−1 = const.

isobaric_expansion() Method to calculate and return the isobatic expansion
coefficient of the bulk according to the selected cal-
culation methodology.

isothermal_bulk_modulus() Method to calculate and return the isothermal bulk
modulus of the phase.

k() Calculate and return the thermal conductivity
of the bulk according to the selected thermal
conductivity settings in BulkSettings, the set-
tings in ThermalConductivityGasMixture
and ThermalConductivityLiquidMixture,
and the configured pure-component set-
tings in ThermalConductivityGas and
ThermalConductivityLiquid .

continues on next page
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kappa() Method to calculate and return the isothermal com-

pressibility of the bulk according to the selected cal-
culation methodology.

log_zs() Method to calculate and return the log of mole frac-
tions specified.

molar_water_content([phase]) Method to calculate and return the molar water con-
tent; this is the g/mol of the fluid which is coming
from water, [g/mol].

mu() Calculate and return the viscosity of the
bulk according to the selected viscos-
ity settings in BulkSettings, the set-
tings in ViscosityGasMixture and
ViscosityLiquidMixture, and the config-
ured pure-component settings in ViscosityGas
and ViscosityLiquid .

nu([phase]) Method to calculate and return the kinematic viscos-
ity of the equilibrium state.

pseudo_Pc([phase]) Method to calculate and return the pseudocritical
pressure calculated using Kay's rule (linear mole
fractions):

pseudo_Tc([phase]) Method to calculate and return the pseudocritical
temperature calculated using Kay's rule (linear mole
fractions):

pseudo_Vc([phase]) Method to calculate and return the pseudocritical vol-
ume calculated using Kay's rule (linear mole frac-
tions):

pseudo_Zc([phase]) Method to calculate and return the pseudocritical
compressibility calculated using Kay's rule (linear
mole fractions):

rho() Method to calculate and return the molar density of
the phase.

rho_mass([phase]) Method to calculate and return mass density of the
phase.

rho_mass_liquid_ref([phase]) Method to calculate and return the liquid refer-
ence mass density according to the temperature
variable T_liquid_volume_ref of thermo.bulk.
BulkSettings and the composition of the phase.

sigma() Calculate and return the surface tension of the
bulk according to the selected surface ten-
sion settings in BulkSettings, the settings in
SurfaceTensionMixture and the configured
pure-component settings in SurfaceTension.

speed_of_sound() Method to calculate and return the molar speed of
sound of the bulk according to the selected calcula-
tion methodology.

speed_of_sound_mass() Method to calculate and return the speed of sound of
the phase.

value(name[, phase]) Method to retrieve a property from a string.
ws([phase]) Method to calculate and return the mass fractions of

the phase, [-]
continues on next page
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ws_no_water([phase]) Method to calculate and return the mass fractions of

all species in the phase, normalized to a water-free
basis (the mass fraction of water returned is zero).

zs_no_water([phase]) Method to calculate and return the mole fractions of
all species in the phase, normalized to a water-free
basis (the mole fraction of water returned is zero).

dH_dP_V
dH_dT_V
dH_dV_P
dH_dV_T
dS_dP_V
dS_dT
dS_dT_P
dS_dT_V

property P_calc

property Q

property Q_calc

property Qgs

property Qgs_calc

property Qls

property Qls_calc

StreamArgs()
Goal to create a StreamArgs instance, with the user specified variables always being here.

The state variables are currently correctly tracked. The flow rate and composition variable needs to be
tracked as a function of what was specified as the input variables.

The flow rate needs to be changed wen the stream flow rate is changed. Note this stores unnormalized specs,
but that this is OK.

property T_calc

property VF_calc

property composition_specified
Always needs a composition

property energy

property energy_calc

property energy_reactive

property energy_reactive_calc

flashed = True

property flow_specified
Always needs a flow specified

property ms_calc
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property n_calc

property non_pressure_spec_specified
Cannot have a stream without an energy-type spec.

property ns_calc

property property_package

property specified_composition_vars
number of composition variables

property specified_flow_vars
Always needs only one flow specified

property specified_state_vars
Always needs two states

property state_specified
Always needs a state

property state_specs
Returns a list of tuples of (state_variable, state_value) representing the thermodynamic state of the system.

property zs_calc

class thermo.stream.Stream(IDs=None, zs=None, ws=None, Vfls=None, Vfgs=None, ns=None, ms=None,
Qls=None, Qgs=None, n=None, m=None, Q=None, T=None, P=None,
VF=None, H=None, Hm=None, S=None, Sm=None, energy=None, pkg=None,
Vf_TP=(None, None), Q_TP=(None, None, ''))

Bases: thermo.mixture.Mixture

Creates a Stream object which is useful for modeling mass and energy balances.

Streams have five variables. The flow rate, composition, and components are mandatory; and two of the variables
temperature, pressure, vapor fraction, enthalpy, or entropy are required. Entropy and enthalpy may also be
provided in a molar basis; energy can also be provided, which when combined with either a flow rate or enthalpy
will calculate the other variable.

The composition and flow rate may be specified together or separately. The options for specifying them are:

• Mole fractions zs

• Mass fractions ws

• Liquid standard volume fractions Vfls

• Gas standard volume fractions Vfgs

• Mole flow rates ns

• Mass flow rates ms

• Liquid flow rates Qls (based on pure component volumes at the T and P specified by Q_TP)

• Gas flow rates Qgs (based on pure component volumes at the T and P specified by Q_TP)

If only the composition is specified by providing any of zs, ws, Vfls or Vfgs, the flow rate must be specified by
providing one of these:

• Mole flow rate n

• Mass flow rate m

• Volumetric flow rate Q at the provided T and P or if specified, Q_TP

• Energy energy
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The state variables must be two of the following. Not all combinations result in a supported flash.

• Tempetarure T

• Pressure P

• Vapor fraction VF

• Enthalpy H

• Molar enthalpy Hm

• Entropy S

• Molar entropy Sm

• Energy energy

Parameters
IDs [list, optional] List of chemical identifiers - names, CAS numbers, SMILES or InChi strings

can all be recognized and may be mixed [-]

zs [list or dict, optional] Mole fractions of all components in the stream [-]

ws [list or dict, optional] Mass fractions of all components in the stream [-]

Vfls [list or dict, optional] Volume fractions of all components as a hypothetical liquid phase
based on pure component densities [-]

Vfgs [list or dict, optional] Volume fractions of all components as a hypothetical gas phase based
on pure component densities [-]

ns [list or dict, optional] Mole flow rates of each component [mol/s]

ms [list or dict, optional] Mass flow rates of each component [kg/s]

Qls [list or dict, optional] Liquid flow rates of all components as a hypothetical liquid phase
based on pure component densities [m^3/s]

Qgs [list or dict, optional] Gas flow rates of all components as a hypothetical gas phase based
on pure component densities [m^3/s]

n [float, optional] Total mole flow rate of all components in the stream [mol/s]

m [float, optional] Total mass flow rate of all components in the stream [kg/s]

Q [float, optional] Total volumetric flow rate of all components in the stream based on the tem-
perature and pressure specified by T and P [m^3/s]

T [float, optional] Temperature of the stream (default 298.15 K), [K]

P [float, optional] Pressure of the stream (default 101325 Pa) [Pa]

VF [float, optional] Vapor fraction (mole basis) of the stream, [-]

H [float, optional] Mass enthalpy of the stream, [J]

Hm [float, optional] Molar enthalpy of the stream, [J/mol]

S [float, optional] Mass entropy of the stream, [J/kg/K]

Sm [float, optional] Molar entropy of the stream, [J/mol/K]

energy [float, optional] Flowing energy of the stream (H`*`m), [W]

pkg [object] The thermodynamic property package to use for flash calculations; one of the
caloric packages in thermo.property_package; defaults to the ideal model [-]
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Vf_TP [tuple(2, float), optional] The (T, P) at which the volume fractions are specified to be at,
[K] and [Pa]

Q_TP [tuple(3, float, float, str), optional] The (T, P, phase) at which the volumetric flow rate is
specified to be at, [K] and [Pa]

Notes

Warning: The Stream class is not designed for high-performance or the ability to use different thermody-
namic models. It is especially limited in its multiphase support and the ability to solve with specifications
other than temperature and pressure. It is impossible to change constant properties such as a compound’s
critical temperature in this interface.

It is recommended to switch over to the thermo.flash and EquilibriumStream interfaces which solves
those problems and are better positioned to grow. That interface also requires users to be responsible for
their chemical constants and pure component correlations; while default values can easily be loaded for most
compounds, the user is ultimately responsible for them.

Examples

Creating Stream objects:

A stream of vodka with volume fractions 60% water, 40% ethanol, 1 kg/s:

>>> from thermo import Stream
>>> Stream(['water', 'ethanol'], Vfls=[.6, .4], T=300, P=1E5, m=1)
<Stream, components=['water', 'ethanol'], mole fractions=[0.8299, 0.1701], mass␣
→˓flow=1.0 kg/s, mole flow=43.883974 mol/s, T=300.00 K, P=100000 Pa>

A stream of air at 400 K and 1 bar, flow rate of 1 mol/s:

>>> Stream('air', T=400, P=1e5, n=1)
<Stream, components=['nitrogen', 'argon', 'oxygen'], mole fractions=[0.7812, 0.0092,
→˓ 0.2096], mass flow=0.028958 kg/s, mole flow=1 mol/s, T=400.00 K, P=100000 Pa>

A flow of 1 L/s of 10 wt% phosphoric acid at 320 K:

>>> Stream(['water', 'phosphoric acid'], ws=[.9, .1], T=320, P=1E5, Q=0.001)
<Stream, components=['water', 'phosphoric acid'], mole fractions=[0.98, 0.02], mole␣
→˓flow=53.2136286991 mol/s, T=320.00 K, P=100000 Pa>

Instead of specifying the composition and flow rate separately, they can be specified as a list of flow rates in the
appropriate units.

80 kg/s of furfuryl alcohol/water solution:

>>> Stream(['furfuryl alcohol', 'water'], ms=[50, 30])
<Stream, components=['furfuryl alcohol', 'water'], mole fractions=[0.2343, 0.7657],␣
→˓mole flow=2174.93735951 mol/s, T=298.15 K, P=101325 Pa>

A stream of 100 mol/s of 400 K, 1 MPa argon:

>>> Stream(['argon'], ns=[100], T=400, P=1E6)
<Stream, components=['argon'], mole fractions=[1.0], mole flow=100 mol/s, T=400.00␣
→˓K, P=1000000 Pa> (continues on next page)
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A large stream of vinegar, 8 volume %:

>>> Stream(['Acetic acid', 'water'], Qls=[1, 1/.088])
<Stream, components=['acetic acid', 'water'], mole fractions=[0.0269, 0.9731], mole␣
→˓flow=646268.518749 mol/s, T=298.15 K, P=101325 Pa>

A very large stream of 100 m^3/s of steam at 500 K and 2 MPa:

>>> Stream(['water'], Qls=[100], T=500, P=2E6)
<Stream, components=['water'], mole fractions=[1.0], mole flow=4617174.33613 mol/s,␣
→˓T=500.00 K, P=2000000 Pa>

A real example of a stream from a pulp mill:

>>> Stream(['Methanol', 'Sulphuric acid', 'sodium chlorate', 'Water', 'Chlorine␣
→˓dioxide', 'Sodium chloride', 'Carbon dioxide', 'Formic Acid', 'sodium sulfate',
→˓'Chlorine'], T=365.2, P=70900, ns=[0.3361749, 11.5068909, 16.8895876, 7135.
→˓9902928, 1.8538332, 0.0480655, 0.0000000, 2.9135162, 205.7106922, 0.0012694])
<Stream, components=['methanol', 'sulfuric acid', 'sodium chlorate', 'water',
→˓'chlorine dioxide', 'sodium chloride', 'carbon dioxide', 'formic acid', 'sodium␣
→˓sulfate', 'chlorine'], mole fractions=[0.0, 0.0016, 0.0023, 0.9676, 0.0003, 0.0,␣
→˓0.0, 0.0004, 0.0279, 0.0], mole flow=7375.2503227 mol/s, T=365.20 K, P=70900 Pa>

For streams with large numbers of components, it may be confusing to enter the composition separate from the
names of the chemicals. For that case, the syntax using dictionaries as follows is supported with any composition
specification:

>>> comp = OrderedDict([('methane', 0.96522),
... ('nitrogen', 0.00259),
... ('carbon dioxide', 0.00596),
... ('ethane', 0.01819),
... ('propane', 0.0046),
... ('isobutane', 0.00098),
... ('butane', 0.00101),
... ('2-methylbutane', 0.00047),
... ('pentane', 0.00032),
... ('hexane', 0.00066)])
>>> m = Stream(ws=comp, m=33)

Attributes
A Helmholtz energy of the mixture at its current state, in units of [J/kg].

API API gravity of the hypothetical liquid phase of the mixture, [degrees].

Am Helmholtz energy of the mixture at its current state, in units of [J/mol].

Bvirial Second virial coefficient of the gas phase of the mixture at its current temperature,
pressure, and composition in units of [mol/m^3].

Cp Mass heat capacity of the mixture at its current phase and temperature, in units of [J/kg/K].

Cpg Gas-phase heat capacity of the mixture at its current temperature , and composition in units
of [J/kg/K].
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Cpgm Gas-phase heat capacity of the mixture at its current temperature and composition, in units
of [J/mol/K].

Cpgms Gas-phase ideal gas heat capacity of the chemicals at its current temperature, in units of
[J/mol/K].

Cpgs Gas-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/kg/K].

Cpl Liquid-phase heat capacity of the mixture at its current temperature and composition, in
units of [J/kg/K].

Cplm Liquid-phase heat capacity of the mixture at its current temperature and composition, in
units of [J/mol/K].

Cplms Liquid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/mol/K].

Cpls Liquid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/kg/K].

Cpm Molar heat capacity of the mixture at its current phase and temperature, in units of [J/mol/K].

Cps Solid-phase heat capacity of the mixture at its current temperature and composition, in units
of [J/kg/K].

Cpsm Solid-phase heat capacity of the mixture at its current temperature and composition, in
units of [J/mol/K].

Cpsms Solid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/mol/K].

Cpss Solid-phase pure component heat capacity of the chemicals in the mixture at its current
temperature, in units of [J/kg/K].

Cvg Gas-phase ideal-gas contant-volume heat capacity of the mixture at its current temperature,
in units of [J/kg/K].

Cvgm Gas-phase ideal-gas contant-volume heat capacity of the mixture at its current temperature
and composition, in units of [J/mol/K].

Cvgms Gas-phase pure component ideal-gas contant-volume heat capacities of the chemicals in
the mixture at its current temperature, in units of [J/mol/K].

Cvgs Gas-phase pure component ideal-gas contant-volume heat capacities of the chemicals in
the mixture at its current temperature, in units of [J/kg/K].

H
Hc Standard higher heat of combustion of the mixture, in units of [J/kg].

Hc_lower Standard lower heat of combustion of the mixture, in units of [J/kg].

Hcm Standard higher molar heat of combustion of the mixture, in units of [J/mol].

Hcm_lower Standard lower molar heat of combustion of the mixture, in units of [J/mol].

Hm
Hvapms Pure component enthalpies of vaporization of the chemicals in the mixture at its current

temperature, in units of [J/mol].

Hvaps Enthalpy of vaporization of the chemicals in the mixture at its current temperature, in
units of [J/kg].

IUPAC_names IUPAC names for all chemicals in the mixture.
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InChI_Keys InChI keys for all chemicals in the mixture.

InChIs InChI strings for all chemicals in the mixture.

JT Joule Thomson coefficient of the mixture at its current phase, temperature, and pressure in
units of [K/Pa].

JTg Joule Thomson coefficient of the gas phase of the mixture if one exists at its current tem-
perature and pressure, in units of [K/Pa].

JTgs Pure component Joule Thomson coefficients of the chemicals in the mixture in the gas
phase at its current temperature and pressure, in units of [K/Pa].

JTl Joule Thomson coefficient of the liquid phase of the mixture if one exists at its current
temperature and pressure, in units of [K/Pa].

JTls Pure component Joule Thomson coefficients of the chemicals in the mixture in the liquid
phase at its current temperature and pressure, in units of [K/Pa].

PSRK_groups List of dictionaries of PSRK subgroup: count groups for each chemical in the
mixture.

Parachor Parachor of the mixture at its current temperature and pressure, in units of
[N^0.25*m^2.75/mol].

Parachors Pure component Parachor parameters of the chemicals in the mixture at its current
temperature and pressure, in units of [N^0.25*m^2.75/mol].

Pbubble Bubble point pressure of the mixture at its current temperature and composition, in
units of [Pa].

Pdew Dew point pressure of the mixture at its current temperature and composition, in units of
[Pa].

Pr Prandtl number of the mixture at its current temperature, pressure, and phase; [dimension-
less].

Prg Prandtl number of the gas phase of the mixture if one exists at its current temperature and
pressure, [dimensionless].

Prgs Pure component Prandtl numbers of the gas phase of the chemicals in the mixture at its
current temperature and pressure, [dimensionless].

Prl Prandtl number of the liquid phase of the mixture if one exists at its current temperature and
pressure, [dimensionless].

Prls Pure component Prandtl numbers of the liquid phase of the chemicals in the mixture at its
current temperature and pressure, [dimensionless].

Psats Pure component vapor pressures of the chemicals in the mixture at its current tempera-
ture, in units of [Pa].

PubChems PubChem Component ID numbers for all chemicals in the mixture.

R_specific Specific gas constant of the mixture, in units of [J/kg/K].

SG Specific gravity of the mixture, [dimensionless].

SGg Specific gravity of a hypothetical gas phase of the mixture, .

SGl Specific gravity of a hypothetical liquid phase of the mixture at the specified temperature
and pressure, [dimensionless].

SGs Specific gravity of a hypothetical solid phase of the mixture at the specified temperature and
pressure, [dimensionless].
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Tbubble Bubble point temperature of the mixture at its current pressure and composition, in
units of [K].

Tdew Dew point temperature of the mixture at its current pressure and composition, in units of
[K].

U Internal energy of the mixture at its current state, in units of [J/kg].

UNIFAC_Dortmund_groups List of dictionaries of Dortmund UNIFAC subgroup: count groups
for each chemcial in the mixture.

UNIFAC_Qs UNIFAC Q (normalized Van der Waals area) values, dimensionless.

UNIFAC_Rs UNIFAC R (normalized Van der Waals volume) values, dimensionless.

UNIFAC_groups List of dictionaries of UNIFAC subgroup: count groups for each chemical in
the mixture.

Um Internal energy of the mixture at its current state, in units of [J/mol].

V_over_F
Van_der_Waals_areas List of unnormalized Van der Waals areas of all the chemicals in the

mixture, in units of [m^2/mol].

Van_der_Waals_volumes List of unnormalized Van der Waals volumes of all the chemicals in
the mixture, in units of [m^3/mol].

Vm Molar volume of the mixture at its current phase and temperature and pressure, in units of
[m^3/mol].

Vmg Gas-phase molar volume of the mixture at its current temperature, pressure, and composi-
tion in units of [m^3/mol].

Vmg_STP Gas-phase molar volume of the mixture at 298.15 K and 101.325 kPa, and the current
composition in units of [m^3/mol].

Vmgs Pure component gas-phase molar volumes of the chemicals in the mixture at its current
temperature and pressure, in units of [m^3/mol].

Vml Liquid-phase molar volume of the mixture at its current temperature, pressure, and compo-
sition in units of [m^3/mol].

Vml_STP Liquid-phase molar volume of the mixture at 298.15 K and 101.325 kPa, and the cur-
rent composition in units of [m^3/mol].

Vmls Pure component liquid-phase molar volumes of the chemicals in the mixture at its current
temperature and pressure, in units of [m^3/mol].

Vms
Vmss Pure component solid-phase molar volumes of the chemicals in the mixture at its current

temperature, in units of [m^3/mol].

Z Compressibility factor of the mixture at its current phase and temperature and pressure, [di-
mensionless].

Zg Compressibility factor of the mixture in the gas phase at the current temperature, pressure,
and composition, [dimensionless].

Zg_STP Gas-phase compressibility factor of the mixture at 298.15 K and 101.325 kPa, and the
current composition, [dimensionless].

Zgs Pure component compressibility factors of the chemicals in the mixture in the gas phase at
the current temperature and pressure, [dimensionless].
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Zl Compressibility factor of the mixture in the liquid phase at the current temperature, pressure,
and composition, [dimensionless].

Zl_STP Liquid-phase compressibility factor of the mixture at 298.15 K and 101.325 kPa, and
the current composition, [dimensionless].

Zls Pure component compressibility factors of the chemicals in the liquid phase at the current
temperature and pressure, [dimensionless].

Zss Pure component compressibility factors of the chemicals in the mixture in the solid phase
at the current temperature and pressure, [dimensionless].

alpha Thermal diffusivity of the mixture at its current temperature, pressure, and phase in units
of [m^2/s].

alphag Thermal diffusivity of the gas phase of the mixture if one exists at its current temperature
and pressure, in units of [m^2/s].

alphags Pure component thermal diffusivities of the chemicals in the mixture in the gas phase
at the current temperature and pressure, in units of [m^2/s].

alphal Thermal diffusivity of the liquid phase of the mixture if one exists at its current temper-
ature and pressure, in units of [m^2/s].

alphals Pure component thermal diffusivities of the chemicals in the mixture in the liquid phase
at the current temperature and pressure, in units of [m^2/s].

atom_fractions Dictionary of atomic fractions for each atom in the mixture.

atom_fractionss List of dictionaries of atomic fractions for all chemicals in the mixture.

atoms Mole-averaged dictionary of atom counts for all atoms of the chemicals in the mixture.

atomss List of dictionaries of atom counts for all chemicals in the mixture.

charge_balance Charge imbalance of the mixture, in units of [faraday].

charges Charges for all chemicals in the mixture, [faraday].

composition_specified Always needs a composition

conductivity
constants Returns a :obj:`thermo.chemical_package.ChemicalConstantsPackage instance

with constants from the mixture, [-].

economic_statuses List of dictionaries of the economic status for all chemicals in the mixture.

eos Equation of state object held by the mixture.

flow_specified Always needs a flow specified

formulas Chemical formulas for all chemicals in the mixture.

isentropic_exponent Gas-phase ideal-gas isentropic exponent of the mixture at its current
temperature, [dimensionless].

isentropic_exponents Gas-phase pure component ideal-gas isentropic exponent of the
chemicals in the mixture at its current temperature, [dimensionless].

isobaric_expansion Isobaric (constant-pressure) expansion of the mixture at its current
phase, temperature, and pressure in units of [1/K].

isobaric_expansion_g Isobaric (constant-pressure) expansion of the gas phase of the mix-
ture at its current temperature and pressure, in units of [1/K].
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isobaric_expansion_gs Pure component isobaric (constant-pressure) expansions of the
chemicals in the mixture in the gas phase at its current temperature and pressure, in units
of [1/K].

isobaric_expansion_l Isobaric (constant-pressure) expansion of the liquid phase of the mix-
ture at its current temperature and pressure, in units of [1/K].

isobaric_expansion_ls Pure component isobaric (constant-pressure) expansions of the
chemicals in the mixture in the liquid phase at its current temperature and pressure, in units
of [1/K].

k Thermal conductivity of the mixture at its current phase, temperature, and pressure in units of
[W/m/K].

kg Thermal conductivity of the mixture in the gas phase at its current temperature, pressure, and
composition in units of [Pa*s].

kgs Pure component thermal conductivies of the chemicals in the mixture in the gas phase at its
current temperature and pressure, in units of [W/m/K].

kl Thermal conductivity of the mixture in the liquid phase at its current temperature, pressure,
and composition in units of [Pa*s].

kls Pure component thermal conductivities of the chemicals in the mixture in the liquid phase
at its current temperature and pressure, in units of [W/m/K].

ks
legal_statuses List of dictionaries of the legal status for all chemicals in the mixture.

mass_fractions Dictionary of mass fractions for each atom in the mixture.

mass_fractionss List of dictionaries of mass fractions for all chemicals in the mixture.

mu Viscosity of the mixture at its current phase, temperature, and pressure in units of [Pa*s].

mug Viscosity of the mixture in the gas phase at its current temperature, pressure, and composi-
tion in units of [Pa*s].

mugs Pure component viscosities of the chemicals in the mixture in the gas phase at its current
temperature and pressure, in units of [Pa*s].

mul Viscosity of the mixture in the liquid phase at its current temperature, pressure, and com-
position in units of [Pa*s].

muls Pure component viscosities of the chemicals in the mixture in the liquid phase at its current
temperature and pressure, in units of [Pa*s].

non_pressure_spec_specified Cannot have a stream without an energy-type spec.

nu Kinematic viscosity of the the mixture at its current temperature, pressure, and phase in units
of [m^2/s].

nug Kinematic viscosity of the gas phase of the mixture if one exists at its current temperature
and pressure, in units of [m^2/s].

nugs Pure component kinematic viscosities of the gas phase of the chemicals in the mixture at
its current temperature and pressure, in units of [m^2/s].

nul Kinematic viscosity of the liquid phase of the mixture if one exists at its current temperature
and pressure, in units of [m^2/s].

nuls Pure component kinematic viscosities of the liquid phase of the chemicals in the mixture
at its current temperature and pressure, in units of [m^2/s].
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permittivites Pure component relative permittivities of the chemicals in the mixture at its
current temperature, [dimensionless].

phase
property_package_constants
rho Mass density of the mixture at its current phase and temperature and pressure, in units of

[kg/m^3].

rhog Gas-phase mass density of the mixture at its current temperature, pressure, and composi-
tion in units of [kg/m^3].

rhog_STP Gas-phase mass density of the mixture at 298.15 K and 101.325 kPa, and the current
composition in units of [kg/m^3].

rhogm Molar density of the mixture in the gas phase at the current temperature, pressure, and
composition in units of [mol/m^3].

rhogm_STP Molar density of the mixture in the gas phase at 298.15 K and 101.325 kPa, and the
current composition, in units of [mol/m^3].

rhogms Pure component molar densities of the chemicals in the gas phase at the current tem-
perature and pressure, in units of [mol/m^3].

rhogs Pure-component gas-phase mass densities of the chemicals in the mixture at its current
temperature and pressure, in units of [kg/m^3].

rhol Liquid-phase mass density of the mixture at its current temperature, pressure, and compo-
sition in units of [kg/m^3].

rhol_STP Liquid-phase mass density of the mixture at 298.15 K and 101.325 kPa, and the
current composition in units of [kg/m^3].

rholm Molar density of the mixture in the liquid phase at the current temperature, pressure, and
composition in units of [mol/m^3].

rholm_STP Molar density of the mixture in the liquid phase at 298.15 K and 101.325 kPa, and
the current composition, in units of [mol/m^3].

rholms Pure component molar densities of the chemicals in the mixture in the liquid phase at
the current temperature and pressure, in units of [mol/m^3].

rhols Pure-component liquid-phase mass density of the chemicals in the mixture at its current
temperature and pressure, in units of [kg/m^3].

rhom Molar density of the mixture at its current phase and temperature and pressure, in units of
[mol/m^3].

rhos
rhosms Pure component molar densities of the chemicals in the solid phase at the current tem-

perature and pressure, in units of [mol/m^3].

rhoss Pure component solid-phase mass density of the chemicals in the mixture at its current
temperature, in units of [kg/m^3].

ringss List of ring counts for all chemicals in the mixture.

sigma Surface tension of the mixture at its current temperature and composition, in units of
[N/m].

sigmas Pure component surface tensions of the chemicals in the mixture at its current temper-
ature, in units of [N/m].
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similarity_variables Similarity variables for all chemicals in the mixture, see

smiless SMILES strings for all chemicals in the mixture.

solubility_parameters Pure component solubility parameters of the chemicals in the mix-
ture at its current temperature and pressure, in units of [Pa^0.5].

specified_composition_vars number of composition variables

specified_flow_vars Always needs only one flow specified

specified_state_vars Always needs two states

speed_of_sound Bulk speed of sound of the mixture at its current temperature, [m/s].

speed_of_sound_g Gas-phase speed of sound of the mixture at its current temperature, [m/s].

speed_of_sound_l Liquid-phase speed of sound of the mixture at its current temperature,
[m/s].

state_specified Always needs a state

state_specs Returns a list of tuples of (state_variable, state_value) representing the thermo-
dynamic state of the system.

synonymss Lists of synonyms for all chemicals in the mixture.

xs
ys

Methods

Hc_volumetric_g([T, P]) Standard higher molar heat of combustion of the mix-
ture, in units of [J/m^3] at the specified T and P in the
gas phase.

Hc_volumetric_g_lower([T, P]) Standard lower molar heat of combustion of the mix-
ture, in units of [J/m^3] at the specified T and P in
the gas phase.

StreamArgs() Goal to create a StreamArgs instance, with the user
specified variables always being here.

Vfgs([T, P]) Volume fractions of all species in a hypothetical pure-
gas phase at the current or specified temperature and
pressure.

Vfls([T, P]) Volume fractions of all species in a hypothetical pure-
liquid phase at the current or specified temperature
and pressure.

draw_2d([Hs]) Interface for drawing a 2D image of all the molecules
in the mixture.

set_chemical_TP([T, P]) Basic method to change all chemical instances to be
at the T and P specified.

set_chemical_constants() Basic method which retrieves and sets constants of
chemicals to be accessible as lists from a Mixture ob-
ject.
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Bond
Capillary
Grashof
Jakob
Peclet_heat
Reynolds
Weber
calculate
compound_index
eos_pures
flash
flash_caloric
properties
set_Chemical_property_objects
set_TP_sources
set_constant_sources
set_constants
set_eos
set_extensive_flow
set_extensive_properties
set_property_package

StreamArgs()
Goal to create a StreamArgs instance, with the user specified variables always being here.

The state variables are currently correctly tracked. The flow rate and composition variable needs to be
tracked as a function of what was specified as the input variables.

The flow rate needs to be changed wen the stream flow rate is changed. Note this stores unnormalized specs,
but that this is OK.

calculate(T=None, P=None)

property composition_specified
Always needs a composition

flash(T=None, P=None, VF=None, H=None, Hm=None, S=None, Sm=None, energy=None)

flashed = True

property flow_specified
Always needs a flow specified

property non_pressure_spec_specified
Cannot have a stream without an energy-type spec.

set_extensive_flow(n=None)

set_extensive_properties()

property specified_composition_vars
number of composition variables
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property specified_flow_vars
Always needs only one flow specified

property specified_state_vars
Always needs two states

property state_specified
Always needs a state

property state_specs
Returns a list of tuples of (state_variable, state_value) representing the thermodynamic state of the system.

class thermo.stream.StreamArgs(IDs=None, zs=None, ws=None, Vfls=None, Vfgs=None, T=None, P=None,
VF=None, H=None, Hm=None, S=None, Sm=None, ns=None, ms=None,
Qls=None, Qgs=None, m=None, n=None, Q=None, energy=None,
Vf_TP=(None, None), Q_TP=(None, None, ''), pkg=None,
single_composition_basis=True)

Bases: object

Attributes
H
Hm
Hm_calc
IDs
MW
P
P_calc
Q
Qgs
Qls
S
Sm
T
T_calc
VF
VF_calc
Vfgs
Vfls
clean If no variables (other than IDs) have been specified, return True, otherwise return False.

composition_spec
composition_specified
energy
energy_calc
flow_spec
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flow_specified
m
m_calc
mixture
ms
n
n_calc
non_pressure_spec_specified
ns
ns_calc
specified_composition_vars
specified_flow_vars
specified_state_vars
state_specified
state_specs
stream
ws
zs
zs_calc

Methods

copy
flash
flash_state
reconcile_flows
update

property H

property Hm

property Hm_calc

property IDs

property MW

property P

property P_calc

property Q

property Qgs

property Qls
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property S

property Sm

property T

property T_calc

property VF

property VF_calc

property Vfgs

property Vfls

property clean
If no variables (other than IDs) have been specified, return True, otherwise return False.

property composition_spec

property composition_specified

copy()

property energy

property energy_calc

flash(hot_start=None, existing_flash=None)

flash_state(hot_start=None)

flashed = False

property flow_spec

property flow_specified

property m

property m_calc

property mixture

property ms

property n

property n_calc

property non_pressure_spec_specified

property ns

property ns_calc

reconcile_flows(n_tol=2e-15, m_tol=2e-15)

property specified_composition_vars

property specified_flow_vars

property specified_state_vars

property state_specified
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property state_specs

property stream

update(**kwargs)

property ws

property zs

property zs_calc

thermo.stream.energy_balance(inlets, outlets)

thermo.stream.mole_balance(inlets, outlets, compounds)

7.28 Thermal Conductivity (thermo.thermal_conductivity)

This module contains implementations of TPDependentProperty representing liquid and vapor thermal conductivity.
A variety of estimation and data methods are available as included in the chemicals library. Additionally liquid and
vapor mixture thermal conductivity predictor objects are implemented subclassing MixtureProperty.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Liquid Thermal Conductivity

• Pure Gas Thermal Conductivity

• Mixture Liquid Thermal Conductivity

• Mixture Gas Thermal Conductivity

7.28.1 Pure Liquid Thermal Conductivity

class thermo.thermal_conductivity.ThermalConductivityLiquid(CASRN='', MW=None, Tm=None,
Tb=None, Tc=None, Pc=None,
omega=None, Hfus=None,
extrapolation='linear',
extrapolation_min=0.0001,
**kwargs)

Bases: thermo.utils.tp_dependent_property.TPDependentProperty

Class for dealing with liquid thermal conductivity as a function of temperature and pressure.

For low-pressure (at 1 atm while under the vapor pressure; along the saturation line otherwise) liquids, there
is one source of tabular information, one polynomial-based method, 7 corresponding-states estimators, and the
external library CoolProp.

For high-pressure liquids (also, <1 atm liquids), there are two corresponding-states estimator, and the external
library CoolProp.

Parameters
CAS [str, optional] The CAS number of the compound, [-]
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MW [float, optional] Molecular weight, [g/mol]

Tm [float, optional] Melting point, [K]

Tb [float, optional] Boiling point, [K]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

omega [float, optional] Acentric factor, [-]

Hfus [float, optional] Heat of fusion, [J/mol]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.thermal_conductivity.Sheffy_Johnson

chemicals.thermal_conductivity.Sato_Riedel

chemicals.thermal_conductivity.Lakshmi_Prasad

chemicals.thermal_conductivity.Gharagheizi_liquid

chemicals.thermal_conductivity.Nicola_original

chemicals.thermal_conductivity.Nicola

chemicals.thermal_conductivity.Bahadori_liquid

chemicals.thermal_conductivity.DIPPR9G

chemicals.thermal_conductivity.Missenard

Notes

To iterate over all methods, use the lists stored in thermal_conductivity_liquid_methods and
thermal_conductivity_liquid_methods_P for low and high pressure methods respectively.

Low pressure methods:

GHARAGHEIZI_L: CSP method, described in Gharagheizi_liquid.

SATO_RIEDEL: CSP method, described in Sato_Riedel.

NICOLA: CSP method, described in Nicola.

NICOLA_ORIGINAL: CSP method, described in Nicola_original.

SHEFFY_JOHNSON: CSP method, described in Sheffy_Johnson.

BAHADORI_L: CSP method, described in Bahadori_liquid.

LAKSHMI_PRASAD: CSP method, described in Lakshmi_Prasad.

DIPPR_PERRY_8E: A collection of 340 coefficient sets from the DIPPR database published openly in [3].
Provides temperature limits for all its fluids. EQ100 is used for its fluids.
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VDI_PPDS: Coefficients for a equation form developed by the PPDS, published openly in [2]. Covers a large
temperature range, but does not extrapolate well at very high or very low temperatures. 271 compounds.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [1]. Very slow.

VDI_TABULAR: Tabular data in [2] along the saturation curve; interpolation is as set by the user or the default.

High pressure methods:

DIPPR_9G: CSP method, described in DIPPR9G. Calculates a low-pressure thermal conductivity first from the
low-pressure method.

MISSENARD: CSP method, described in Missenard. Calculates a low-pressure thermal conductivity first
from the low-pressure method.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [1]. Very slow, but unparalled in accuracy for pressure dependence.

References

[1], [2], [3]

Attributes
Tmax Maximum temperature (K) at which the current method can calculate the property.

Tmin Minimum temperature (K) at which the current method can calculate the property.

Methods

calculate(T, method) Method to calculate low-pressure liquid thermal con-
ductivity at tempearture T with a given method.

calculate_P(T, P, method) Method to calculate pressure-dependent liquid ther-
mal conductivity at temperature T and pressure P
with a given method.

test_method_validity(T, method) Method to check the validity of a temperature-
dependent low-pressure method.

test_method_validity_P(T, P, method) Method to check the validity of a high-pressure
method.

property Tmax
Maximum temperature (K) at which the current method can calculate the property.

property Tmin
Minimum temperature (K) at which the current method can calculate the property.

calculate(T, method)
Method to calculate low-pressure liquid thermal conductivity at tempearture T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature of the liquid, [K]

method [str] Name of the method to use

Returns
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kl [float] Thermal conductivity of the liquid at T and a low pressure, [W/m/K]

calculate_P(T, P, method)
Method to calculate pressure-dependent liquid thermal conductivity at temperature T and pressure P with
a given method.

This method has no exception handling; see TP_dependent_property for that.

Parameters
T [float] Temperature at which to calculate liquid thermal conductivity, [K]

P [float] Pressure at which to calculate liquid thermal conductivity, [K]

method [str] Name of the method to use

Returns
kl [float] Thermal conductivity of the liquid at T and P, [W/m/K]

name = 'liquid thermal conductivity'

property_max = 10.0
Maximum valid value of liquid thermal conductivity. Generous limit.

property_min = 0.0
Mimimum valid value of liquid thermal conductivity.

ranked_methods = ['COOLPROP', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'VDI_TABULAR',
'GHARAGHEIZI_L', 'SHEFFY_JOHNSON', 'SATO_RIEDEL', 'LAKSHMI_PRASAD', 'BAHADORI_L',
'NICOLA', 'NICOLA_ORIGINAL']

Default rankings of the low-pressure methods.

ranked_methods_P = ['COOLPROP', 'DIPPR_9G', 'MISSENARD']
Default rankings of the high-pressure methods.

test_method_validity(T, method)
Method to check the validity of a temperature-dependent low-pressure method. For CSP methods, the
models BAHADORI_L, LAKSHMI_PRASAD, and SHEFFY_JOHNSON are considered valid for all
temperatures. For methods GHARAGHEIZI_L, NICOLA, and NICOLA_ORIGINAL, the methods are
considered valid up to 1.5Tc and down to 0 K. Method SATO_RIEDEL does not work above the critical
point, so it is valid from 0 K to the critical point.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

test_method_validity_P(T, P, method)
Method to check the validity of a high-pressure method. For COOLPROP, the fluid must be both a liquid
and under the maximum pressure of the fluid’s EOS. MISSENARD has defined limits; between 0.5Tc
and 0.8Tc, and below 200Pc. The CSP method DIPPR_9G is considered valid for all temperatures and
pressures.
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For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures and pressures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

P [float] Pressure at which to test the method, [Pa]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'W/m/K'

The following variables are available to specify which method to use.

thermo.thermal_conductivity.COOLPROP

thermo.thermal_conductivity.DIPPR_PERRY_8E

thermo.thermal_conductivity.VDI_PPDS

thermo.thermal_conductivity.VDI_TABULAR

thermo.thermal_conductivity.GHARAGHEIZI_L

thermo.thermal_conductivity.SHEFFY_JOHNSON

thermo.thermal_conductivity.SATO_RIEDEL

thermo.thermal_conductivity.LAKSHMI_PRASAD

thermo.thermal_conductivity.BAHADORI_L

thermo.thermal_conductivity.NICOLA

thermo.thermal_conductivity.NICOLA_ORIGINAL

The following variables contain lists of available methods.

thermo.thermal_conductivity.thermal_conductivity_liquid_methods = ['COOLPROP',
'DIPPR_PERRY_8E', 'VDI_PPDS', 'VDI_TABULAR', 'GHARAGHEIZI_L', 'SHEFFY_JOHNSON',
'SATO_RIEDEL', 'LAKSHMI_PRASAD', 'BAHADORI_L', 'NICOLA', 'NICOLA_ORIGINAL']

Holds all low-pressure methods available for the ThermalConductivityLiquid class, for use in iterating over
them.

thermo.thermal_conductivity.thermal_conductivity_liquid_methods_P = ['COOLPROP',
'DIPPR_9G', 'MISSENARD']

Holds all high-pressure methods available for the ThermalConductivityLiquid class, for use in iterating over
them.
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7.28.2 Pure Gas Thermal Conductivity

class thermo.thermal_conductivity.ThermalConductivityGas(CASRN='', MW=None, Tb=None,
Tc=None, Pc=None, Vc=None, Zc=None,
omega=None, dipole=None, Vmg=None,
Cpgm=None, mug=None,
extrapolation='linear',
extrapolation_min=0.0001, **kwargs)

Bases: thermo.utils.tp_dependent_property.TPDependentProperty

Class for dealing with gas thermal conductivity as a function of temperature and pressure.

For gases at atmospheric pressure, there are 7 corresponding-states estimators, one source of tabular information,
and the external library CoolProp.

For gases under the fluid’s boiling point (at sub-atmospheric pressures), and high-pressure gases above the boiling
point, there are three corresponding-states estimators, and the external library CoolProp.

Parameters
CAS [str, optional] The CAS number of the compound, [-]

MW [float, optional] Molecular weight, [g/mol]

Tb [float, optional] Boiling point, [K]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Vc [float, optional] Critical volume, [m^3/mol]

Zc [float, optional] Critical compressibility, [-]

omega [float, optional] Acentric factor, [-]

dipole [float, optional] Dipole moment of the fluid, [debye]

Vmg [float or callable, optional] Molar volume of the fluid at a pressure and temperature or
callable for the same, [m^3/mol]

Cpgm [float or callable, optional] Molar constant-pressure heat capacity of the fluid at a pressure
and temperature or callable for the same, [J/mol/K]

mug [float or callable, optional] Gas viscosity of the fluid at a pressure and temperature or
callable for the same, [Pa*s]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.thermal_conductivity.Bahadori_gas

chemicals.thermal_conductivity.Gharagheizi_gas

chemicals.thermal_conductivity.Eli_Hanley

chemicals.thermal_conductivity.Chung
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chemicals.thermal_conductivity.DIPPR9B

chemicals.thermal_conductivity.Eucken_modified

chemicals.thermal_conductivity.Eucken

chemicals.thermal_conductivity.Stiel_Thodos_dense

chemicals.thermal_conductivity.Eli_Hanley_dense

chemicals.thermal_conductivity.Chung_dense

Notes

To iterate over all methods, use the lists stored in thermal_conductivity_gas_methods and
thermal_conductivity_gas_methods_P for low and high pressure methods respectively.

Low pressure methods:

GHARAGHEIZI_G: CSP method, described in Gharagheizi_gas.

DIPPR_9B: CSP method, described in DIPPR9B.

CHUNG: CSP method, described in Chung.

ELI_HANLEY: CSP method, described in Eli_Hanley.

EUCKEN_MOD: CSP method, described in Eucken_modified.

EUCKEN: CSP method, described in Eucken.

BAHADORI_G: CSP method, described in Bahadori_gas.

DIPPR_PERRY_8E: A collection of 345 coefficient sets from the DIPPR database published openly in [3].
Provides temperature limits for all its fluids. chemicals.dippr.EQ102 is used for its fluids.

VDI_PPDS: Coefficients for a equation form developed by the PPDS, published openly in [2]. Covers a large
temperature range, but does not extrapolate well at very high or very low temperatures. 275 compounds.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [1]. Very slow.

VDI_TABULAR: Tabular data in [2] along the saturation curve; interpolation is as set by the user or the default.

High pressure methods:

STIEL_THODOS_DENSE: CSP method, described in Stiel_Thodos_dense. Calculates a low-pressure
thermal conductivity first.

ELI_HANLEY_DENSE: CSP method, described in Eli_Hanley_dense. Calculates a low-pressure thermal
conductivity first.

CHUNG_DENSE: CSP method, described in Chung_dense. Calculates a low-pressure thermal conductivity
first.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [1]. Very slow, but unparalled in accuracy for pressure dependence.
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References

[1], [2], [3]

Methods

calculate(T, method) Method to calculate low-pressure gas thermal con-
ductivity at tempearture T with a given method.

calculate_P(T, P, method) Method to calculate pressure-dependent gas thermal
conductivity at temperature T and pressure P with a
given method.

test_method_validity(T, method) Method to check the validity of a temperature-
dependent low-pressure method.

test_method_validity_P(T, P, method) Method to check the validity of a high-pressure
method.

calculate(T, method)
Method to calculate low-pressure gas thermal conductivity at tempearture T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature of the gas, [K]

method [str] Name of the method to use

Returns
kg [float] Thermal conductivity of the gas at T and a low pressure, [W/m/K]

calculate_P(T, P, method)
Method to calculate pressure-dependent gas thermal conductivity at temperature T and pressure P with a
given method.

This method has no exception handling; see TP_dependent_property for that.

Parameters
T [float] Temperature at which to calculate gas thermal conductivity, [K]

P [float] Pressure at which to calculate gas thermal conductivity, [K]

method [str] Name of the method to use

Returns
kg [float] Thermal conductivity of the gas at T and P, [W/m/K]

name = 'gas thermal conductivity'

property_max = 10
Maximum valid value of gas thermal conductivity. Generous limit.

property_min = 0
Mimimum valid value of gas thermal conductivity.

ranked_methods = ['COOLPROP', 'VDI_PPDS', 'DIPPR_PERRY_8E', 'VDI_TABULAR',
'GHARAGHEIZI_G', 'DIPPR_9B', 'CHUNG', 'ELI_HANLEY', 'EUCKEN_MOD', 'EUCKEN',
'BAHADORI_G']

Default rankings of the low-pressure methods.
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ranked_methods_P = ['COOLPROP', 'ELI_HANLEY_DENSE', 'CHUNG_DENSE',
'STIEL_THODOS_DENSE']

Default rankings of the high-pressure methods.

test_method_validity(T, method)
Method to check the validity of a temperature-dependent low-pressure method. For CSP methods, the all
methods are considered valid from 0 K and up.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid. GHARAGHEIZI_G and BAHADORI_G are known to sometimes produce
negative results.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

test_method_validity_P(T, P, method)
Method to check the validity of a high-pressure method. For COOLPROP, the fluid must be both a
gas and under the maximum pressure of the fluid’s EOS. The CSP method ELI_HANLEY_DENSE,
CHUNG_DENSE, and STIEL_THODOS_DENSE are considered valid for all temperatures and pres-
sures.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures and pressures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

P [float] Pressure at which to test the method, [Pa]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'W/m/K'

thermo.thermal_conductivity.thermal_conductivity_gas_methods = ['COOLPROP',
'DIPPR_PERRY_8E', 'VDI_PPDS', 'VDI_TABULAR', 'GHARAGHEIZI_G', 'DIPPR_9B', 'CHUNG',
'ELI_HANLEY', 'EUCKEN_MOD', 'EUCKEN', 'BAHADORI_G']

Holds all low-pressure methods available for the ThermalConductivityGas class, for use in iterating over
them.

thermo.thermal_conductivity.thermal_conductivity_gas_methods_P = ['COOLPROP',
'ELI_HANLEY_DENSE', 'CHUNG_DENSE', 'STIEL_THODOS_DENSE']

Holds all high-pressure methods available for the ThermalConductivityGas class, for use in iterating over
them.
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7.28.3 Mixture Liquid Thermal Conductivity

class thermo.thermal_conductivity.ThermalConductivityLiquidMixture(CASs=[], ThermalConduc-
tivityLiquids=[], MWs=[],
**kwargs)

Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with thermal conductivity of a liquid mixture as a function of temperature, pressure, and com-
position. Consists of two mixing rule specific to liquid thremal conductivity, one coefficient-based method for
aqueous electrolytes, and mole weighted averaging. Most but not all methods are shown in [1].

Prefered method is DIPPR_9H which requires mass fractions, and pure component liquid thermal conductivities.
This is substantially better than the ideal mixing rule based on mole fractions, LINEAR. Filippov is of similar
accuracy but applicable to binary systems only.

Parameters
CASs [str, optional] The CAS numbers of all species in the mixture, [-]

ThermalConductivityLiquids [list[ThermalConductivityLiquid], optional] ThermalConduc-
tivityLiquid objects created for all species in the mixture, [-]

MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

correct_pressure_pure [bool, optional] Whether to try to use the better pressure-corrected pure
component models or to use only the T-only dependent pure species models, [-]

See also:

chemicals.thermal_conductivity.DIPPR9H

chemicals.thermal_conductivity.Filippov

chemicals.thermal_conductivity.thermal_conductivity_Magomedov

Notes

To iterate over all methods, use the list stored in thermal_conductivity_liquid_mixture_methods.

DIPPR_9H: Mixing rule described in DIPPR9H.

FILIPPOV: Mixing rule described in Filippov; for two binary systems only.

MAGOMEDOV: Coefficient-based method for aqueous electrolytes only, described in thermo.
electrochem.thermal_conductivity_Magomedov.

LINEAR: Mixing rule described in mixing_simple.

References

[1]
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Methods

calculate(T, P, zs, ws, method) Method to calculate thermal conductivity of a liquid
mixture at temperature T, pressure P, mole fractions
zs and weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

calculate(T, P, zs, ws, method)
Method to calculate thermal conductivity of a liquid mixture at temperature T, pressure P, mole fractions
zs and weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
k [float] Thermal conductivity of the liquid mixture, [W/m/K]

name = 'liquid thermal conductivity'

property_max = 10
Maximum valid value of liquid thermal conductivity. Generous limit.

property_min = 0
Mimimum valid value of liquid thermal conductivity.

ranked_methods = ['MAGOMEDOV', 'DIPPR_9H', 'LINEAR', 'FILIPPOV']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. If MAGOMEDOV is applicable
(electrolyte system), no other methods are considered viable. Otherwise, there are no easy checks that can
be performed here.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'W/m/K'
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thermo.thermal_conductivity.thermal_conductivity_liquid_mixture_methods = ['MAGOMEDOV',
'DIPPR_9H', 'FILIPPOV', 'LINEAR']

Holds all mixing rules available for the ThermalConductivityLiquidMixture class, for use in iterating over
them.

7.28.4 Mixture Gas Thermal Conductivity

class thermo.thermal_conductivity.ThermalConductivityGasMixture(MWs=[], Tbs=[], CASs=[],
ThermalConductivityGases=[],
ViscosityGases=[], **kwargs)

Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with thermal conductivity of a gas mixture as a function of temperature, pressure, and compo-
sition. Consists of one mixing rule specific to gas thremal conductivity, and mole weighted averaging.

Prefered method is Lindsay_Bromley which requires mole fractions, pure component viscosities and thermal
conductivities, and the boiling point and molecular weight of each pure component. This is substantially better
than the ideal mixing rule based on mole fractions, LINEAR which is also available. More information on this
topic can be found in [1].

Parameters
MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

Tbs [list[float], optional] Boiling points of all species in the mixture, [K]

CASs [str, optional] The CAS numbers of all species in the mixture

ThermalConductivityGases [list[ThermalConductivityGas], optional] ThermalConductivity-
Gas objects created for all species in the mixture, [-]

ViscosityGases [list[ViscosityGas], optional] ViscosityGas objects created for all species in the
mixture, [-]

correct_pressure_pure [bool, optional] Whether to try to use the better pressure-corrected pure
component models or to use only the T-only dependent pure species models, [-]

See also:

chemicals.thermal_conductivity.Lindsay_Bromley

Notes

To iterate over all methods, use the list stored in thermal_conductivity_gas_methods.

LINDSAY_BROMLEY: Mixing rule described in Lindsay_Bromley.

LINEAR: Mixing rule described in mixing_simple.
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References

[1]

Methods

calculate(T, P, zs, ws, method) Method to calculate thermal conductivity of a gas
mixture at temperature T, pressure P, mole fractions
zs and weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate thermal conductivity of a gas mixture at temperature T, pressure P, mole fractions zs
and weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
kg [float] Thermal conductivity of gas mixture, [W/m/K]

name = 'gas thermal conductivity'

property_max = 10.0
Maximum valid value of gas thermal conductivity. Generous limit.

property_min = 0.0
Mimimum valid value of gas thermal conductivity.

ranked_methods = ['LINDSAY_BROMLEY', 'LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

800 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'W/m/K'

thermo.thermal_conductivity.thermal_conductivity_gas_mixture_methods =
['LINDSAY_BROMLEY', 'LINEAR']

Holds all mixing rules available for the ThermalConductivityGasMixture class, for use in iterating over
them.

7.29 UNIFAC Gibbs Excess Model (thermo.unifac)

This module contains functions and classes related to the UNIFAC and its many variants. The bulk of the code relates
to calculating derivativies, or is tables of data.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker or contact
the author at Caleb.Andrew.Bell@gmail.com.

• Main Model (Object-Oriented)

• Main Model (Functional)

• Misc Functions

• Data for Original UNIFAC

• Data for Dortmund UNIFAC

• Data for NIST UNIFAC (2015)

• Data for NIST KT UNIFAC (2011)

• Data for UNIFAC LLE

• Data for Lyngby UNIFAC

• Data for PSRK UNIFAC

• Data for VTPR UNIFAC

7.29.1 Main Model (Object-Oriented)

class thermo.unifac.UNIFAC(T, xs, rs, qs, Qs, vs, psi_coeffs=None, psi_abc=None, version=0)
Class for representing an a liquid with excess gibbs energy represented by the UNIFAC equation. This model is
capable of representing VL and LL behavior, provided the correct interaction parameters are used. [1] and [2]
are good references on this model.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

rs [list[float]] r parameters 𝑟𝑖 =
∑︀𝑛

𝑘=1 𝜈𝑘𝑅𝑘, [-]
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qs [list[float]] q parameters 𝑞𝑖 =
∑︀𝑛

𝑘=1 𝜈𝑘𝑄𝑘, [-]

Qs [list[float]] Q parameter for each subgroup; subgroups are not required to but are suggested
to be sorted from lowest number to highest number, [-]

vs [list[list[float]]] Indexed by [subgroup][count], this variable is the count of each subgroups in
each compound, [-]

psi_abc [tuple(list[list[float]], 3), optional] psi interaction parameters between each subgroup;
indexed [subgroup][subgroup], not symmetrical; first arg is the matrix for a, then b, and then
c. Only one of psi_abc or psi_coeffs is required, [-]

psi_coeffs [list[list[tuple(float, 3)]], optional] psi interaction parameters between each subgroup;
indexed [subgroup][subgroup][letter], not symmetrical. Only one of psi_abc or psi_coeffs is
required, [-]

version [int, optional] Which version of the model to use [-]

• 0 - original UNIFAC, OR UNIFAC LLE

• 1 - Dortmund UNIFAC (adds T dept, 3/4 power)

• 2 - PSRK (original with T dept function)

• 3 - VTPR (drops combinatorial term, Dortmund UNIFAC otherwise)

• 4 - Lyngby/Larsen has different combinatorial, 2/3 power

• 5 - UNIFAC KT (2 params for psi, Lyngby/Larsen formulation; otherwise same as origi-
nal)

Notes

In addition to the methods presented here, the methods of its base class thermo.activity.GibbsExcess are
available as well.

References

[1], [2]

Examples

The DDBST has published numerous sample problems using UNIFAC; a simple binary system from example
P05.22a in [2] with n-hexane and butanone-2 is shown below:

>>> from thermo.unifac import UFIP, UFSG
>>> GE = UNIFAC.from_subgroups(chemgroups=[{1:2, 2:4}, {1:1, 2:1, 18:1}], T=60+273.
→˓15, xs=[0.5, 0.5], version=0, interaction_data=UFIP, subgroups=UFSG)
>>> GE.gammas()
[1.4276025835, 1.3646545010]
>>> GE.GE(), GE.dGE_dT(), GE.d2GE_dT2()
(923.641197, 0.206721488, -0.00380070204)
>>> GE.HE(), GE.SE(), GE.dHE_dT(), GE.dSE_dT()
(854.77193363, -0.2067214889, 1.266203886, 0.0038007020460)

The solution given by the DDBST has the same values [1.428, 1.365], and can be found here: http://
chemthermo.ddbst.com/Problems_Solutions/Mathcad_Files/05.22a%20VLE%20of%20Hexane-Butanone-2%
20Via%20UNIFAC%20-%20Step%20by%20Step.xps
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Attributes
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Methods

CpE() Calculate and return the first temperature derivative
of excess enthalpy of a liquid phase using an activity
coefficient model.

Fis() Calculate the 𝐹𝑖 terms used in calculating the combi-
natorial part.

GE() Calculate the excess Gibbs energy with the UNIFAC
model.

HE() Calculate and return the excess entropy of a liquid
phase using an activity coefficient model.

SE() Calculates the excess entropy of a liquid phase using
an activity coefficient model.

Thetas() Calculate the Θ𝑚 parameters used in calculating the
residual part.

Thetas_pure() Calculate the Θ𝑚 parameters for each chemical in
the mixture as a pure species, used in calculating the
residual part.

Vis() Calculate the 𝑉𝑖 terms used in calculating the combi-
natorial part.

Vis_modified() Calculate the 𝑉 ′
𝑖 terms used in calculating the com-

binatorial part.
Xs() Calculate the 𝑋𝑚 parameters used in calculating the

residual part.
Xs_pure() Calculate the 𝑋𝑚 parameters for each chemical in

the mixture as a pure species, used in calculating the
residual part.

as_json() Method to create a JSON-friendly representation of
the Gibbs Excess model which can be stored, and
reloaded later.

d2Fis_dxixjs() Calculate the second mole fraction derivative of the
𝐹𝑖 terms used in calculating the combinatorial part.

d2GE_dT2() Calculate the second temperature derivative of excess
Gibbs energy with the UNIFAC model.

d2GE_dTdns() Calculate and return the mole number derivative of
the first temperature derivative of excess Gibbs en-
ergy of a liquid phase using an activity coefficient
model.

d2GE_dTdxs() Calculate the first composition derivative and tem-
perature derivative of excess Gibbs energy with the
UNIFAC model.

d2GE_dxixjs() Calculate the second composition derivative of ex-
cess Gibbs energy with the UNIFAC model.

d2Thetas_dxixjs() Calculate the mole fraction derivatives of the Θ𝑚 pa-
rameters.

continues on next page
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Table 96 – continued from previous page
d2Vis_dxixjs() Calculate the second mole fraction derivative of the

𝑉𝑖 terms used in calculating the combinatorial part.
d2Vis_modified_dxixjs() Calculate the second mole fraction derivative of the

𝑉 ′
𝑖 terms used in calculating the combinatorial part.

d2lnGammas_subgroups_dT2() Calculate the second temperature derivative of the
ln Γ𝑘 parameters for the phase; depends on the
phases's composition and temperature.

d2lnGammas_subgroups_dTdxs() Calculate the temperature and mole fraction deriva-
tives of the ln Γ𝑘 parameters for the phase; depends
on the phases's composition and temperature.

d2lnGammas_subgroups_dxixjs() Calculate the second mole fraction derivatives of
the ln Γ𝑘 parameters for the phase; depends on the
phases's composition and temperature.

d2lnGammas_subgroups_pure_dT2() Calculate the second temperature derivative of ln Γ𝑘

pure component parameters for the phase; depends
on the phases's temperature only.

d2lngammas_c_dT2() Second temperature derivatives of the combinatorial
part of the UNIFAC model.

d2lngammas_c_dTdx() Second temperature derivative and first mole fraction
derivative of the combinatorial part of the UNIFAC
model.

d2lngammas_c_dxixjs() Second composition derivative of the combinatorial
part of the UNIFAC model.

d2lngammas_dT2() Calculates the second temperature derivative of the
residual part of the UNIFAC model.

d2lngammas_r_dT2() Calculates the second temperature derivative of the
residual part of the UNIFAC model.

d2lngammas_r_dTdxs() Calculates the first mole fraction derivative of the
temperature derivative of the residual part of the
UNIFAC model.

d2lngammas_r_dxixjs() Calculates the second mole fraction derivative of the
residual part of the UNIFAC model.

d2nGE_dTdns() Calculate and return the partial mole number deriva-
tive of the first temperature derivative of excess Gibbs
energy of a liquid phase using an activity coefficient
model.

d2nGE_dninjs() Calculate and return the second partial mole number
derivative of excess Gibbs energy of a liquid phase
using an activity coefficient model.

d2psis_dT2() Calculate the Ψ term second temperature derivative
matrix for all groups interacting with all other groups.

d3Fis_dxixjxks() Calculate the third mole fraction derivative of the 𝐹𝑖

terms used in calculating the combinatorial part.
d3GE_dT3() Calculate the third temperature derivative of excess

Gibbs energy with the UNIFAC model.
d3Vis_dxixjxks() Calculate the third mole fraction derivative of the 𝑉𝑖

terms used in calculating the combinatorial part.
d3Vis_modified_dxixjxks() Calculate the third mole fraction derivative of the 𝑉 ′

𝑖

terms used in calculating the combinatorial part.
continues on next page
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Table 96 – continued from previous page
d3lnGammas_subgroups_dT3() Calculate the third temperature derivative of the ln Γ𝑘

parameters for the phase; depends on the phases's
composition and temperature.

d3lnGammas_subgroups_pure_dT3() Calculate the third temperature derivative of ln Γ𝑘

pure component parameters for the phase; depends
on the phases's temperature only.

d3lngammas_c_dT3() Third temperature derivatives of the combinatorial
part of the UNIFAC model.

d3lngammas_c_dxixjxks() Third composition derivative of the combinatorial
part of the UNIFAC model.

d3lngammas_dT3() Calculates the third temperature derivative of the
residual part of the UNIFAC model.

d3lngammas_r_dT3() Calculates the third temperature derivative of the
residual part of the UNIFAC model.

d3psis_dT3() Calculate the Ψ term third temperature derivative
matrix for all groups interacting with all other groups.

dFis_dxs() Calculate the mole fraction derivative of the 𝐹𝑖 terms
used in calculating the combinatorial part.

dGE_dT() Calculate the first temperature derivative of excess
Gibbs energy with the UNIFAC model.

dGE_dns() Calculate and return the mole number derivative of
excess Gibbs energy of a liquid phase using an activ-
ity coefficient model.

dGE_dxs() Calculate the first composition derivative of excess
Gibbs energy with the UNIFAC model.

dHE_dT() Calculate and return the first temperature derivative
of excess enthalpy of a liquid phase using an activity
coefficient model.

dHE_dns() Calculate and return the mole number derivative of
excess enthalpy of a liquid phase using an activity co-
efficient model.

dHE_dxs() Calculate and return the mole fraction derivative of
excess enthalpy of a liquid phase using an activity co-
efficient model.

dSE_dT() Calculate and return the first temperature derivative
of excess entropy of a liquid phase using an activity
coefficient model.

dSE_dns() Calculate and return the mole number derivative of
excess entropy of a liquid phase using an activity co-
efficient model.

dSE_dxs() Calculate and return the mole fraction derivative of
excess entropy of a liquid phase using an activity co-
efficient model.

dThetas_dxs() Calculate the mole fraction derivatives of the Θ𝑚 pa-
rameters.

dVis_dxs() Calculate the mole fraction derivative of the 𝑉𝑖 terms
used in calculating the combinatorial part.

dVis_modified_dxs() Calculate the mole fraction derivative of the 𝑉 ′
𝑖 terms

used in calculating the combinatorial part.
dgammas_dT() Calculates the first temperature derivative of activity

coefficients with the UNIFAC model.
continues on next page
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Table 96 – continued from previous page
dgammas_dns() Calculate and return the mole number derivative of

activity coefficients of a liquid phase using an activity
coefficient model.

dgammas_dxs() Calculates the first mole fraction derivative of activ-
ity coefficients with the UNIFAC model.

dlnGammas_subgroups_dT() Calculate the first temperature derivative of the ln Γ𝑘

parameters for the phase; depends on the phases's
composition and temperature.

dlnGammas_subgroups_dxs() Calculate the mole fraction derivatives of the ln Γ𝑘

parameters for the phase; depends on the phases's
composition and temperature.

dlnGammas_subgroups_pure_dT() Calculate the first temperature derivative of ln Γ𝑘

pure component parameters for the phase; depends
on the phases's temperature only.

dlngammas_c_dT() Temperature derivatives of the combinatorial part of
the UNIFAC model.

dlngammas_c_dxs() First composition derivative of the combinatorial part
of the UNIFAC model.

dlngammas_dT() Calculates the first temperature derivative of the
residual part of the UNIFAC model.

dlngammas_r_dT() Calculates the first temperature derivative of the
residual part of the UNIFAC model.

dlngammas_r_dxs() Calculates the first mole fraction derivative of the
residual part of the UNIFAC model.

dnGE_dns() Calculate and return the partial mole number deriva-
tive of excess Gibbs energy of a liquid phase using an
activity coefficient model.

dnHE_dns() Calculate and return the partial mole number deriva-
tive of excess enthalpy of a liquid phase using an ac-
tivity coefficient model.

dnSE_dns() Calculate and return the partial mole number deriva-
tive of excess entropy of a liquid phase using an ac-
tivity coefficient model.

dpsis_dT() Calculate the Ψ term first temperature derivative ma-
trix for all groups interacting with all other groups.

from_json(json_repr) Method to create a Gibbs Excess model from a JSON-
friendly serialization of another Gibbs Excess model.

from_subgroups(T, xs, chemgroups[, ...]) Method to construct a UNIFAC object from a dictio-
nary of interaction parameters parameters and a list
of dictionaries of UNIFAC keys.

gammas() Calculates the activity coefficients with the UNIFAC
model.

gammas_infinite_dilution() Calculate and return the infinite dilution activity co-
efficients of each component.

lnGammas_subgroups() Calculate the ln Γ𝑘 parameters for the phase; depends
on the phases's composition and temperature.

lnGammas_subgroups_pure() Calculate the ln Γ𝑘 pure component parameters for
the phase; depends on the phases's temperature only.

lngammas_c() Calculates the combinatorial part of the UNIFAC
model.

lngammas_r() Calculates the residual part of the UNIFAC model.
continues on next page
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Table 96 – continued from previous page
model_hash() Basic method to calculate a hash of the non-state

parts of the model This is useful for comparing to
models to determine if they are the same, i.e. in a
VLL flash it is important to know if both liquids have
the same model.

psis() Calculate the Ψ term matrix for all groups interacting
with all other groups.

state_hash() Basic method to calculate a hash of the state of the
model and its model parameters.

to_T_xs(T, xs) Method to construct a new UNIFAC instance at tem-
perature T, and mole fractions xs with the same pa-
rameters as the existing object.

lnphis_args

Fis()
Calculate the 𝐹𝑖 terms used in calculating the combinatorial part. A function of mole fractions and the
parameters q only.

𝐹𝑖 =
𝑞𝑖∑︀
𝑗 𝑞𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
Fis [list[float]] F terms size number of components, [-]

GE()
Calculate the excess Gibbs energy with the UNIFAC model.

𝐺𝐸 = 𝑅𝑇
∑︁
𝑖

𝑥𝑖 (ln 𝛾𝑐𝑖 + ln 𝛾𝑟𝑖 )

For the VTPR model, the combinatorial component is set to zero.

Returns
GE [float] Excess Gibbs energy, [J/mol]

Thetas()
Calculate the Θ𝑚 parameters used in calculating the residual part. A function of mole fractions and group
counts only.

Θ𝑚 =
𝑄𝑚𝑋𝑚∑︀
𝑛𝑄𝑛𝑋𝑛

Returns
Thetas [list[float]] Θ𝑚 terms, size number of subgroups, [-]

Thetas_pure()
Calculate the Θ𝑚 parameters for each chemical in the mixture as a pure species, used in calculating the
residual part. A function of group counts only.

Θ𝑚 =
𝑄𝑚𝑋𝑚∑︀
𝑛𝑄𝑛𝑋𝑛

Returns
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Thetas_pure [list[list[float]]] Θ𝑚 terms, size number of components by number of sub-
groups and indexed in that order, [-]

Vis()
Calculate the 𝑉𝑖 terms used in calculating the combinatorial part. A function of mole fractions and the
parameters r only.

𝑉𝑖 =
𝑟𝑖∑︀
𝑗 𝑟𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
Vis [list[float]] V terms size number of components, [-]

Vis_modified()
Calculate the 𝑉 ′

𝑖 terms used in calculating the combinatorial part. A function of mole fractions and the
parameters r only.

𝑉 ′
𝑖 =

𝑟𝑛𝑖∑︀
𝑗 𝑟

𝑛
𝑗 𝑥𝑗

This is used in the UNIFAC Dortmund and UNIFAC-NIST model with n=0.75, and the Lyngby model with
n=2/3.

Returns
Vis_modified [list[float]] Modified V terms size number of components, [-]

Xs()
Calculate the 𝑋𝑚 parameters used in calculating the residual part. A function of mole fractions and group
counts only.

𝑋𝑚 =

∑︀
𝑗 𝜈

𝑗
𝑚𝑥𝑗∑︀

𝑗

∑︀
𝑛 𝜈

𝑗
𝑛𝑥𝑗

Returns
Xs [list[float]] 𝑋𝑚 terms, size number of subgroups, [-]

Xs_pure()
Calculate the 𝑋𝑚 parameters for each chemical in the mixture as a pure species, used in calculating the
residual part. A function of group counts only, not even mole fractions or temperature.

𝑋𝑚 =
𝜈𝑚∑︀𝑔𝑟
𝑛 𝜈𝑛

Returns
Xs_pure [list[list[float]]] 𝑋𝑚 terms, size number of subgroups by number of components

and indexed in that order, [-]

d2Fis_dxixjs()
Calculate the second mole fraction derivative of the 𝐹𝑖 terms used in calculating the combinatorial part. A
function of mole fractions and the parameters q only.

𝜕𝐹𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
= 2𝑞𝑖𝑞𝑗𝑞𝑘𝐺

3
𝑠𝑢𝑚

𝐺𝑠𝑢𝑚 =
1∑︀

𝑗 𝑞𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.
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Returns
d2Fis_dxixjs [list[list[list[float]]]] F terms size number of components by number of com-

ponents by number of components, [-]

d2GE_dT2()
Calculate the second temperature derivative of excess Gibbs energy with the UNIFAC model.

𝜕2𝐺𝐸

𝜕𝑇 2
= 𝑅𝑇

∑︁
𝑖

𝑥𝑖
𝜕2 ln 𝛾𝑟𝑖
𝜕𝑇 2

+ 2𝑅
∑︁
𝑖

𝑥𝑖
𝜕 ln 𝛾𝑟𝑖
𝜕𝑇

Returns
d2GE_dT2 [float] Second temperature derivative of excess Gibbs energy, [J/mol/K^2]

d2GE_dTdxs()
Calculate the first composition derivative and temperature derivative of excess Gibbs energy with the UNI-
FAC model.

𝜕2𝐺𝐸

𝜕𝑇𝜕𝑥𝑖
= 𝑅𝑇

⎛⎝𝜕 ln 𝛾𝑟𝑖
𝜕𝑇

+
∑︁
𝑗

𝑥𝑗
𝜕 ln 𝛾𝑟𝑗
𝜕𝑥𝑖

⎞⎠+𝑅

⎡⎣𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑖

+
𝜕 ln 𝛾𝑟𝑖
𝜕𝑥𝑖

+
∑︁
𝑗

𝑥𝑗

(︂
𝜕 ln 𝛾𝑐𝑗
𝜕𝑥𝑖

+
𝜕 ln 𝛾𝑟𝑗
𝜕𝑥𝑖

)︂⎤⎦
Returns

dGE_dxs [list[float]] First composition derivative and first temperature derivative of excess
Gibbs energy, [J/mol/K]

d2GE_dxixjs()
Calculate the second composition derivative of excess Gibbs energy with the UNIFAC model.

𝜕2𝐺𝐸

𝜕𝑥𝑗𝜕𝑥𝑘
= 𝑅𝑇

[︃∑︁
𝑖

(︂
𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

+
𝜕 ln 𝛾𝑟𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

)︂
+
𝜕 ln 𝛾𝑐𝑗
𝜕𝑥𝑘

+
𝜕 ln 𝛾𝑟𝑗
𝜕𝑥𝑘

+
𝜕 ln 𝛾𝑐𝑘
𝜕𝑥𝑗

+
𝜕 ln 𝛾𝑟𝑘
𝜕𝑥𝑗

]︃

Returns
d2GE_dxixjs [list[list[float]]] Second composition derivative of excess Gibbs energy,

[J/mol]

d2Thetas_dxixjs()
Calculate the mole fraction derivatives of the Θ𝑚 parameters. A function of mole fractions and group
counts only.

𝜕2Θ𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
=

𝑄𝑖∑︀
𝑛𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛

[︃
−𝐹 (𝜈)𝑠𝑢𝑚,𝑗𝜈𝑖,𝑘 − 𝐹 (𝜈)𝑠𝑢𝑚,𝑘𝜈𝑖,𝑗 + 2𝐹 2(𝜈)𝑠𝑢𝑚,𝑗(𝜈)𝑠𝑢𝑚,𝑘(𝜈𝑥)𝑠𝑢𝑚,𝑖 +

𝐹 (𝜈𝑥)𝑠𝑢𝑚,𝑖 [
∑︀

𝑛(−2𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑗(𝜈)𝑠𝑢𝑚,𝑘(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑗𝜈𝑛,𝑘 +𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑘𝜈𝑛,𝑗)]∑︀𝑔𝑟
𝑛 𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛

+
2(𝜈𝑥)𝑠𝑢𝑚,𝑖(

∑︀𝑔𝑟
𝑛 [−𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑗(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛𝜈𝑛,𝑗 ])(

∑︀𝑔𝑟
𝑛 [−𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑘(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛𝜈𝑛,𝑘])

(
∑︀𝑔𝑟

𝑛 𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛)
2 −

𝜈𝑖,𝑗(
∑︀𝑔𝑟

𝑛 −𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑘(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛𝜈𝑛,𝑘)

(
∑︀𝑔𝑟

𝑛 𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛)
−
𝜈𝑖,𝑘(

∑︀𝑔𝑟
𝑛 −𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑗(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛𝜈𝑛,𝑗)

(
∑︀𝑔𝑟

𝑛 𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛)
+
𝐹 (𝜈)𝑠𝑢𝑚,𝑗(𝜈𝑥)𝑠𝑢𝑚,𝑖(

∑︀𝑔𝑟
𝑛 −𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑘(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛𝜈𝑛,𝑘)

(
∑︀𝑔𝑟

𝑛 𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛)
+
𝐹 (𝜈)𝑠𝑢𝑚,𝑘(𝜈𝑥)𝑠𝑢𝑚,𝑖(

∑︀𝑔𝑟
𝑛 −𝐹𝑄𝑛(𝜈)𝑠𝑢𝑚,𝑗(𝜈𝑥)𝑠𝑢𝑚,𝑛 +𝑄𝑛𝜈𝑛,𝑗)

(
∑︀𝑔𝑟

𝑛 𝑄𝑛(𝜈𝑥)𝑠𝑢𝑚,𝑛)

]︃

𝐺 =
1∑︀

𝑗 𝑄𝑗𝑋𝑗

𝐹 =
1∑︀

𝑗

∑︀
𝑛 𝜈

𝑗
𝑛𝑥𝑗

(𝜈)𝑠𝑢𝑚,𝑖 =
∑︁
𝑗

𝜈𝑗,𝑖

(𝜈𝑥)𝑠𝑢𝑚,𝑖 =
∑︁
𝑗

𝜈𝑖,𝑗𝑥𝑗

Returns
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d2Thetas_dxixjs [list[list[list[float]]]] Θ𝑚 terms, size number of subgroups by mole frac-
tions and indexed in that order, [-]

d2Vis_dxixjs()
Calculate the second mole fraction derivative of the 𝑉𝑖 terms used in calculating the combinatorial part. A
function of mole fractions and the parameters r only.

𝜕𝑉𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

= 2𝑟𝑖𝑟𝑗𝑟𝑘𝑉
3
𝑠𝑢𝑚

𝑉𝑠𝑢𝑚 =
1∑︀

𝑗 𝑟𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
d2Vis_dxixjs [list[list[list[float]]]] V terms size number of components by number of com-

ponents by number of components, [-]

d2Vis_modified_dxixjs()
Calculate the second mole fraction derivative of the 𝑉 ′

𝑖 terms used in calculating the combinatorial part. A
function of mole fractions and the parameters r only.

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
= 2𝑟𝑛𝑖 𝑟

𝑛
𝑗 𝑟

𝑛
𝑘𝑉

3
𝑠𝑢𝑚

𝑉𝑠𝑢𝑚 =
1∑︀

𝑗 𝑟
𝑛
𝑗 𝑥𝑗

This is used in the UNIFAC Dortmund and UNIFAC-NIST model with n=0.75, and the Lyngby model with
n=2/3.

Returns
d2Vis_modified_dxixjs [list[list[list[float]]]] V’ terms size number of components by num-

ber of components by number of components, [-]

d2lnGammas_subgroups_dT2()
Calculate the second temperature derivative of the ln Γ𝑘 parameters for the phase; depends on the phases’s
composition and temperature.

𝜕2 ln Γ𝑖

𝜕𝑇 2
= −𝑄𝑖

⎡⎣𝑍(𝑖)𝐺(𝑖) − 𝐹 (𝑖)2𝑍(𝑖)2 +
∑︁
𝑗

(︂
𝜃𝑗𝑍(𝑗)

𝜕2𝜓𝑖,𝑗

𝜕𝑇
− 𝑍(𝑗)2

(︂
𝐺(𝑗)𝜃𝑗𝜓𝑖,𝑗 + 2𝐹𝑗𝜃𝑗

𝜕𝜓𝑖,𝑗

𝜕𝑇

)︂
+ 2𝑍(𝑗)3𝐹 (𝑗)2𝜃𝑗𝜓𝑖,𝑗

)︂⎤⎦
𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

𝐺(𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕2𝜓𝑚,𝑘

𝜕𝑇 2

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚,𝑘

Returns
d2lnGammas_subgroups_dT2 [list[float]] Second temperature derivative of ln Gamma pa-

rameters for each subgroup, size number of subgroups, [1/K^2]
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d2lnGammas_subgroups_dTdxs()
Calculate the temperature and mole fraction derivatives of the ln Γ𝑘 parameters for the phase; depends on
the phases’s composition and temperature.

𝜕2 ln Γ𝑘

𝜕𝑥𝑖𝜕𝑇
= −𝑄𝑘

(︃
𝐷(𝑘, 𝑖)𝑍(𝑘) −𝐵(𝑘)𝑊 (𝑘, 𝑖)𝑍(𝑘)2 +

𝑔𝑟∑︁
𝑚

(𝑍(𝑚)
𝜕𝜃𝑚
𝜕𝑥𝑖

𝜕𝜓𝑘,𝑚

𝜕𝑇
) −

𝑔𝑟∑︁
𝑚

(𝐵(𝑚)𝑍(𝑚)2𝜓𝑘,𝑚
𝜕𝜃𝑚
𝜕𝑥𝑖

) −
𝑔𝑟∑︁
𝑚

(𝐷(𝑚, 𝑖)𝑍(𝑚)2𝜃𝑚𝜓𝑘,𝑚) −
𝑔𝑟∑︁
𝑚

(𝑊 (𝑚, 𝑖)𝑍(𝑚)2𝜃𝑚
𝜕𝜓𝑘,𝑚

𝜕𝑇
) +

𝑔𝑟∑︁
𝑚

2𝐵(𝑚)𝑊 (𝑚, 𝑖)𝑍(𝑚)3𝜃𝑚𝜓𝑘,𝑚

)︃
The following groups are used as follows to simplfy the number of evaluations:

𝑊 (𝑘, 𝑖) =

𝑔𝑟∑︁
𝑚

𝜓𝑚,𝑘
𝜕𝜃𝑚
𝜕𝑥𝑖

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚𝑘

𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

In the below expression, k` refers to a group, and i refers to a component.

𝐷(𝑘, 𝑖) =

𝑔𝑟∑︁
𝑚

𝜕𝜃𝑚
𝜕𝑥𝑖

𝜕𝜓𝑚,𝑘

𝜕𝑇

Returns
d2lnGammas_subgroups_dTdxs [list[list[float]]] Temperature and mole fraction deriva-

tives of Gamma parameters for each subgroup, size number of subgroups by number of
components and indexed in that order, [1/K]

d2lnGammas_subgroups_dxixjs()
Calculate the second mole fraction derivatives of the ln Γ𝑘 parameters for the phase; depends on the phases’s
composition and temperature.

𝜕2 ln Γ𝑘

𝜕𝑥𝑖𝜕𝑥𝑗
= −𝑄𝑘

(︃
−𝑍(𝑘)𝐾(𝑘, 𝑖, 𝑗) −

𝑔𝑟∑︁
𝑚

𝑍(𝑚)2𝐾(𝑚, 𝑖, 𝑗)𝜃𝑚𝜓𝑘,𝑚 −𝑊 (𝑘, 𝑖)𝑊 (𝑘, 𝑗)𝑍(𝑘)2 +

𝑔𝑟∑︁
𝑚

𝑍𝑚𝜓𝑘,𝑚
𝜕2𝜃𝑚
𝜕𝑥𝑖𝜕𝑥𝑗

−
∑︁
𝑚

(︂
𝑊 (𝑚, 𝑗)𝑍(𝑚)2𝜓𝑘,𝑚

𝜕𝜃𝑚
𝜕𝑥𝑖

+𝑊 (𝑚, 𝑖)𝑍(𝑚)2𝜓(𝑘,𝑚)
𝜕𝜃𝑚
𝜕𝑥𝑗

)︂
+

𝑔𝑟∑︁
𝑚

2𝑊 (𝑚, 𝑖)𝑊 (𝑚, 𝑗)𝑍(𝑚)3𝜃𝑚𝜓𝑘,𝑚

)︃
The following groups are used as follows to simplfy the number of evaluations:

𝑊 (𝑘, 𝑖) =

𝑔𝑟∑︁
𝑚

𝜓𝑚,𝑘
𝜕𝜃𝑚
𝜕𝑥𝑖

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚𝑘

𝐾(𝑘, 𝑖, 𝑗) =

𝑔𝑟∑︁
𝑚

𝜓𝑚,𝑘
𝜕2𝜃𝑚
𝜕𝑥𝑖𝜕𝑥𝑗

Returns
d2lnGammas_subgroups_dxixjs [list[list[list[float]]]] Second mole fraction derivatives of

Gamma parameters for each subgroup, size number of components by number of compo-
nents by number of subgroups and indexed in that order, [-]

d2lnGammas_subgroups_pure_dT2()
Calculate the second temperature derivative of ln Γ𝑘 pure component parameters for the phase; depends on
the phases’s temperature only.

𝜕2 ln Γ𝑖

𝜕𝑇 2
= −𝑄𝑖

⎡⎣𝑍(𝑖)𝐺(𝑖) − 𝐹 (𝑖)2𝑍(𝑖)2 +
∑︁
𝑗

(︂
𝜃𝑗𝑍(𝑗)

𝜕2𝜓𝑖,𝑗

𝜕𝑇
− 𝑍(𝑗)2

(︂
𝐺(𝑗)𝜃𝑗𝜓𝑖,𝑗 + 2𝐹𝑗𝜃𝑗

𝜕𝜓𝑖,𝑗

𝜕𝑇

)︂
+ 2𝑍(𝑗)3𝐹 (𝑗)2𝜃𝑗𝜓𝑖,𝑗

)︂⎤⎦
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𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

𝐺(𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕2𝜓𝑚,𝑘

𝜕𝑇 2

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚,𝑘

In this model, the Θ values come from the UNIFAC.Thetas_pure method, where each compound is as-
sumed to be pure.

Returns
d2lnGammas_subgroups_pure_dT2 [list[list[float]]] Second temperature derivative of ln

Gamma parameters for each subgroup, size number of subgroups by number of components
and indexed in that order, [1/K^2]

d2lngammas_c_dT2()
Second temperature derivatives of the combinatorial part of the UNIFAC model. Zero in all variations.

𝜕2 ln 𝛾𝑐𝑖
𝜕𝑇 2

= 0

Returns
d2lngammas_c_dT2 [list[float]] Combinatorial lngammas term second temperature deriva-

tives, size number of components, [-]

d2lngammas_c_dTdx()
Second temperature derivative and first mole fraction derivative of the combinatorial part of the UNIFAC
model. Zero in all variations.

𝜕3 ln 𝛾𝑐𝑖
𝜕𝑇 2𝜕𝑥𝑗

= 0

Returns
d2lngammas_c_dTdx [list[list[float]]] Combinatorial lngammas term second temperature

derivatives, size number of components by number of components, [-]

d2lngammas_c_dxixjs()
Second composition derivative of the combinatorial part of the UNIFAC model. For the modified UNIFAC
model, the equation is as follows; for the original UNIFAC and UNIFAC LLE, replace 𝑉 ′

𝑖 with 𝑉𝑖.

𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

= 5𝑞𝑖

⎛⎜⎜⎝− 𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉𝑖 +

𝑉𝑖
𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹𝑖
+

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑

𝑑𝑥𝑘
𝑉𝑖

𝐹𝑖
+

𝑑
𝑑𝑥𝑘

𝐹𝑖
𝑑

𝑑𝑥𝑗
𝑉𝑖

𝐹𝑖
−

2𝑉𝑖
𝑑

𝑑𝑥𝑗
𝐹𝑖

𝑑
𝑑𝑥𝑘

𝐹𝑖

𝐹 2
𝑖

𝑉𝑖
+

(︂
𝑑

𝑑𝑥𝑗
𝑉𝑖 −

𝑉𝑖
𝑑

𝑑𝑥𝑗
𝐹𝑖

𝐹𝑖

)︂
𝑑

𝑑𝑥𝑘
𝑉𝑖

𝑉 2
𝑖

+

𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉𝑖

𝐹𝑖
−

(︂
𝑑

𝑑𝑥𝑗
𝑉𝑖 −

𝑉𝑖
𝑑

𝑑𝑥𝑗
𝐹𝑖

𝐹𝑖

)︂
𝑑

𝑑𝑥𝑘
𝐹𝑖

𝐹𝑖𝑉𝑖
−
𝑉𝑖

𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹 2
𝑖

−
𝑑

𝑑𝑥𝑗
𝐹𝑖

𝑑
𝑑𝑥𝑘

𝑉𝑖

𝐹 2
𝑖

−
𝑑

𝑑𝑥𝑘
𝐹𝑖

𝑑
𝑑𝑥𝑗

𝑉𝑖

𝐹 2
𝑖

+
2𝑉𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑

𝑑𝑥𝑘
𝐹𝑖

𝐹 3
𝑖

⎞⎟⎟⎠− 𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉 𝑖′ +

𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉 𝑖′

𝑉 𝑖′
−

𝑑
𝑑𝑥𝑗

𝑉 𝑖′ 𝑑
𝑑𝑥𝑘

𝑉 𝑖′

𝑉 𝑖′2

For the Lyngby model, the following equations are used:

𝜕2 ln 𝛾𝑐𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

= − 𝜕2𝑉 ′
𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
+

1

𝑉 ′
𝑖

𝜕2𝑉 ′
𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
− 1

(𝑉 ′
𝑖 )

2

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗

𝜕𝑉 ′
𝑖

𝜕𝑥𝑘

Returns
d2lngammas_c_dxixjs [list[list[list[float]]]] Combinatorial lngammas term second compo-

sition derivative, size number of components by number of components by number of com-
ponents, [-]
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d2lngammas_dT2()
Calculates the second temperature derivative of the residual part of the UNIFAC model.

𝜕2 ln 𝛾𝑟𝑖
𝜕𝑇 2

=

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︃
𝜕2 ln Γ𝑘

𝜕𝑇 2
−
𝜕2 ln Γ

(𝑖)
𝑘

𝜕𝑇 2

]︃

where the second Gamma is the pure-component Gamma of group k in component i.

Returns
d2lngammas_r_dT2 [list[float]] Residual lngammas terms second temperature derivative,

size number of components [1/K^2]

d2lngammas_r_dT2()
Calculates the second temperature derivative of the residual part of the UNIFAC model.

𝜕2 ln 𝛾𝑟𝑖
𝜕𝑇 2

=

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︃
𝜕2 ln Γ𝑘

𝜕𝑇 2
−
𝜕2 ln Γ

(𝑖)
𝑘

𝜕𝑇 2

]︃

where the second Gamma is the pure-component Gamma of group k in component i.

Returns
d2lngammas_r_dT2 [list[float]] Residual lngammas terms second temperature derivative,

size number of components [1/K^2]

d2lngammas_r_dTdxs()
Calculates the first mole fraction derivative of the temperature derivative of the residual part of the UNIFAC
model.

𝜕2 ln 𝛾𝑟𝑖
𝜕𝑥𝑗𝜕𝑇

=

𝑔𝑟∑︁
𝑚

𝜈(𝑖)𝑚

𝜕2 ln Γ𝑚

𝜕𝑥𝑗𝜕𝑇

Returns
d2lngammas_r_dTdxs [list[list[float]]] First mole fraction derivative and temperature

derivative of residual lngammas terms, size number of components by number of com-
ponents [-]

d2lngammas_r_dxixjs()
Calculates the second mole fraction derivative of the residual part of the UNIFAC model.

𝜕2 ln 𝛾𝑟𝑖
𝜕𝑥2𝑗

=

𝑔𝑟∑︁
𝑚

𝜈(𝑖)𝑚

𝜕2 ln Γ𝑚

𝜕𝑥2𝑗

Returns
d2lngammas_r_dxixjs [list[list[list[float]]]] Second mole fraction derivative of the residual

lngammas terms, size number of components by number of components by number of
components [-]

d2psis_dT2()
Calculate the Ψ term second temperature derivative matrix for all groups interacting with all other groups.

The main model calculates the derivative as a function of three coefficients;

𝜕2Ψ𝑚𝑛

𝜕𝑇 2
=

(︃
−2𝑐𝑚𝑛 + 2(2𝑇𝑐𝑚𝑛+𝑏𝑚𝑛)

𝑇 +

(︁
2𝑇𝑐𝑚𝑛+𝑏𝑚𝑛−𝑇2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛

𝑇

)︁2

𝑇 − 2(𝑇 2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛)
𝑇 2

)︃
𝑒−

𝑇2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛
𝑇

𝑇
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Only the first, a coefficient, is used in the original UNIFAC model as well as the UNIFAC-LLE model, so
the expression simplifies to:

𝜕2Ψ𝑚𝑛

𝜕𝑇 2
=
𝑎𝑚𝑛

(︀
−2 + 𝑎𝑚𝑛

𝑇

)︀
𝑒−

𝑎𝑚𝑛
𝑇

𝑇 3

For the Lyngby model, the second temperature derivative is:

𝜕2Ψ𝑚𝑘

𝜕𝑇 2
=

(︃
2𝑎2 + 2𝑎3 ln

(︀
𝑇0

𝑇

)︀
+ 𝑎3 +

(︂
𝑎2 + 𝑎3 ln

(︀
𝑇0

𝑇

)︀
− 𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0

𝑇 )+𝑇−𝑇0)
𝑇

)︂2

− 2(𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0
𝑇 )+𝑇−𝑇0))

𝑇

)︃
𝑒−

𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0
𝑇 )+𝑇−𝑇0)

𝑇

𝑇 2

with 𝑇0 = 298.15 K and the a coefficients are specific to each pair of main groups, and they are asymmetric,
so 𝑎0,𝑚𝑘 ̸= 𝑎0,𝑘𝑚.

Returns
d2psis_dT2 [list[list[float]]] Second temperature derivative of`psi` terms, size subgroups x

subgroups [-]

d3Fis_dxixjxks()
Calculate the third mole fraction derivative of the 𝐹𝑖 terms used in calculating the combinatorial part. A
function of mole fractions and the parameters q only.

𝜕𝐹𝑖

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚
= −6𝑞𝑖𝑞𝑗𝑞𝑘𝑞𝑚𝐺

4
𝑠𝑢𝑚

𝐺𝑠𝑢𝑚 =
1∑︀

𝑗 𝑞𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
d3Fis_dxixjxks [list[list[list[list[float]]]]] F terms size number of components by number of

components by number of components by number of components, [-]

d3GE_dT3()
Calculate the third temperature derivative of excess Gibbs energy with the UNIFAC model.

𝜕3𝐺𝐸

𝜕𝑇 3
= 𝑅𝑇

∑︁
𝑖

𝑥𝑖
𝜕3 ln 𝛾𝑟𝑖
𝜕𝑇 3

+ 3𝑅
∑︁
𝑖

𝑥𝑖
𝜕2 ln 𝛾𝑟𝑖
𝜕𝑇 2

Returns
d3GE_dT3 [float] Third temperature derivative of excess Gibbs energy, [J/mol/K^3]

d3Vis_dxixjxks()
Calculate the third mole fraction derivative of the 𝑉𝑖 terms used in calculating the combinatorial part. A
function of mole fractions and the parameters r only.

𝜕𝑉𝑖
𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚

= −6𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑚𝑉
4
𝑠𝑢𝑚

𝑉𝑠𝑢𝑚 =
1∑︀

𝑗 𝑟𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
d3Vis_dxixjxks [list[list[list[list[float]]]]] V terms size number of components by number

of components by number of components by number of components, [-]
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d3Vis_modified_dxixjxks()
Calculate the third mole fraction derivative of the 𝑉 ′

𝑖 terms used in calculating the combinatorial part. A
function of mole fractions and the parameters r only.

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚
= −6𝑟𝑛𝑖 𝑟

𝑛
𝑗 𝑟

𝑛
𝑘 𝑟

𝑛
𝑚𝑉

4
𝑠𝑢𝑚

𝑉𝑠𝑢𝑚 =
1∑︀

𝑗 𝑟𝑗𝑥𝑗

This is used in the UNIFAC Dortmund and UNIFAC-NIST model with n=0.75, and the Lyngby model with
n=2/3.

Returns
d3Vis_modified_dxixjxks [list[list[list[list[float]]]]] V’ terms size number of components

by number of components by number of components by number of components, [-]

d3lnGammas_subgroups_dT3()
Calculate the third temperature derivative of the ln Γ𝑘 parameters for the phase; depends on the phases’s
composition and temperature.

𝜕3 ln Γ𝑖

𝜕𝑇 3
= 𝑄𝑖

[︂
−𝐻(𝑖)𝑍(𝑖) − 2𝐹 (𝑖)3𝑍(𝑖)3 + 3𝐹 (𝑖)𝐺(𝑖)𝑍(𝑖)2 +

(︂
−𝜃𝑗𝑍(𝑗)

𝜕3𝜓

𝜕𝑇 3
+𝐻(𝑗)𝑍(𝑗)2𝜃(𝑗)𝜓𝑖,𝑗 − 6𝐹 (𝑗)2𝑍(𝑗)3𝜃𝑗

𝜕𝜓𝑖,𝑗

𝜕𝑇
+ 3𝐹 (𝑗)𝑍(𝑗)2𝜃(𝑗)

𝜕2𝜓𝑖,𝑗

𝜕𝑇 2
+ +3𝐺(𝑗)𝜃(𝑗)𝑍(𝑗)2

𝜕𝜓𝑖,𝑗

𝜕𝑇
+ 6𝐹 (𝑗)3𝜃(𝑗)𝑍(𝑗)4𝜓𝑖,𝑗 − 6𝐹 (𝑗)𝐺(𝑗)𝜃(𝑗)𝑍(𝑗)3𝜓𝑖,𝑗

)︂]︂

𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

𝐺(𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕2𝜓𝑚,𝑘

𝜕𝑇 2

𝐻(𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕3𝜓𝑚,𝑘

𝜕𝑇 3

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚,𝑘

Returns
d3lnGammas_subgroups_dT3 [list[float]] Third temperature derivative of ln Gamma pa-

rameters for each subgroup, size number of subgroups, [1/K^3]

d3lnGammas_subgroups_pure_dT3()
Calculate the third temperature derivative of ln Γ𝑘 pure component parameters for the phase; depends on
the phases’s temperature only.

𝜕3 ln Γ𝑖

𝜕𝑇 3
= 𝑄𝑖

[︂
−𝐻(𝑖)𝑍(𝑖) − 2𝐹 (𝑖)3𝑍(𝑖)3 + 3𝐹 (𝑖)𝐺(𝑖)𝑍(𝑖)2 +

(︂
−𝜃𝑗𝑍(𝑗)

𝜕3𝜓

𝜕𝑇 3
+𝐻(𝑗)𝑍(𝑗)2𝜃(𝑗)𝜓𝑖,𝑗 − 6𝐹 (𝑗)2𝑍(𝑗)3𝜃𝑗

𝜕𝜓𝑖,𝑗

𝜕𝑇
+ 3𝐹 (𝑗)𝑍(𝑗)2𝜃(𝑗)

𝜕2𝜓𝑖,𝑗

𝜕𝑇 2
+ +3𝐺(𝑗)𝜃(𝑗)𝑍(𝑗)2

𝜕𝜓𝑖,𝑗

𝜕𝑇
+ 6𝐹 (𝑗)3𝜃(𝑗)𝑍(𝑗)4𝜓𝑖,𝑗 − 6𝐹 (𝑗)𝐺(𝑗)𝜃(𝑗)𝑍(𝑗)3𝜓𝑖,𝑗

)︂]︂

𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

𝐺(𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕2𝜓𝑚,𝑘

𝜕𝑇 2

𝐻(𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕3𝜓𝑚,𝑘

𝜕𝑇 3

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚,𝑘

In this model, the Θ values come from the UNIFAC.Thetas_pure method, where each compound is as-
sumed to be pure.
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Returns
d3lnGammas_subgroups_pure_dT3 [list[list[float]]] Third temperature derivative of ln

Gamma parameters for each subgroup, size number of subgroups by number of compo-
nents and indexed in that order, [1/K^3]

d3lngammas_c_dT3()
Third temperature derivatives of the combinatorial part of the UNIFAC model. Zero in all variations.

𝜕3 ln 𝛾𝑐𝑖
𝜕𝑇 3

= 0

Returns
d3lngammas_c_dT3 [list[float]] Combinatorial lngammas term second temperature deriva-

tives, size number of components, [-]

d3lngammas_c_dxixjxks()
Third composition derivative of the combinatorial part of the UNIFAC model. For the modified UNIFAC
model, the equation is as follows; for the original UNIFAC and UNIFAC LLE, replace 𝑉 ′

𝑖 with 𝑉𝑖.

𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚

= − 𝑑3

𝑑𝑥𝑚𝑑𝑥𝑘𝑑𝑥𝑗
𝑉 𝑖′ +

𝑑3

𝑑𝑥𝑚𝑑𝑥𝑘𝑑𝑥𝑗
𝑉 𝑖′

𝑉 𝑖′
−

𝑑
𝑑𝑥𝑗

𝑉 𝑖′ 𝑑2

𝑑𝑥𝑚𝑑𝑥𝑘
𝑉 𝑖′

𝑉 𝑖′2
−

𝑑
𝑑𝑥𝑘

𝑉 𝑖′ 𝑑2

𝑑𝑥𝑚𝑑𝑥𝑗
𝑉 𝑖′

𝑉 𝑖′2
−

𝑑
𝑑𝑥𝑚

𝑉 𝑖′ 𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉 𝑖′

𝑉 𝑖′2
+

2 𝑑
𝑑𝑥𝑗

𝑉 𝑖′ 𝑑
𝑑𝑥𝑘

𝑉 𝑖′ 𝑑
𝑑𝑥𝑚

𝑉 𝑖′

𝑉 𝑖′3
−

5𝑞𝑖
𝑑3

𝑑𝑥𝑚𝑑𝑥𝑘𝑑𝑥𝑗
𝑉𝑖

𝑉𝑖
+

5𝑞𝑖
𝑑

𝑑𝑥𝑗
𝑉𝑖

𝑑2

𝑑𝑥𝑚𝑑𝑥𝑘
𝑉𝑖

𝑉 2
𝑖

+
5𝑞𝑖

𝑑
𝑑𝑥𝑘

𝑉𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑗
𝑉𝑖

𝑉 2
𝑖

+
5𝑞𝑖

𝑑
𝑑𝑥𝑚

𝑉𝑖
𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉𝑖

𝑉 2
𝑖

−
10𝑞𝑖

𝑑
𝑑𝑥𝑗

𝑉𝑖
𝑑

𝑑𝑥𝑘
𝑉𝑖

𝑑
𝑑𝑥𝑚

𝑉𝑖

𝑉 3
𝑖

+
5𝑞𝑖

𝑑3

𝑑𝑥𝑚𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹𝑖
+

5𝑞𝑖
𝑑3

𝑑𝑥𝑚𝑑𝑥𝑘𝑑𝑥𝑗
𝑉𝑖

𝐹𝑖
−

5𝑉𝑖𝑞𝑖
𝑑3

𝑑𝑥𝑚𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑘
𝐹𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑘
𝑉𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑘

𝐹𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑗
𝐹𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑘

𝐹𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑗
𝑉𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑚

𝐹𝑖
𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑚

𝐹𝑖
𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝑉𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑗

𝑉𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑘
𝐹𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑘

𝑉𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑗
𝐹𝑖

𝐹 2
𝑖

−
5𝑞𝑖

𝑑
𝑑𝑥𝑚

𝑉𝑖
𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹 2
𝑖

+
10𝑉𝑖𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑘
𝐹𝑖

𝐹 3
𝑖

+
10𝑉𝑖𝑞𝑖

𝑑
𝑑𝑥𝑘

𝐹𝑖
𝑑2

𝑑𝑥𝑚𝑑𝑥𝑗
𝐹𝑖

𝐹 3
𝑖

+
10𝑉𝑖𝑞𝑖

𝑑
𝑑𝑥𝑚

𝐹𝑖
𝑑2

𝑑𝑥𝑘𝑑𝑥𝑗
𝐹𝑖

𝐹 3
𝑖

+
10𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑

𝑑𝑥𝑘
𝐹𝑖

𝑑
𝑑𝑥𝑚

𝐹𝑖

𝐹 3
𝑖

+
10𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑

𝑑𝑥𝑘
𝐹𝑖

𝑑
𝑑𝑥𝑚

𝑉𝑖

𝐹 3
𝑖

+
10𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑

𝑑𝑥𝑚
𝐹𝑖

𝑑
𝑑𝑥𝑘

𝑉𝑖

𝐹 3
𝑖

+
10𝑞𝑖

𝑑
𝑑𝑥𝑘

𝐹𝑖
𝑑

𝑑𝑥𝑚
𝐹𝑖

𝑑
𝑑𝑥𝑗

𝑉𝑖

𝐹 3
𝑖

−
30𝑉𝑖𝑞𝑖

𝑑
𝑑𝑥𝑗

𝐹𝑖
𝑑

𝑑𝑥𝑘
𝐹𝑖

𝑑
𝑑𝑥𝑚

𝐹𝑖

𝐹 4
𝑖

For the Lyngby model, the following equations are used:

𝜕3 ln 𝛾𝑐𝑖
𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚

=
𝜕3𝑉 ′

𝑖

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚

(︂
1

𝑉 ′
𝑖

− 1

)︂
− 1

(𝑉 ′
𝑖 )2

(︂
𝜕𝑉 ′

𝑖

𝜕𝑥𝑗

𝜕𝑉 ′
𝑖

𝜕𝑥𝑘𝜕𝑥𝑚
+
𝜕𝑉 ′

𝑖

𝜕𝑥𝑘

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗𝜕𝑥𝑚
+
𝜕𝑉 ′

𝑖

𝜕𝑥𝑚

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗𝜕𝑥𝑘

)︂
+

2

(𝑉 ′
𝑖 )3

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗

𝜕𝑉 ′
𝑖

𝜕𝑥𝑘

𝜕𝑉 ′
𝑖

𝜕𝑥𝑚

Returns
d3lngammas_c_dxixjxks [list[list[list[list[float]]]]] Combinatorial lngammas term third

composition derivative, size number of components by number of components by num-
ber of components by number of components, [-]

d3lngammas_dT3()
Calculates the third temperature derivative of the residual part of the UNIFAC model.

𝜕3 ln 𝛾𝑟𝑖
𝜕𝑇 3

=

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︃
𝜕23 ln Γ𝑘

𝜕𝑇 3
−
𝜕3 ln Γ

(𝑖)
𝑘

𝜕𝑇 3

]︃

where the second Gamma is the pure-component Gamma of group k in component i.

Returns
d3lngammas_r_dT3 [list[float]] Residual lngammas terms third temperature derivative,

size number of components [1/K^3]

d3lngammas_r_dT3()
Calculates the third temperature derivative of the residual part of the UNIFAC model.

𝜕3 ln 𝛾𝑟𝑖
𝜕𝑇 3

=

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︃
𝜕23 ln Γ𝑘

𝜕𝑇 3
−
𝜕3 ln Γ

(𝑖)
𝑘

𝜕𝑇 3

]︃

where the second Gamma is the pure-component Gamma of group k in component i.

Returns
d3lngammas_r_dT3 [list[float]] Residual lngammas terms third temperature derivative,

size number of components [1/K^3]
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d3psis_dT3()
Calculate the Ψ term third temperature derivative matrix for all groups interacting with all other groups.

The main model calculates the derivative as a function of three coefficients;

𝜕3Ψ𝑚𝑛

𝜕𝑇 3
=

(︃
6𝑐𝑚𝑛 + 6

(︁
𝑐𝑚𝑛 − 2𝑇𝑐𝑚𝑛+𝑏𝑚𝑛

𝑇 + 𝑇 2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛

𝑇 2

)︁(︁
2𝑇𝑐𝑚𝑛 + 𝑏𝑚𝑛 − 𝑇 2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛

𝑇

)︁
− 6(2𝑇𝑐𝑚𝑛+𝑏𝑚𝑛)

𝑇 −
(︁
2𝑇𝑐𝑚𝑛+𝑏𝑚𝑛−𝑇2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛

𝑇

)︁3

𝑇 +
6(𝑇 2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛)

𝑇 2

)︃
𝑒−

𝑇2𝑐𝑚𝑛+𝑇𝑏𝑚𝑛+𝑎𝑚𝑛
𝑇

𝑇 2

Only the first, a coefficient, is used in the original UNIFAC model as well as the UNIFAC-LLE model, so
the expression simplifies to:

𝜕3Ψ𝑚𝑛

𝜕𝑇 3
=
𝑎𝑚𝑛

(︁
6 − 6𝑎𝑚𝑛

𝑇 +
𝑎2
𝑚𝑛

𝑇 2

)︁
𝑒−

𝑎𝑚𝑛
𝑇

𝑇 4

For the Lyngby model, the third temperature derivative is:

𝜕3Ψ𝑚𝑘

𝜕𝑇 3
= −

(︃
6𝑎2 + 6𝑎3 ln

(︀
𝑇0

𝑇

)︀
+ 4𝑎3 +

(︂
𝑎2 + 𝑎3 ln

(︀
𝑇0

𝑇

)︀
− 𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0

𝑇 )+𝑇−𝑇0)
𝑇

)︂3

+ 3

(︂
𝑎2 + 𝑎3 ln

(︀
𝑇0

𝑇

)︀
− 𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0

𝑇 )+𝑇−𝑇0)
𝑇

)︂(︂
2𝑎2 + 2𝑎3 ln

(︀
𝑇0

𝑇

)︀
+ 𝑎3 −

2(𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0
𝑇 )+𝑇−𝑇0))

𝑇

)︂
− 6(𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0

𝑇 )+𝑇−𝑇0))
𝑇

)︃
𝑒−

𝑎1+𝑎2(𝑇−𝑇0)+𝑎3(𝑇 ln (𝑇0
𝑇 )+𝑇−𝑇0)

𝑇

𝑇 3

with 𝑇0 = 298.15 K and the a coefficients are specific to each pair of main groups, and they are asymmetric,
so 𝑎0,𝑚𝑘 ̸= 𝑎0,𝑘𝑚.

Returns
d3psis_dT3 [list[list[float]]] Third temperature derivative of`psi` terms, size subgroups x

subgroups [-]

dFis_dxs()
Calculate the mole fraction derivative of the 𝐹𝑖 terms used in calculating the combinatorial part. A function
of mole fractions and the parameters q only.

𝜕𝐹𝑖

𝜕𝑥𝑗
= −𝑞𝑖𝑞𝑗𝐺2

𝑠𝑢𝑚

𝐺𝑠𝑢𝑚 =
1∑︀

𝑗 𝑞𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
dFis_dxs [list[list[float]]] F terms size number of components by number of components, [-]

dGE_dT()
Calculate the first temperature derivative of excess Gibbs energy with the UNIFAC model.

𝜕𝐺𝐸

𝜕𝑇
= 𝑅𝑇

∑︁
𝑖

𝑥𝑖
𝜕 ln 𝛾𝑟𝑖
𝜕𝑇

+
𝐺𝐸

𝑇

Returns
dGE_dT [float] First temperature derivative of excess Gibbs energy, [J/mol/K]

dGE_dxs()
Calculate the first composition derivative of excess Gibbs energy with the UNIFAC model.

𝜕𝐺𝐸

𝜕𝑥𝑖
= 𝑅𝑇 (ln 𝛾𝑐𝑖 + ln 𝛾𝑟𝑖 ) +𝑅𝑇

∑︁
𝑗

𝑥𝑗

(︂
𝜕 ln 𝛾𝑐𝑗
𝜕𝑥𝑖

+
𝜕 ln 𝛾𝑟𝑗
𝜕𝑥𝑖

)︂
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Returns
dGE_dxs [list[float]] First composition derivative of excess Gibbs energy, [J/mol]

dThetas_dxs()
Calculate the mole fraction derivatives of the Θ𝑚 parameters. A function of mole fractions and group
counts only.

𝜕Θ𝑖

𝜕𝑥𝑗
= 𝐹𝐺𝑄𝑖

[︃
𝐹𝐺(𝜈𝑥)𝑠𝑢𝑚,𝑖

(︃
𝑔𝑟∑︁
𝑘

𝐹𝑄𝑘(𝜈)𝑠𝑢𝑚,𝑗(𝜈𝑥)𝑠𝑢𝑚,𝑘 −
𝑔𝑟∑︁
𝑘

𝑄𝑘𝜈𝑘,𝑗

)︃
− 𝐹 (𝜈)𝑠𝑢𝑚,𝑗(𝜈𝑥)𝑠𝑢𝑚,𝑖 + 𝜈𝑖𝑗

]︃

𝐺 =
1∑︀

𝑗 𝑄𝑗𝑋𝑗

𝐹 =
1∑︀

𝑗

∑︀
𝑛 𝜈

𝑗
𝑛𝑥𝑗

(𝜈)𝑠𝑢𝑚,𝑖 =
∑︁
𝑗

𝜈𝑗,𝑖

(𝜈𝑥)𝑠𝑢𝑚,𝑖 =
∑︁
𝑗

𝜈𝑖,𝑗𝑥𝑗

Returns
dThetas_dxs [list[list[float]]] Mole fraction derivatives of Θ𝑚 terms, size number of sub-

groups by mole fractions and indexed in that order, [-]

dVis_dxs()
Calculate the mole fraction derivative of the 𝑉𝑖 terms used in calculating the combinatorial part. A function
of mole fractions and the parameters r only.

𝜕𝑉𝑖
𝜕𝑥𝑗

= −𝑟𝑖𝑟𝑗𝑉 2
𝑠𝑢𝑚

𝑉𝑠𝑢𝑚 =
1∑︀

𝑗 𝑟𝑗𝑥𝑗

This is used in the UNIFAC, UNIFAC-LLE, UNIFAC Dortmund, UNIFAC-NIST, and PSRK models.

Returns
dVis_dxs [list[list[float]]] V terms size number of components by number of components,

[-]

dVis_modified_dxs()
Calculate the mole fraction derivative of the 𝑉 ′

𝑖 terms used in calculating the combinatorial part. A function
of mole fractions and the parameters r only.

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗
= −𝑟𝑛𝑖 𝑟𝑛𝑗 𝑉 2

𝑠𝑢𝑚

𝑉𝑠𝑢𝑚 =
1∑︀

𝑗 𝑟
𝑛
𝑗 𝑥𝑗

This is used in the UNIFAC Dortmund and UNIFAC-NIST model with n=0.75, and the Lyngby model with
n=2/3.

Returns
dVis_modified_dxs [list[list[float]]] V’ terms size number of components by number of

components, [-]
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dgammas_dT()
Calculates the first temperature derivative of activity coefficients with the UNIFAC model.

𝜕𝛾𝑖
𝜕𝑇

= 𝛾𝑖
𝜕 ln 𝛾𝑟𝑖
𝜕𝑇

Returns
dgammas_dT [list[float]] First temperature derivative of activity coefficients, size number

of components [1/K]

dgammas_dns()
Calculate and return the mole number derivative of activity coefficients of a liquid phase using an activity
coefficient model.

𝜕𝛾𝑖
𝜕𝑛𝑖

= 𝛾𝑖

⎛⎝ 𝜕2𝐺𝐸

𝜕𝑥𝑖𝜕𝑥𝑗

𝑅𝑇

⎞⎠
Returns

dgammas_dns [list[list[float]]] Mole number derivatives of activity coefficients, [1/mol]

dgammas_dxs()
Calculates the first mole fraction derivative of activity coefficients with the UNIFAC model.

𝜕𝛾𝑖
𝜕𝑥𝑗

= 𝛾𝑖

(︂
𝜕 ln 𝛾𝑟𝑖
𝜕𝑥𝑗

+
𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑗

)︂
For the VTPR variant, the combinatorial part is skipped:

𝜕𝛾𝑖
𝜕𝑥𝑗

= 𝛾𝑖

(︂
𝜕 ln 𝛾𝑟𝑖
𝜕𝑥𝑗

)︂
Returns

dgammas_dxs [list[list[float]]] First mole fraction derivative of activity coefficients, size
number of components by number of components [-]

dlnGammas_subgroups_dT()
Calculate the first temperature derivative of the ln Γ𝑘 parameters for the phase; depends on the phases’s
composition and temperature.

𝜕 ln Γ𝑖

𝜕𝑇
= 𝑄𝑖

⎛⎝ 𝑔𝑟∑︁
𝑗

𝑍(𝑗)

[︂
𝜃𝑗
𝜕𝜓𝑖,𝑗

𝜕𝑇
+ 𝜃𝑗𝜓𝑖,𝑗𝐹 (𝑗)𝑍(𝑗)

]︂
− 𝐹 (𝑖)𝑍(𝑖)

⎞⎠
𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚,𝑘

Returns
dlnGammas_subgroups_dT [list[float]] First temperature derivative of ln Gamma param-

eters for each subgroup, size number of subgroups, [1/K]

dlnGammas_subgroups_dxs()
Calculate the mole fraction derivatives of the ln Γ𝑘 parameters for the phase; depends on the phases’s
composition and temperature.

𝜕 ln Γ𝑘

𝜕𝑥𝑖
= 𝑄𝑘

(︃
−
∑︀𝑔𝑟

𝑚 𝜓𝑚,𝑘
𝜕𝜃𝑚
𝜕𝑥𝑖∑︀𝑔𝑟

𝑚 𝜃𝑚𝜓𝑚,𝑘
−

𝑔𝑟∑︁
𝑚

𝜓𝑘,𝑚
𝜕𝜃𝑚
𝜕𝑥𝑖∑︀𝑔𝑟

𝑛 𝜃𝑛𝜓𝑛,𝑚
+

𝑔𝑟∑︁
𝑚

(
∑︀𝑔𝑟

𝑛 𝜓𝑛,𝑚
𝜕𝜃𝑛
𝜕𝑥𝑖

)𝜃𝑚𝜓𝑘,𝑚

(
∑︀𝑔𝑟

𝑛 𝜃𝑛𝜓𝑛,𝑚)2

)︃
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The group W is used internally as follows to simplfy the number of evaluations.

𝑊 (𝑘, 𝑖) =

𝑔𝑟∑︁
𝑚

𝜓𝑚,𝑘
𝜕𝜃𝑚
𝜕𝑥𝑖

Returns
dlnGammas_subgroups_dxs [list[list[float]]] Mole fraction derivatives of Gamma param-

eters for each subgroup, size number of subgroups by number of components and indexed
in that order, [-]

dlnGammas_subgroups_pure_dT()
Calculate the first temperature derivative of ln Γ𝑘 pure component parameters for the phase; depends on
the phases’s temperature only.

𝜕 ln Γ𝑖

𝜕𝑇
= 𝑄𝑖

⎛⎝ 𝑔𝑟∑︁
𝑗

𝑍(𝑗)

[︂
𝜃𝑗
𝜕𝜓𝑖,𝑗

𝜕𝑇
+ 𝜃𝑗𝜓𝑖,𝑗𝐹 (𝑗)𝑍(𝑗)

]︂
− 𝐹 (𝑖)𝑍(𝑖)

⎞⎠
𝐹 (𝑘) =

𝑔𝑟∑︁
𝑚

𝜃𝑚
𝜕𝜓𝑚,𝑘

𝜕𝑇

𝑍(𝑘) =
1∑︀

𝑚 Θ𝑚Ψ𝑚,𝑘

In this model, the Θ values come from the UNIFAC.Thetas_pure method, where each compound is as-
sumed to be pure.

Returns
dlnGammas_subgroups_pure_dT [list[list[float]]] First temperature derivative of ln

Gamma parameters for each subgroup, size number of subgroups by number of compo-
nents and indexed in that order, [1/K]

dlngammas_c_dT()
Temperature derivatives of the combinatorial part of the UNIFAC model. Zero in all variations.

𝜕 ln 𝛾𝑐𝑖
𝜕𝑇

= 0

Returns
dlngammas_c_dT [list[float]] Combinatorial lngammas term temperature derivatives, size

number of components, [-]

dlngammas_c_dxs()
First composition derivative of the combinatorial part of the UNIFAC model. For the modified UNIFAC
model, the equation is as follows; for the original UNIFAC and UNIFAC LLE, replace 𝑉 ′

𝑖 with 𝑉𝑖.

𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑗

= −5𝑞𝑖

[︃(︃
𝜕𝑉𝑖

𝜕𝑥𝑗

𝐹𝑖
−
𝑉𝑖

𝜕𝐹𝑖

𝜕𝑥𝑗

𝐹 2
𝑖

)︃
𝐹𝑖

𝑉𝑖
−

𝜕𝑉𝑖

𝜕𝑥𝑗

𝐹𝑖
+
𝑉𝑖

𝜕𝐹𝑖

𝜕𝑥𝑗

𝐹 2
𝑖

]︃
− 𝜕𝑉 ′

𝑖

𝜕𝑥𝑗
+

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗

𝑉 ′
𝑖

For the Lyngby model, the following equations are used:

𝜕 ln 𝛾𝑐𝑖
𝜕𝑥𝑗

=
−𝜕𝑉 ′

𝑖

𝜕𝑥𝑗
+

1

𝑉 ′
𝑖

𝜕𝑉 ′
𝑖

𝜕𝑥𝑗

Returns
dlngammas_c_dxs [list[list[float]]] Combinatorial lngammas term first composition deriva-

tive, size number of components by number of components, [-]
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dlngammas_dT()
Calculates the first temperature derivative of the residual part of the UNIFAC model.

𝜕 ln 𝛾𝑟𝑖
𝜕𝑇

=

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︃
𝜕 ln Γ𝑘

𝜕𝑇
−
𝜕 ln Γ

(𝑖)
𝑘

𝜕𝑇

]︃

where the second Gamma is the pure-component Gamma of group k in component i.

Returns
dlngammas_r_dT [list[float]] Residual lngammas terms first temperature derivative, size

number of components [1/K]

dlngammas_r_dT()
Calculates the first temperature derivative of the residual part of the UNIFAC model.

𝜕 ln 𝛾𝑟𝑖
𝜕𝑇

=

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︃
𝜕 ln Γ𝑘

𝜕𝑇
−
𝜕 ln Γ

(𝑖)
𝑘

𝜕𝑇

]︃

where the second Gamma is the pure-component Gamma of group k in component i.

Returns
dlngammas_r_dT [list[float]] Residual lngammas terms first temperature derivative, size

number of components [1/K]

dlngammas_r_dxs()
Calculates the first mole fraction derivative of the residual part of the UNIFAC model.

𝜕 ln 𝛾𝑟𝑖
𝜕𝑥𝑗

=

𝑔𝑟∑︁
𝑚

𝜈(𝑖)𝑚

𝜕 ln Γ𝑚

𝜕𝑥𝑗

Returns
dlngammas_r_dxs [list[list[float]]] First mole fraction derivative of residual lngammas

terms, size number of components by number of components [-]

dpsis_dT()
Calculate the Ψ term first temperature derivative matrix for all groups interacting with all other groups.

The main model calculates the derivative as a function of three coefficients;

𝜕Ψ𝑚𝑛

𝜕𝑇
=

(︂
−2𝑇𝑐𝑚𝑛 − 𝑏𝑚𝑛

𝑇
− −𝑇 2𝑐𝑚𝑛 − 𝑇𝑏𝑚𝑛 − 𝑎𝑚𝑛

𝑇 2

)︂
𝑒

−𝑇2𝑐𝑚𝑛−𝑇𝑏𝑚𝑛−𝑎𝑚𝑛
𝑇

Only the first, a coefficient, is used in the original UNIFAC model as well as the UNIFAC-LLE model, so
the expression simplifies to:

𝜕Ψ𝑚𝑛

𝜕𝑇
=
𝑎𝑚𝑛𝑒

− 𝑎𝑚𝑛
𝑇

𝑇 2

For the Lyngby model, the first temperature derivative is:

𝜕Ψ𝑚𝑘

𝜕𝑇
=

(︃
−𝑎2 − 𝑎3 ln

(︀
𝑇0

𝑇

)︀
𝑇

−
−𝑎1 − 𝑎2 (𝑇 − 𝑇0) − 𝑎3

(︀
𝑇 ln

(︀
𝑇0

𝑇

)︀
+ 𝑇 − 𝑇0

)︀
𝑇 2

)︃
𝑒

−𝑎1−𝑎2(𝑇−𝑇0)−𝑎3(𝑇 ln (𝑇0
𝑇 )+𝑇−𝑇0)

𝑇

with 𝑇0 = 298.15 K and the a coefficients are specific to each pair of main groups, and they are asymmetric,
so 𝑎0,𝑚𝑘 ̸= 𝑎0,𝑘𝑚.

Returns
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dpsis_dT [list[list[float]]] First temperature derivative of`psi` terms, size subgroups x sub-
groups [-]

static from_subgroups(T, xs, chemgroups, subgroups=None, interaction_data=None, version=0)
Method to construct a UNIFAC object from a dictionary of interaction parameters parameters and a list
of dictionaries of UNIFAC keys. As the actual implementation is matrix based not dictionary based, this
method can be quite convenient.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

chemgroups [list[dict]] List of dictionaries of subgroup IDs and their counts for all species
in the mixture, [-]

subgroups [dict[int: UNIFAC_subgroup], optional] UNIFAC subgroup data; available dic-
tionaries in this module include UFSG (original), DOUFSG (Dortmund), or NISTUFSG.
The default depends on the given version, [-]

interaction_data [dict[int: dict[int: tuple(a_mn, b_mn, c_mn)]], optional] UNIFAC in-
teraction parameter data; available dictionaries in this module include UFIP (original),
DOUFIP2006 (Dortmund parameters published in 2006), DOUFIP2016 (Dortmund pa-
rameters published in 2016), and NISTUFIP. The default depends on the given version,
[-]

version [int, optional] Which version of the model to use. Defaults to 0, [-]

• 0 - original UNIFAC, OR UNIFAC LLE

• 1 - Dortmund UNIFAC (adds T dept, 3/4 power)

• 2 - PSRK (original with T dept function)

• 3 - VTPR (drops combinatorial term, Dortmund UNIFAC otherwise)

• 4 - Lyngby/Larsen has different combinatorial, 2/3 power

• 5 - UNIFAC KT (2 params for psi, Lyngby/Larsen formulation; otherwise same as orig-
inal)

Returns
UNIFAC [UNIFAC] Object for performing calculations with the UNIFAC activity coefficient

model, [-]

Notes

Warning: For version 0, the interaction data and subgroups default to the original UNIFAC model
(not LLE).

For version 1, the interaction data defaults to the Dortmund parameters publshed in 2016 (not 2006).

Examples

Mixture of [‘benzene’, ‘cyclohexane’, ‘acetone’, ‘ethanol’] according to the Dortmund UNIFAC model:
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>>> from thermo.unifac import DOUFIP2006, DOUFSG
>>> T = 373.15
>>> xs = [0.2, 0.3, 0.1, 0.4]
>>> chemgroups = [{9: 6}, {78: 6}, {1: 1, 18: 1}, {1: 1, 2: 1, 14: 1}]
>>> GE = UNIFAC.from_subgroups(T=T, xs=xs, chemgroups=chemgroups, version=1,␣
→˓interaction_data=DOUFIP2006, subgroups=DOUFSG)
>>> GE
UNIFAC(T=373.15, xs=[0.2, 0.3, 0.1, 0.4], rs=[2.2578, 4.2816, 2.3373, 2.
→˓4951999999999996], qs=[2.5926, 5.181, 2.7308, 2.6616], Qs=[1.0608, 0.7081, 0.
→˓4321, 0.8927, 1.67, 0.8635], vs=[[0, 0, 1, 1], [0, 0, 0, 1], [6, 0, 0, 0], [0,
→˓ 0, 0, 1], [0, 0, 1, 0], [0, 6, 0, 0]], psi_abc=([[0.0, 0.0, 114.2, 2777.0,␣
→˓433.6, -117.1], [0.0, 0.0, 114.2, 2777.0, 433.6, -117.1], [16.07, 16.07, 0.0,␣
→˓3972.0, 146.2, 134.6], [1606.0, 1606.0, 3049.0, 0.0, -250.0, 3121.0], [199.0,␣
→˓199.0, -57.53, 653.3, 0.0, 168.2], [170.9, 170.9, -2.619, 2601.0, 464.5, 0.
→˓0]], [[0.0, 0.0, 0.0933, -4.674, 0.1473, 0.5481], [0.0, 0.0, 0.0933, -4.674,␣
→˓0.1473, 0.5481], [-0.2998, -0.2998, 0.0, -13.16, -1.237, -1.231], [-4.746, -4.
→˓746, -12.77, 0.0, 2.857, -13.69], [-0.8709, -0.8709, 1.212, -1.412, 0.0, -0.
→˓8197], [-0.8062, -0.8062, 1.094, -1.25, 0.1542, 0.0]], [[0.0, 0.0, 0.0, 0.
→˓001551, 0.0, -0.00098], [0.0, 0.0, 0.0, 0.001551, 0.0, -0.00098], [0.0, 0.0,␣
→˓0.0, 0.01208, 0.004237, 0.001488], [0.0009181, 0.0009181, 0.01435, 0.0, -0.
→˓006022, 0.01446], [0.0, 0.0, -0.003715, 0.000954, 0.0, 0.0], [0.001291, 0.
→˓001291, -0.001557, -0.006309, 0.0, 0.0]]), version=1)

gammas()
Calculates the activity coefficients with the UNIFAC model.

𝛾𝑖 = exp (ln 𝛾𝑐𝑖 + ln 𝛾𝑟𝑖 )

For the VTPR variant, the combinatorial part is skipped:

𝛾𝑖 = exp(ln 𝛾𝑟𝑖 )

Returns
gammas [list[float]] Activity coefficients, size number of components [-]

lnGammas_subgroups()
Calculate the ln Γ𝑘 parameters for the phase; depends on the phases’s composition and temperature.

ln Γ𝑘 = 𝑄𝑘

[︃
1 − ln

∑︁
𝑚

Θ𝑚Ψ𝑚𝑘 −
∑︁
𝑚

Θ𝑚Ψ𝑘𝑚∑︀
𝑛 Θ𝑛Ψ𝑛𝑚

]︃
Returns

lnGammas_subgroups [list[float]] Gamma parameters for each subgroup, size number of
subgroups, [-]

lnGammas_subgroups_pure()
Calculate the ln Γ𝑘 pure component parameters for the phase; depends on the phases’s temperature only.

ln Γ𝑘 = 𝑄𝑘

[︃
1 − ln

∑︁
𝑚

Θ𝑚Ψ𝑚𝑘 −
∑︁
𝑚

Θ𝑚Ψ𝑘𝑚∑︀
𝑛 Θ𝑛Ψ𝑛𝑚

]︃
In this model, the Θ values come from the UNIFAC.Thetas_pure method, where each compound is as-
sumed to be pure.

Returns
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lnGammas_subgroups_pure [list[list[float]]] Gamma parameters for each subgroup, size
number of subgroups by number of components and indexed in that order, [-]

lngammas_c()
Calculates the combinatorial part of the UNIFAC model. For the modified UNIFAC model, the equation is
as follows; for the original UNIFAC and UNIFAC LLE, replace 𝑉 ′

𝑖 with 𝑉𝑖.

ln 𝛾𝑐𝑖 = 1 − 𝑉 ′
𝑖 + ln(𝑉 ′

𝑖) − 5𝑞𝑖

(︂
1 − 𝑉𝑖

𝐹𝑖
+ ln

(︂
𝑉𝑖
𝐹𝑖

)︂)︂
For the Lyngby model:

ln 𝛾𝑐𝑖 = ln (𝑉 ′
𝑖 ) + 1 − 𝑉 ′

𝑖

Returns
lngammas_c [list[float]] Combinatorial lngammas terms, size number of components [-]

lngammas_r()
Calculates the residual part of the UNIFAC model.

ln 𝛾𝑟𝑖 =

𝑔𝑟∑︁
𝑘

𝜈
(𝑖)
𝑘

[︁
ln Γ𝑘 − ln Γ

(𝑖)
𝑘

]︁
where the second Gamma is the pure-component Gamma of group k in component i.

Returns
lngammas_r [list[float]] Residual lngammas terms, size number of components [-]

property model_id
A unique numerical identifier refering to the thermodynamic model being implemented. For internal use.

psis()
Calculate the Ψ term matrix for all groups interacting with all other groups.

The main model calculates it as a function of three coefficients;

Ψ𝑚𝑛 = exp

(︂
−𝑎𝑚𝑛 − 𝑏𝑚𝑛𝑇 − 𝑐𝑚𝑛𝑇

2

𝑇

)︂
Only the first, a coefficient, is used in the original UNIFAC model as well as the UNIFAC-LLE model, so
the expression simplifies to:

Ψ𝑚𝑛 = exp

(︂
−𝑎𝑚𝑛

𝑇

)︂
For the Lyngby model, the temperature dependence is modified slightly, as follows:

Ψ𝑚𝑘 = 𝑒
−𝑎1−𝑎2(𝑇−𝑇0)−𝑎3(𝑇 ln (𝑇0

𝑇 )+𝑇−𝑇0)
𝑇

with 𝑇0 = 298.15 K and the a coefficients are specific to each pair of main groups, and they are asymmetric,
so 𝑎0,𝑚𝑘 ̸= 𝑎0,𝑘𝑚.

Returns
psis [list[list[float]]] psi terms, size subgroups x subgroups [-]

to_T_xs(T, xs)
Method to construct a new UNIFAC instance at temperature T, and mole fractions xs with the same param-
eters as the existing object.
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Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions of each component, [-]

Returns
obj [UNIFAC] New UNIFAC object at the specified conditions [-]

Notes

If the new temperature is the same temperature as the existing temperature, if the psi terms or their deriva-
tives have been calculated, they will be set to the new object as well. If the mole fractions are the same,
various subgroup terms are also kept.

7.29.2 Main Model (Functional)

thermo.unifac.UNIFAC_gammas(T, xs, chemgroups, cached=None, subgroup_data=None,
interaction_data=None, modified=False)

Calculates activity coefficients using the UNIFAC model (optionally modified), given a mixture’s temperature,
liquid mole fractions, and optionally the subgroup data and interaction parameter data of your choice. The default
is to use the original UNIFAC model, with the latest parameters published by DDBST. The model supports
modified forms (Dortmund, NIST) when the modified parameter is True.

Parameters
T [float] Temperature of the system, [K]

xs [list[float]] Mole fractions of all species in the system in the liquid phase, [-]

chemgroups [list[dict]] List of dictionaries of subgroup IDs and their counts for all species in
the mixture, [-]

subgroup_data [dict[UNIFAC_subgroup]] UNIFAC subgroup data; available dictionaries in
this module are UFSG (original), DOUFSG (Dortmund), or NISTUFSG ([4]).

interaction_data [dict[dict[tuple(a_mn, b_mn, c_mn)]]] UNIFAC interaction parameter data;
available dictionaries in this module are UFIP (original), DOUFIP2006 (Dortmund parame-
ters as published by 2006), DOUFIP2016 (Dortmund parameters as published by 2016), and
NISTUFIP ([4]).

modified [bool] True if using the modified form and temperature dependence, otherwise False.

Returns
gammas [list[float]] Activity coefficients of all species in the mixture, [-]

Notes

The actual implementation of UNIFAC is formulated slightly different than the formulas above for computational
efficiency. DDBST switched to using the more efficient forms in their publication, but the numerical results are
identical.

The model is as follows:

ln 𝛾𝑖 = ln 𝛾𝑐𝑖 + ln 𝛾𝑟𝑖
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Combinatorial component

ln 𝛾𝑐𝑖 = ln
𝜑𝑖
𝑥𝑖

+
𝑧

2
𝑞𝑖 ln

𝜃𝑖
𝜑𝑖

+ 𝐿𝑖 −
𝜑𝑖
𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗𝐿𝑗

𝜃𝑖 =
𝑥𝑖𝑞𝑖∑︀𝑛

𝑗=1 𝑥𝑗𝑞𝑗

𝜑𝑖 =
𝑥𝑖𝑟𝑖∑︀𝑛

𝑗=1 𝑥𝑗𝑟𝑗

𝐿𝑖 = 5(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1)

Residual component

ln 𝛾𝑟𝑖 =

𝑛∑︁
𝑘

𝜈
(𝑖)
𝑘

[︁
ln Γ𝑘 − ln Γ

(𝑖)
𝑘

]︁

ln Γ𝑘 = 𝑄𝑘

[︃
1 − ln

∑︁
𝑚

Θ𝑚Ψ𝑚𝑘 −
∑︁
𝑚

Θ𝑚Ψ𝑘𝑚∑︀
𝑛 Θ𝑛Ψ𝑛𝑚

]︃

Θ𝑚 =
𝑄𝑚𝑋𝑚∑︀
𝑛𝑄𝑛𝑋𝑛

𝑋𝑚 =

∑︀
𝑗 𝜈

𝑗
𝑚𝑥𝑗∑︀

𝑗

∑︀
𝑛 𝜈

𝑗
𝑛𝑥𝑗

R and Q

𝑟𝑖 =

𝑛∑︁
𝑘=1

𝜈𝑘𝑅𝑘

𝑞𝑖 =

𝑛∑︁
𝑘=1

𝜈𝑘𝑄𝑘

The newer forms of UNIFAC (Dortmund, NIST) calculate the combinatorial part slightly differently:

ln 𝛾𝑐𝑖 = 1 − 𝑉 ′
𝑖 + ln(𝑉 ′

𝑖) − 5𝑞𝑖

(︂
1 − 𝑉𝑖

𝐹𝑖
+ ln

(︂
𝑉𝑖
𝐹𝑖

)︂)︂

𝑉 ′
𝑖 =

𝑟
3/4
𝑖∑︀

𝑗 𝑟
3/4
𝑗 𝑥𝑗

𝑉𝑖 =
𝑟𝑖∑︀
𝑗 𝑟𝑗𝑥𝑗

𝐹𝑖 =
𝑞𝑖∑︀
𝑗 𝑞𝑗𝑥𝑗

Although this form looks substantially different than the original, it infact reverts to the original form if only 𝑉 ′
𝑖

is replaced by 𝑉𝑖. This is more clear when looking at the full rearranged form as in [3].

In some publications such as [5], the nomenclature is such that 𝜃𝑖 and 𝜑 do not contain the top 𝑥𝑖, making
𝜃𝑖 = 𝐹𝑖 and 𝜑𝑖 = 𝑉𝑖. [5] is also notable for having supporting information containing very nice sets of analytical
derivatives.

UNIFAC LLE uses the original formulation of UNIFAC, and otherwise only different interaction parameters.
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References

[1], [2], [3], [4], [5]

Examples

>>> UNIFAC_gammas(T=333.15, xs=[0.5, 0.5], chemgroups=[{1:2, 2:4}, {1:1, 2:1, 18:1}
→˓])
[1.427602583562, 1.364654501010]

>>> from thermo.unifac import DOUFIP2006
>>> UNIFAC_gammas(373.15, [0.2, 0.3, 0.2, 0.2],
... [{9:6}, {78:6}, {1:1, 18:1}, {1:1, 2:1, 14:1}],
... subgroup_data=DOUFSG, interaction_data=DOUFIP2006, modified=True)
[1.1864311137, 1.44028013391, 1.20447983349, 1.972070609029]

thermo.unifac.UNIFAC_psi(T, subgroup1, subgroup2, subgroup_data, interaction_data, modified=False)
Calculates the interaction parameter psi(m, n) for two UNIFAC subgroups, given the system temperature, the
UNIFAC subgroups considered for the variant of UNIFAC used, the interaction parameters for the variant of
UNIFAC used, and whether or not the temperature dependence is modified from the original form, as shown
below.

Original temperature dependence:

Ψ𝑚𝑛 = exp

(︂
−𝑎𝑚𝑛

𝑇

)︂
Modified temperature dependence:

Ψ𝑚𝑛 = exp

(︂
−𝑎𝑚𝑛 − 𝑏𝑚𝑛𝑇 − 𝑐𝑚𝑛𝑇

2

𝑇

)︂
Parameters

T [float] Temperature of the system, [K]

subgroup1 [int] First UNIFAC subgroup for identifier, [-]

subgroup2 [int] Second UNIFAC subgroup for identifier, [-]

subgroup_data [dict[UNIFAC_subgroup]] Normally provided as inputs to UNIFAC.

interaction_data [dict[dict[tuple(a_mn, b_mn, c_mn)]]] Normally provided as inputs to UNI-
FAC.

modified [bool] True if the modified temperature dependence is used by the interaction param-
eters, otherwise False

Returns
psi [float] UNIFAC interaction parameter term, [-]
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Notes

UNIFAC interaction parameters are asymmetric. No warning is raised if an interaction parameter is missing.

References

[1], [2]

Examples

>>> from thermo.unifac import UFSG, UFIP, DOUFSG, DOUFIP2006

>>> UNIFAC_psi(307, 18, 1, UFSG, UFIP)
0.9165248264184787

>>> UNIFAC_psi(373.15, 9, 78, DOUFSG, DOUFIP2006, modified=True)
1.3703140538273264

7.29.3 Misc Functions

thermo.unifac.UNIFAC_RQ(groups, subgroup_data=None)
Calculates UNIFAC parameters R and Q for a chemical, given a dictionary of its groups, as shown in [1]. Most
UNIFAC methods use the same subgroup values; however, a dictionary of UNIFAC_subgroup instances may be
specified as an optional second parameter.

𝑟𝑖 =

𝑛∑︁
𝑘=1

𝜈𝑘𝑅𝑘

𝑞𝑖 =

𝑛∑︁
𝑘=1

𝜈𝑘𝑄𝑘

Parameters
groups [dict[count]] Dictionary of numeric subgroup IDs : their counts

subgroup_data [None or dict[UNIFAC_subgroup]] Optional replacement for standard sub-
groups; leave as None to use the original UNIFAC subgroup r and q values.

Returns
R [float] R UNIFAC parameter (normalized Van der Waals Volume) [-]

Q [float] Q UNIFAC parameter (normalized Van der Waals Area) [-]
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Notes

These parameters have some predictive value for other chemical properties.

References

[1]

Examples

Hexane

>>> UNIFAC_RQ({1:2, 2:4})
(4.4998000000000005, 3.856)

thermo.unifac.Van_der_Waals_volume(R)
Calculates a species Van der Waals molar volume with the UNIFAC method, given a species’s R parameter.

𝑉𝑤𝑘 = 15.17𝑅𝑘

Parameters
R [float] R UNIFAC parameter (normalized Van der Waals Volume) [-]

Returns
V_vdw [float] Unnormalized Van der Waals volume, [m^3/mol]

Notes

The volume was originally given in cm^3/mol, but is converted to SI here.

References

[1]

Examples

>>> Van_der_Waals_volume(4.4998)
6.826196599999999e-05

thermo.unifac.Van_der_Waals_area(Q)
Calculates a species Van der Waals molar surface area with the UNIFAC method, given a species’s Q parameter.

𝐴𝑤𝑘 = 2.5 × 109𝑄𝑘

Parameters
Q [float] Q UNIFAC parameter (normalized Van der Waals Area) [-]

Returns
A_vdw [float] Unnormalized Van der Waals surface area, [m^2/mol]
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Notes

The volume was originally given in cm^2/mol, but is converted to SI here.

References

[1]

Examples

>>> Van_der_Waals_area(3.856)
964000.0

thermo.unifac.chemgroups_to_matrix(chemgroups)
Index by [group index][compound index]

>>> chemgroups_to_matrix([{9: 6}, {2: 6}, {1: 1, 18: 1}, {1: 1, 2: 1, 14: 1}])
[[0, 0, 1, 1], [0, 6, 0, 1], [6, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]

thermo.unifac.load_group_assignments_DDBST()
Data is stored in the format InChI key bool bool bool subgroup count . . . subgroup count subgroup count. . .
where the bools refer to whether or not the original UNIFAC, modified UNIFAC, and PSRK group assignments
were completed correctly. The subgroups and their count have an indefinite length.

7.29.4 Data for Original UNIFAC

thermo.unifac.UFSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>, 7:
<CH2=C>, 8: <CH=C>, 9: <ACH>, 10: <AC>, 11: <ACCH3>, 12: <ACCH2>, 13: <ACCH>, 14: <OH>,
15: <CH3OH>, 16: <H2O>, 17: <ACOH>, 18: <CH3CO>, 19: <CH2CO>, 20: <CHO>, 21: <CH3COO>,
22: <CH2COO>, 23: <HCOO>, 24: <CH3O>, 25: <CH2O>, 26: <CHO>, 27: <THF>, 28: <CH3NH2>, 29:
<CH2NH2>, 30: <CHNH2>, 31: <CH3NH>, 32: <CH2NH>, 33: <CHNH>, 34: <CH3N>, 35: <CH2N>, 36:
<ACNH2>, 37: <C5H5N>, 38: <C5H4N>, 39: <C5H3N>, 40: <CH3CN>, 41: <CH2CN>, 42: <COOH>, 43:
<HCOOH>, 44: <CH2CL>, 45: <CHCL>, 46: <CCL>, 47: <CH2CL2>, 48: <CHCL2>, 49: <CCL2>, 50:
<CHCL3>, 51: <CCL3>, 52: <CCL4>, 53: <ACCL>, 54: <CH3NO2>, 55: <CH2NO2>, 56: <CHNO2>, 57:
<ACNO2>, 58: <CS2>, 59: <CH3SH>, 60: <CH2SH>, 61: <FURFURAL>, 62: <DOH>, 63: <I>, 64:
<BR>, 65: <CH=-C>, 66: <C=-C>, 67: <DMSO>, 68: <ACRY>, 69: <CL-(C=C)>, 70: <C=C>, 71:
<ACF>, 72: <DMF>, 73: <HCON(CH2)2>, 74: <CF3>, 75: <CF2>, 76: <CF>, 77: <COO>, 78:
<SIH3>, 79: <SIH2>, 80: <SIH>, 81: <SI>, 82: <SIH2O>, 83: <SIHO>, 84: <SIO>, 85: <NMP>,
86: <CCL3F>, 87: <CCL2F>, 88: <HCCL2F>, 89: <HCCLF>, 90: <CCLF2>, 91: <HCCLF2>, 92:
<CCLF3>, 93: <CCL2F2>, 94: <AMH2>, 95: <AMHCH3>, 96: <AMHCH2>, 97: <AM(CH3)2>, 98:
<AMCH3CH2>, 99: <AM(CH2)2>, 100: <C2H5O2>, 101: <C2H4O2>, 102: <CH3S>, 103: <CH2S>, 104:
<CHS>, 105: <MORPH>, 106: <C4H4S>, 107: <C4H3S>, 108: <C4H2S>, 109: <NCO>, 118:
<(CH2)2SU>, 119: <CH2CHSU>, 178: <IMIDAZOL>, 179: <BTI>}
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thermo.unifac.UFMG = {1: ('CH2', [1, 2, 3, 4]), 2: ('C=C', [5, 6, 7, 8, 70]), 3: ('ACH',
[9, 10]), 4: ('ACCH2', [11, 12, 13]), 5: ('OH', [14]), 6: ('CH3OH', [15]), 7: ('H2O',
[16]), 8: ('ACOH', [17]), 9: ('CH2CO', [18, 19]), 10: ('CHO', [20]), 11: ('CCOO', [21,
22]), 12: ('HCOO', [23]), 13: ('CH2O', [24, 25, 26, 27]), 14: ('CNH2', [28, 29, 30]), 15:
('CNH', [31, 32, 33]), 16: ('(C)3N', [34, 35]), 17: ('ACNH2', [36]), 18: ('PYRIDINE',
[37, 38, 39]), 19: ('CCN', [40, 41]), 20: ('COOH', [42, 43]), 21: ('CCL', [44, 45, 46]),
22: ('CCL2', [47, 48, 49]), 23: ('CCL3', [50, 51]), 24: ('CCL4', [52]), 25: ('ACCL',
[53]), 26: ('CNO2', [54, 55, 56]), 27: ('ACNO2', [57]), 28: ('CS2', [58]), 29: ('CH3SH',
[59, 60]), 30: ('FURFURAL', [61]), 31: ('DOH', [62]), 32: ('I', [63]), 33: ('BR', [64]),
34: ('C=-C', [65, 66]), 35: ('DMSO', [67]), 36: ('ACRY', [68]), 37: ('CLCC', [69]), 38:
('ACF', [71]), 39: ('DMF', [72, 73]), 40: ('CF2', [74, 75, 76]), 41: ('COO', [77]), 42:
('SIH2', [78, 79, 80, 81]), 43: ('SIO', [82, 83, 84]), 44: ('NMP', [85]), 45: ('CCLF',
[86, 87, 88, 89, 90, 91, 92, 93]), 46: ('CON(AM)', [94, 95, 96, 97, 98, 99]), 47:
('OCCOH', [100, 101]), 48: ('CH2S', [102, 103, 104]), 49: ('MORPH', [105]), 50:
('THIOPHEN', [106, 107, 108]), 51: ('NCO', [109]), 55: ('SULFONES', [118, 119]), 84:
('IMIDAZOL', [178]), 85: ('BTI', [179])}

thermo.unifac.UFIP
Interaction parameters for the original unifac model.

Type dict[int: dict[int: float]]

7.29.5 Data for Dortmund UNIFAC

thermo.unifac.DOUFSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>, 7:
<CH2=C>, 8: <CH=C>, 9: <ACH>, 10: <AC>, 11: <ACCH3>, 12: <ACCH2>, 13: <ACCH>, 14:
<OH(P)>, 15: <CH3OH>, 16: <H2O>, 17: <ACOH>, 18: <CH3CO>, 19: <CH2CO>, 20: <CHO>, 21:
<CH3COO>, 22: <CH2COO>, 23: <HCOO>, 24: <CH3O>, 25: <CH2O>, 26: <CHO>, 27: <THF>, 28:
<CH3NH2>, 29: <CH2NH2>, 30: <CHNH2>, 31: <CH3NH>, 32: <CH2NH>, 33: <CHNH>, 34: <CH3N>,
35: <CH2N>, 36: <ACNH2>, 37: <AC2H2N>, 38: <AC2HN>, 39: <AC2N>, 40: <CH3CN>, 41: <CH2CN>,
42: <COOH>, 43: <HCOOH>, 44: <CH2CL>, 45: <CHCL>, 46: <CCL>, 47: <CH2CL2>, 48: <CHCL2>,
49: <CCL2>, 50: <CHCL3>, 51: <CCL3>, 52: <CCL4>, 53: <ACCL>, 54: <CH3NO2>, 55: <CH2NO2>,
56: <CHNO2>, 57: <ACNO2>, 58: <CS2>, 59: <CH3SH>, 60: <CH2SH>, 61: <FURFURAL>, 62: <DOH>,
63: <I>, 64: <BR>, 65: <CH=-C>, 66: <C=-C>, 67: <DMSO>, 68: <ACRY>, 69: <CL-(C=C)>, 70:
<C=C>, 71: <ACF>, 72: <DMF>, 73: <HCON(CH2)2>, 74: <CF3>, 75: <CF2>, 76: <CF>, 77: <COO>,
78: <CY-CH2>, 79: <CY-CH>, 80: <CY-C>, 81: <OH(S)>, 82: <OH(T)>, 83: <CY-CH2O>, 84:
<TRIOXAN>, 85: <CNH2>, 86: <NMP>, 87: <NEP>, 88: <NIPP>, 89: <NTBP>, 91: <CONH2>, 92:
<CONHCH3>, 100: <CONHCH2>, 101: <AM(CH3)2>, 102: <AMCH3CH2>, 103: <AM(CH2)2>, 104:
<AC2H2S>, 105: <AC2HS>, 106: <AC2S>, 107: <H2COCH>, 108: <COCH>, 109: <HCOCH>, 110:
<(CH2)2SU>, 111: <CH2SUCH>, 112: <(CH3)2CB>, 113: <(CH2)2CB>, 114: <CH2CH3CB>, 119:
<H2COCH2>, 122: <CH3S>, 123: <CH2S>, 124: <CHS>, 153: <H2COC>, 178: <C3H2N2+>, 179:
<BTI->, 184: <C3H3N2+>, 189: <C4H8N+>, 195: <BF4->, 196: <C5H5N+>, 197: <OTF->, 201:
<-S-S->}

7.29. UNIFAC Gibbs Excess Model (thermo.unifac) 831

https://docs.python.org/3/library/stdtypes.html#dict


thermo Documentation, Release 0.2.20

thermo.unifac.DOUFMG = {1: ('CH2', [1, 2, 3, 4]), 2: ('C=C', [5, 6, 7, 8, 70]), 3:
('ACH', [9, 10]), 4: ('ACCH2', [11, 12, 13]), 5: ('OH', [14, 81, 82]), 6: ('CH3OH',
[15]), 7: ('H2O', [16]), 8: ('ACOH', [17]), 9: ('CH2CO', [18, 19]), 10: ('CHO', [20]),
11: ('CCOO', [21, 22]), 12: ('HCOO', [23]), 13: ('CH2O', [24, 25, 26]), 14: ('CH2NH2',
[28, 29, 30, 85]), 15: ('CH2NH', [31, 32, 33]), 16: ('(C)3N', [34, 35]), 17: ('ACNH2',
[36]), 18: ('PYRIDINE', [37, 38, 39]), 19: ('CH2CN', [40, 41]), 20: ('COOH', [42]), 21:
('CCL', [44, 45, 46]), 22: ('CCL2', [47, 48, 49]), 23: ('CCL3', [51]), 24: ('CCL4',
[52]), 25: ('ACCL', [53]), 26: ('CNO2', [54, 55, 56]), 27: ('ACNO2', [57]), 28: ('CS2',
[58]), 29: ('CH3SH', [59, 60]), 30: ('FURFURAL', [61]), 31: ('DOH', [62]), 32: ('I',
[63]), 33: ('BR', [64]), 34: ('C=-C', [65, 66]), 35: ('DMSO', [67]), 36: ('ACRY', [68]),
37: ('CLCC', [69]), 38: ('ACF', [71]), 39: ('DMF', [72, 73]), 40: ('CF2', [74, 75, 76]),
41: ('COO', [77]), 42: ('CY-CH2', [78, 79, 80]), 43: ('CY-CH2O', [27, 83, 84]), 44:
('HCOOH', [43]), 45: ('CHCL3', [50]), 46: ('CY-CONC', [86, 87, 88, 89]), 47: ('CONR',
[91, 92, 100]), 48: ('CONR2', [101, 102, 103]), 49: ('HCONR', [93, 94]), 52: ('ACS',
[104, 105, 106]), 53: ('EPOXIDES', [107, 108, 109, 119, 153]), 55: ('CARBONAT', [112,
113, 114]), 56: ('SULFONE', [110, 111]), 61: ('SULFIDES', [122, 123, 124]), 84:
('IMIDAZOL', [178, 184]), 85: ('BTI', [179]), 87: ('PYRROL', [189]), 89: ('BF4', [195]),
90: ('PYRIDIN', [196]), 91: ('OTF', [197]), 93: ('DISULFIDES', [201])}

thermo.unifac.DOUFIP2016
Interaction parameters for the Dornmund unifac model.

Type dict[int: dict[int: tuple(float, 3)]]
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7.29.6 Data for NIST UNIFAC (2015)

thermo.unifac.NISTUFSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>,
7: <CH2=C>, 8: <CH=C>, 9: <ACH>, 10: <AC>, 11: <ACCH3>, 12: <ACCH2>, 13: <ACCH>, 14: <OH
prim>, 15: <CH3OH>, 16: <H2O>, 17: <ACOH>, 18: <CH3CO>, 19: <CH2CO>, 20: <CHO>, 21:
<CH3COO>, 22: <CH2COO>, 23: <HCOO>, 24: <CH3O>, 25: <CH2O>, 26: <CHO>, 27: <CH2-O-CH2>,
28: <CH3NH2>, 29: <CH2NH2>, 30: <CHNH2>, 31: <CH3NH>, 32: <CH2NH>, 33: <CHNH>, 34:
<CH3N>, 35: <CH2N>, 36: <ACNH2>, 37: <AC2H2N>, 38: <AC2HN>, 39: <AC2N>, 40: <CH3CN>, 41:
<CH2CN>, 42: <COOH>, 43: <HCOOH>, 44: <CH2Cl>, 45: <CHCl>, 46: <CCl>, 47: <CH2Cl2>, 48:
<CHCl2>, 49: <CCl2>, 50: <CHCl3>, 51: <CCl3>, 52: <CCl4>, 53: <ACCl>, 54: <CH3NO2>, 55:
<CH2NO2>, 56: <CHNO2>, 57: <ACNO2>, 58: <CS2>, 59: <CH3SH>, 60: <CH2SH>, 61: <Furfural>,
62: <CH2(OH)-CH2(OH)>, 63: <I>, 64: <Br>, 65: <CH#C>, 66: <C#C>, 67: <DMSO>, 68:
<Acrylonitrile>, 69: <Cl-(C=C)>, 70: <C=C>, 71: <ACF>, 72: <DMF>, 73: <HCON(CH2)2>, 74:
<CF3>, 75: <CF2>, 76: <CF>, 77: <COO>, 78: <c-CH2>, 79: <c-CH>, 80: <c-C>, 81: <OH sec>,
82: <OH tert>, 83: <CH2-O-[CH2-O]1/2>, 84: <[O-CH2]1/2-O-[CH2-O]1/2>, 85: <CNH2>, 86:
<c-CON-CH3>, 87: <c-CON-CH2>, 88: <c-CON-CH>, 89: <c-CON-C>, 92: <CONHCH3>, 93:
<HCONHCH3>, 94: <HCONHCH2>, 100: <CONHCH2>, 101: <CON(CH3)2>, 102: <CON(CH3)CH2>, 103:
<CON(CH2)2>, 104: <AC2H2S>, 105: <AC2HS>, 106: <AC2S>, 107: <H2COCH>, 109: <HCOCH>, 110:
<CH2SuCH2>, 111: <CH2SuCH >, 112: <(CH3O)2CO>, 113: <(CH2O)2CO>, 114: <(CH3O)COOCH2>,
116: <ACCN>, 117: <CH3NCO>, 118: <CH2NCO>, 119: <CHNCO>, 120: <ACNCO>, 121: <COOCO>, 122:
<ACSO2>, 123: <ACCHO>, 124: <ACCOOH>, 125: <c-CO-NH>, 126: <c-CO-O>, 127: <AC-O-CO-CH3 >,
128: <AC-O-CO-CH2>, 129: <AC-O-CO-CH>, 130: <AC-O-CO-C>, 131: <-O-CH2-CH2-OH>, 132:
<-O-CH-CH2-OH>, 133: <-O-CH2-CH-OH>, 134: <CH3-S->, 135: <-CH2-S->, 136: <>CH-S->, 137:
<->C-S->, 138: <CH3O-(O)>, 139: <CH2O-(O)>, 140: <CHO-(O)>, 141: <CO-(O)>, 142:
<ACO-(O)>, 143: <CFH>, 144: <CFCl>, 145: <CFCl2>, 146: <CF2H>, 147: <CF2ClH>, 148:
<CF2Cl2>, 149: <CF3H>, 150: <CF3Cl>, 151: <CF4>, 152: <C(O)2>, 153: <ACN(CH3)2>, 154:
<ACN(CH3)CH2>, 155: <ACN(CH2)2>, 156: <ACNHCH3>, 157: <ACNHCH2>, 158: <ACNHCH>, 159:
<AC2H2O>, 160: <AC2HO>, 161: <AC2O>, 162: <c-CH-NH>, 163: <c-C-NH>, 164: <c-CH-NCH3>,
165: <c-CH-NCH2>, 166: <c-CH-NCH>, 170: <SiH3->, 171: <-SiH2->, 172: <>SiH->, 173:
<>Si<>, 174: <-SiH2-O->, 175: <>SiH-O->, 176: <->Si-O->, 177: <C=NOH>, 178: <ACCO>, 179:
<C2Cl4>, 180: <c-CHH2>, 186: <CH(O)2>, 187: <ACS>, 188: <c-CH2-NH>, 189: <c-CH2-NCH3>,
190: <c-CH2-NCH2>, 191: <c-CH2-NCH>, 192: <CHSH>, 193: <CSH>, 194: <ACSH>, 195: <ACC>,
196: <AC2H2NH>, 197: <AC2HNH>, 198: <AC2NH>, 199: <(ACO)COOCH2>, 200: <(ACO)CO(OAC)>,
201: <c-CH=CH>, 202: <c-CH=C>, 203: <c-C=C>, 204: <Glycerol>, 205: <-CH(OH)-CH2(OH)>,
206: <-CH(OH)-CH(OH)->, 207: <>C(OH)-CH2(OH)>, 208: <>C(OH)-CH(OH)->, 209:
<>C(OH)-C(OH)<>, 301: <CHCO>, 302: <CCO>, 303: <CHCN>, 304: <CCN>, 305: <CNO2>, 306:
<ACNH>, 307: <ACN>, 308: <HCHO>, 309: <CH=NOH>}
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thermo.unifac.NISTUFMG = {1: ('CH2', [1, 2, 3, 4], 'Alkyl chains'), 2: ('C=C', [5, 6, 7,
8, 9], 'Double bonded alkyl chains'), 3: ('ACH', [15, 16, 17], 'Aromatic carbon'), 4:
('ACCH2', [18, 19, 20, 21], 'Aromatic carbon plus alkyl chain'), 5: ('OH', [34, 204,
205], 'Alcohols'), 6: ('CH3OH', [35], 'Methanol'), 7: ('H2O', [36], 'Water'), 8: ('ACOH',
[37], 'Phenolic –OH groups '), 9: ('CH2CO', [42, 43, 44, 45], 'Ketones'), 10: ('CHO',
[48], 'Aldehydes'), 11: ('CCOO', [51, 52, 53, 54], 'Esters'), 12: ('HCOO', [55],
'Formates'), 13: ('CH2O', [59, 60, 61, 62, 63], 'Ethers'), 14: ('CNH2', [66, 67, 68, 69],
'Amines with 1-alkyl group'), 15: ('(C)2NH', [71, 72, 73], 'Amines with 2-alkyl groups'),
16: ('(C)3N', [74, 75], 'Amines with 3-alkyl groups'), 17: ('ACNH2', [79, 80, 81],
'Anilines'), 18: ('PYRIDINE', [76, 77, 78], 'Pyridines'), 19: ('CCN', [85, 86, 87, 88],
'Nitriles'), 20: ('COOH', [94, 95], 'Acids'), 21: ('CCl', [99, 100, 101],
'Chlorocarbons'), 22: ('CCl2', [102, 103, 104], 'Dichlorocarbons'), 23: ('CCl3', [105,
106], 'Trichlorocarbons'), 24: ('CCl4', [107], 'Tetrachlorocarbons'), 25: ('ACCl', [109],
'Chloroaromatics'), 26: ('CNO2', [132, 133, 134, 135], 'Nitro alkanes'), 27: ('ACNO2',
[136], 'Nitroaromatics'), 28: ('CS2', [146], 'Carbon disulfide'), 29: ('CH3SH', [138,
139, 140, 141], 'Mercaptans'), 30: ('FURFURAL', [50], 'Furfural'), 31: ('DOH', [38],
'Ethylene Glycol'), 32: ('I', [128], 'Iodides'), 33: ('BR', [130], 'Bromides'), 34:
('CC', [13, 14], 'Triplebonded alkyl chains'), 35: ('DMSO', [153], 'Dimethylsulfoxide'),
36: ('ACRY', [90], 'Acrylic'), 37: ('ClC=C', [108], 'Chlorine attached to double bonded
alkyl chain'), 38: ('ACF', [118], 'Fluoroaromatics'), 39: ('DMF', [161, 162, 163, 164,
165], 'Amides'), 40: ('CF2', [111, 112, 113, 114, 115, 116, 117], 'Fluorines'), 41:
('COO', [58], 'Esters'), 42: ('SiH2', [197, 198, 199, 200], 'Silanes'), 43: ('SiO', [201,
202, 203], 'Siloxanes'), 44: ('NMP', [195], 'N-Methyl-2-pyrrolidone'), 45: ('CClF', [120,
121, 122, 123, 124, 125, 126, 127], 'Chloro-Fluorides'), 46: ('CONCH2', [166, 167, 168,
169], 'Amides'), 47: ('OCCOH', [39, 40, 41], 'Oxygenated Alcohols'), 48: ('CH2S', [142,
143, 144, 145], 'Sulfides'), 49: ('MORPHOLIN', [196], 'Morpholine'), 50: ('THIOPHENE',
[147, 148, 149], 'Thiophene'), 51: ('CH2(cy)', [27, 28, 29], 'Cyclic hydrocarbon
chains'), 52: ('C=C(cy)', [30, 31, 32], 'Cyclic unsaturated hydrocarbon chains')}

thermo.unifac.NISTUFIP
Interaction parameters for the NIST (2015) unifac model.

Type dict[int: dict[int: tuple(float, 3)]]

834 Chapter 7. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float


thermo Documentation, Release 0.2.20

7.29.7 Data for NIST KT UNIFAC (2011)

thermo.unifac.NISTKTUFSG = {1: <CH3->, 2: <-CH2->, 3: <-CH<>, 4: <>C<>, 5: <CH2=CH->, 6:
<-CH=CH->, 7: <CH2=C<>, 8: <-CH=C<>, 9: <>C=C<>, 13: <CHC->, 14: <-CC->, 15: <-ACH->, 16:
<>AC- (link)>, 17: <>AC- (cond)>, 18: <>AC-CH3>, 19: <>AC-CH2->, 20: <>AC-CH<>, 21:
<>AC-C<->, 27: <-CH2- (cy)>, 28: <>CH- (cy)>, 29: <>C< (cy)>, 30: <-CH=CH- (cy)>, 31:
<CH2=C< (cy)>, 32: <-CH=C< (cy)>, 34: <-OH(primary)>, 35: <CH3OH>, 36: <H2O>, 37:
<>AC-OH>, 38: <(CH2OH)2>, 39: <-O-CH2-CH2-OH>, 40: <-O-CH-CH2-OH>, 41: <-O-CH2-CH-OH>,
42: <CH3-CO->, 43: <-CH2-CO->, 44: <>CH-CO->, 45: <->C-CO->, 48: <-CHO>, 50: <C5H4O2>,
51: <CH3-COO->, 52: <-CH2-COO->, 53: <>CH-COO->, 54: <->C-COO->, 55: <HCOO->, 58:
<-COO->, 59: <CH3-O->, 60: <-CH2-O->, 61: <>CH-O->, 62: <->CO->, 63: <-CH2-O- (cy)>, 66:
<CH3-NH2>, 67: <-CH2-NH2>, 68: <>CH-NH2>, 69: <->C-NH2>, 71: <CH3-NH->, 72: <-CH2-NH->,
73: <>CH-NH->, 74: <CH3-N<>, 75: <-CH2-N<>, 76: <C5H5N>, 77: <C5H4N->, 78: <C5H3N<>, 79:
<>AC-NH2>, 80: <>AC-NH->, 81: <>AC-N<>, 85: <CH3-CN>, 86: <-CH2-CN>, 87: <>CH-CN>, 88:
<->C-CN>, 90: <CH2=CH-CN>, 94: <-COOH>, 95: <HCOOH>, 99: <-CH2-Cl>, 100: <>CH-Cl>, 101:
<->CCl>, 102: <CH2Cl2>, 103: <-CHCl2>, 104: <>CCl2>, 105: <CHCl3>, 106: <-CCl3>, 107:
<CCl4>, 108: <Cl(C=C)>, 109: <>AC-Cl>, 111: <CHF3>, 112: <-CF3>, 113: <-CHF2>, 114:
<>CF2>, 115: <-CH2F>, 116: <>CH-F>, 117: <->CF>, 118: <>AC-F>, 120: <CCl3F>, 121:
<-CCl2F>, 122: <HCCl2F>, 123: <-HCClF>, 124: <-CClF2>, 125: <HCClF2>, 126: <CClF3>, 127:
<CCl2F2>, 128: <-I>, 130: <-Br>, 132: <CH3-NO2>, 133: <-CH2-NO2>, 134: <>CH-NO2>, 135:
<->C-NO2>, 136: <>AC-NO2>, 138: <CH3-SH>, 139: <-CH2-SH>, 140: <>CH-SH>, 141: <->C-SH>,
142: <CH3-S->, 143: <-CH2-S->, 144: <>CH-S->, 145: <->C-S->, 146: <CS2>, 147:
<THIOPHENE>, 148: <C4H3S->, 149: <C4H2S<>, 153: <DMSO>, 161: <DMF>, 162: <-CON(CH3)2>,
163: <-CON(CH2)(CH3)->, 164: <HCON(CH2)2<>, 165: <-CON(CH2)2<>, 166: <-CONH(CH3)>, 167:
<HCONH(CH2)->, 168: <-CONH(CH2)->, 169: <-CONH2>, 195: <NMP>, 196: <MORPHOLIN>, 197:
<SiH3->, 198: <-SiH2->, 199: <>SiH->, 200: <>Si<>, 201: <-SiH2-O->, 202: <>SiH-O->, 203:
<->Si-O->, 204: <-OH(secondary)>, 205: <-OH(tertiary)>}

thermo.unifac.NISTKTUFMG = {1: ('C', [1, 2, 3, 4]), 2: ('C=C', [5, 6, 7, 8, 9]), 3:
('ACH', [15, 16, 17]), 4: ('ACCH2', [18, 19, 20, 21]), 5: ('OH', [34, 204, 205]), 6:
('CH2OH', [35]), 7: ('H2O', [36]), 8: ('ACOH', [37]), 9: ('CH2CO', [42, 43, 44, 45]), 10:
('CHO', [48]), 11: ('CCOO', [51, 52, 53, 54]), 12: ('HCOO', [55]), 13: ('CH2O', [59, 60,
61, 62]), 14: ('CNH2', [66, 67, 68, 69]), 15: ('(C)2NH', [71, 72, 73]), 16: ('(C)3N',
[74, 75]), 17: ('ACNH2', [79, 80, 81]), 18: ('Pyridine', [76, 77, 78]), 19: ('CCN', [85,
86, 87, 88]), 20: ('COOH', [94, 95]), 21: ('CCl', [99, 100, 101]), 22: ('CCl2', [102,
103, 104]), 23: ('CCl3', [105, 106]), 24: ('CCl4', [107]), 25: ('ACCl', [109]), 26:
('CNO2', [132, 133, 134, 135]), 27: ('ACNO2', [136]), 28: ('CS2', [146]), 29: ('CH3SH',
[138, 139, 140, 141]), 30: ('Furfural', [50]), 31: ('DOH', [38]), 32: ('I', [128]), 33:
('Br', [130]), 34: ('C=-C', [13, 14]), 35: ('DMSO', [153]), 36: ('ACRY', [90]), 37:
('Cl(C=C)', [108]), 38: ('ACF', [118]), 39: ('DMF', [161, 162, 163, 164, 165]), 40:
('CF2', [111, 112, 113, 114, 115, 116, 117]), 41: ('COO', [58]), 42: ('SiH2', [197, 198,
199, 200]), 43: ('SiO', [201, 202, 203]), 44: ('NMP', [195]), 45: ('CClF', [120, 121,
122, 123, 124, 125, 126, 127]), 46: ('CONCH2', [166, 167, 168, 169]), 47: ('OCCOH', [39,
40, 41]), 48: ('CH2S', [142, 143, 144, 145]), 49: ('Morpholin', [196]), 50: ('THIOPHENE',
[147, 148, 149]), 51: ('CH2(cyc)', [27, 28, 29]), 52: ('C=C(cyc)', [30, 31, 32])}

Compared to storing the values in dict[(int1, int2)] = (values), the dict-in-dict structure is found emperically to
take 111608 bytes vs. 79096 bytes, or 30% less memory.

thermo.unifac.NISTKTUFIP
Interaction parameters for the NIST KT UNIFAC (2011) model.

Type dict[int: dict[int: tuple(float, 3)]]
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7.29.8 Data for UNIFAC LLE

thermo.unifac.LLEUFSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>, 7:
<CH=C>, 8: <CH2=C>, 9: <ACH>, 10: <AC>, 11: <ACCH3>, 12: <ACCH2>, 13: <ACCH>, 14: <OH>,
15: <P1>, 16: <P2>, 17: <H2O>, 18: <ACOH>, 19: <CH3CO>, 20: <CH2CO>, 21: <CHO>, 22:
<Furfural>, 23: <COOH>, 24: <HCOOH>, 25: <CH3COO>, 26: <CH2COO>, 27: <CH3O>, 28: <CH2O>,
29: <CHO>, 30: <FCH2O>, 31: <CH2CL>, 32: <CHCL>, 33: <CCL>, 34: <CH2CL2>, 35: <CHCL2>,
36: <CCL2>, 37: <CHCL3>, 38: <CCL3>, 39: <CCL4>, 40: <ACCL>, 41: <CH3CN>, 42: <CH2CN>,
43: <ACNH2>, 44: <CH3NO2>, 45: <CH2NO2>, 46: <CHNO2>, 47: <ACNO2>, 48: <DOH>, 49:
<(HOCH2CH2)2O>, 50: <C5H5N>, 51: <C5H4N>, 52: <C5H3N>, 53: <CCl2=CHCl>, 54: <HCONHCH3>,
55: <DMF>, 56: <(CH2)4SO2>, 57: <DMSO>}

thermo.unifac.LLEMG = {1: ('CH2', [1, 2, 3, 4]), 2: ('C=C', [5, 6, 7, 8]), 3: ('ACH', [9,
10]), 4: ('ACCH2', [11, 12, 13]), 5: ('OH', [14]), 6: ('P1', [15]), 7: ('P2', [16]), 8:
('H2O', [17]), 9: ('ACOH', [18]), 10: ('CH2CO', [19, 20]), 11: ('CHO', [21]), 12:
('Furfural', [22]), 13: ('COOH', [23, 24]), 14: ('CCOO', [25, 26]), 15: ('CH2O', [27, 28,
29, 30]), 16: ('CCL', [31, 32, 33]), 17: ('CCL2', [34, 35, 36]), 18: ('CCL3', [37, 38]),
19: ('CCL4', [39]), 20: ('ACCL', [40]), 21: ('CCN', [41, 42]), 22: ('ACNH2', [43]), 23:
('CNO2', [44, 45, 46]), 24: ('ACNO2', [47]), 25: ('DOH', [48]), 26: ('DEOH', [49]), 27:
('PYRIDINE', [50, 51, 52]), 28: ('TCE', [53]), 29: ('MFA', [54]), 30: ('DMFA', [55]), 31:
('TMS', [56]), 32: ('DMSO', [57])}

Larsen, Bent L., Peter Rasmussen, and Aage Fredenslund. “A Modified UNIFAC Group-Contribution Model for
Prediction of Phase Equilibria and Heats of Mixing.” Industrial & Engineering Chemistry Research 26, no. 11
(November 1, 1987): 2274-86. https://doi.org/10.1021/ie00071a018.

thermo.unifac.LLEUFIP
Interaction parameters for the LLE unifac model.

Type dict[int: dict[int: float]]

7.29.9 Data for Lyngby UNIFAC

thermo.unifac.LUFSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>, 7:
<CH2=C>, 8: <CH=C>, 9: <C=C>, 10: <ACH>, 11: <AC>, 12: <OH>, 13: <CH3OH>, 14: <H2O>, 15:
<CH3CO>, 16: <CH2CO>, 17: <CHO>, 18: <CH3COO>, 19: <CH2COO>, 20: <CH3O>, 21: <CH2O>, 22:
<CHO>, 23: <THF>, 24: <NH2>, 25: <CH3NH>, 26: <CH2NH>, 27: <CHNH>, 28: <CH3N>, 29:
<CH2N>, 30: <ANH2>, 31: <C5H5N>, 32: <C5H4N>, 33: <C5H3N>, 34: <CH3CN>, 35: <CH2CN>, 36:
<COOH>, 37: <CH2CL>, 38: <CHCL>, 39: <CCL>, 40: <CH2CL2>, 41: <CHCL2>, 42: <CCL2>, 43:
<CHCL3>, 44: <CCL3>, 45: <CCL4>}

thermo.unifac.LUFMG = {1: ('CH2', [1, 2, 3, 4]), 2: ('C=C', [5, 6, 7, 8, 9]), 3: ('ACH',
[10, 11]), 4: ('OH', [12]), 5: ('CH3OH', [13]), 6: ('H2O', [14]), 7: ('CH2CO', [15, 16]),
8: ('CHO', [17]), 9: ('CCOO', [18, 19]), 10: ('CH2O', [20, 21, 22, 23]), 11: ('NH2',
[24]), 12: ('CNH2NG', [25, 26, 27]), 13: ('CH2N', [28, 29]), 14: ('ANH2', [30]), 15:
('PYRIDINE', [31, 32, 33]), 16: ('CCN', [34, 35]), 17: ('COOH', [36]), 18: ('CCL', [37,
38, 39]), 19: ('CCL2', [40, 41, 42]), 20: ('CCL3', [43, 44]), 21: ('CCL4', [45])}

thermo.unifac.LUFIP
Interaction parameters for the Lyngby UNIFAC model.

Type dict[int: dict[int: tuple(float, 3)]]
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7.29.10 Data for PSRK UNIFAC

thermo.unifac.PSRKSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>, 7:
<CH2=C>, 8: <CH=C>, 9: <ACH>, 10: <AC>, 11: <ACCH3>, 12: <ACCH2>, 13: <ACCH>, 14: <OH>,
15: <CH3OH>, 16: <H2O>, 17: <ACOH>, 18: <CH3CO>, 19: <CH2CO>, 20: <CHO>, 21: <CH3COO>,
22: <CH2COO>, 23: <HCOO>, 24: <CH3O>, 25: <CH2O>, 26: <CHO>, 27: <THF>, 28: <CH3NH2>, 29:
<CH2NH2>, 30: <CHNH2>, 31: <CH3NH>, 32: <CH2NH>, 33: <CHNH>, 34: <CH3N>, 35: <CH2N>, 36:
<ACNH2>, 37: <C5H5N>, 38: <C5H4N>, 39: <C5H3N>, 40: <CH3CN>, 41: <CH2CN>, 42: <COOH>, 43:
<HCOOH>, 44: <CH2CL>, 45: <CHCL>, 46: <CCL>, 47: <CH2CL2>, 48: <CHCL2>, 49: <CCL2>, 50:
<CHCL3>, 51: <CCL3>, 52: <CCL4>, 53: <ACCL>, 54: <CH3NO2>, 55: <CH2NO2>, 56: <CHNO2>, 57:
<ACNO2>, 58: <CS2>, 59: <CH3SH>, 60: <CH2SH>, 61: <FURFURAL>, 62: <DOH>, 63: <I>, 64:
<BR>, 65: <CH=-C>, 66: <C=-C>, 67: <DMSO>, 68: <ACRY>, 69: <CL-(C=C)>, 70: <C=C>, 71:
<ACF>, 72: <DMF>, 73: <HCON(CH2)2>, 74: <CF3>, 75: <CF2>, 76: <CF>, 77: <COO>, 78:
<SIH3>, 79: <SIH2>, 80: <SIH>, 81: <SI>, 82: <SIH2O>, 83: <SIHO>, 84: <SIO>, 85: <NMP>,
86: <CCL3F>, 87: <CCL2F>, 88: <HCCL2F>, 89: <HCCLF>, 90: <CCLF2>, 91: <HCCLF2>, 92:
<CCLF3>, 93: <CCL2F2>, 94: <AMH2>, 95: <AMHCH3>, 96: <AMHCH2>, 97: <AM(CH3)2>, 98:
<AMCH3CH2>, 99: <AM(CH2)2>, 100: <C2H5O2>, 101: <C2H4O2>, 102: <CH3S>, 103: <CH2S>, 104:
<CHS>, 105: <MORPH>, 106: <C4H4S>, 107: <C4H3S>, 108: <C4H2S>, 109: <H2C=CH2>, 110:
<CH=-CH>, 111: <NH3>, 112: <CO>, 113: <H2>, 114: <H2S>, 115: <N2>, 116: <AR>, 117: <CO2>,
118: <CH4>, 119: <O2>, 120: <D2>, 121: <SO2>, 122: <NO>, 123: <N2O>, 124: <SF6>, 125:
<HE>, 126: <NE>, 127: <KR>, 128: <XE>, 129: <HF>, 130: <HCL>, 131: <HBR>, 132: <HI>, 133:
<COS>, 134: <CHSH>, 135: <CSH>, 136: <H2COCH>, 137: <HCOCH>, 138: <HCOC>, 139: <H2COCH2>,
140: <H2COC>, 141: <COC>, 142: <F2>, 143: <CL2>, 144: <BR2>, 145: <HCN>, 146: <NO2>, 147:
<CF4>, 148: <O3>, 149: <CLNO>, 152: <CNH2>}

thermo.unifac.PSRKMG = {1: ('CH2', [1, 2, 3, 4]), 2: ('C=C', [5, 6, 7, 8, 70, 109]), 3:
('ACH', [9, 10]), 4: ('ACCH2', [11, 12, 13]), 5: ('OH', [14]), 6: ('CH3OH', [15]), 7:
('H2O', [16]), 8: ('ACOH', [17]), 9: ('CH2CO', [18, 19]), 10: ('CHO', [20]), 11: ('CCOO',
[21, 22]), 12: ('HCOO', [23]), 13: ('CH2O', [24, 25, 26, 27]), 14: ('CNH2', [28, 29, 30,
152]), 15: ('CNH', [31, 32, 33]), 16: ('(C)3N', [34, 35]), 17: ('ACNH2', [36]), 18:
('PYRIDINE', [37, 38, 39]), 19: ('CCN', [40, 41]), 20: ('COOH', [42, 43]), 21: ('CCL',
[44, 45, 46]), 22: ('CCL2', [47, 48, 49]), 23: ('CCL3', [50, 51]), 24: ('CCL4', [52]),
25: ('ACCL', [53]), 26: ('CNO2', [54, 55, 56]), 27: ('ACNO2', [57]), 28: ('CS2', [58]),
29: ('CH3SH', [59, 60, 134, 135]), 30: ('FURFURAL', [61]), 31: ('DOH', [62]), 32: ('I',
[63]), 33: ('BR', [64]), 34: ('C=-C', [65, 66, 110]), 35: ('DMSO', [67]), 36: ('ACRY',
[68]), 37: ('CLCC', [69]), 38: ('ACF', [71]), 39: ('DMF', [72, 73]), 40: ('CF2', [74, 75,
76]), 41: ('COO', [77]), 42: ('SIH2', [78, 79, 80, 81]), 43: ('SIO', [82, 83, 84]), 44:
('NMP', [85]), 45: ('CCLF', [86, 87, 88, 89, 90, 91, 92, 93]), 46: ('CON (AM)', [94, 95,
96, 97, 98, 99]), 47: ('OCCOH', [100, 101]), 48: ('CH2S', [102, 103, 104]), 49: ('MORPH',
[105]), 50: ('THIOPHEN', [106, 107, 108]), 51: ('EPOXY', [136, 137, 138, 139, 140, 141]),
55: ('NH3', [111]), 56: ('CO2', [117]), 57: ('CH4', [118]), 58: ('O2', [119]), 59: ('AR',
[116]), 60: ('N2', [115]), 61: ('H2S', [114]), 62: ('H2', [113, 120]), 63: ('CO', [112]),
65: ('SO2', [121]), 66: ('NO', [122]), 67: ('N2O', [123]), 68: ('SF6', [124]), 69: ('HE',
[125]), 70: ('NE', [126]), 71: ('KR', [127]), 72: ('XE', [128]), 73: ('HF', [129]), 74:
('HCL', [130]), 75: ('HBR', [131]), 76: ('HI', [132]), 77: ('COS', [133]), 78: ('F2',
[142]), 79: ('CL2', [143]), 80: ('BR2', [144]), 81: ('HCN', [145]), 82: ('NO2', [146]),
83: ('CF4', [147]), 84: ('O3', [148]), 85: ('CLNO', [149])}

Magnussen, Thomas, Peter Rasmussen, and Aage Fredenslund. “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibriums.”
Industrial & Engineering Chemistry Process Design and Development 20, no. 2 (April 1, 1981): 331-39.
https://doi.org/10.1021/i200013a024.

thermo.unifac.PSRKIP
Interaction parameters for the PSRKIP UNIFAC model.

Type dict[int: dict[int: tuple(float, 3)]]
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7.29.11 Data for VTPR UNIFAC

thermo.unifac.VTPRSG = {1: <CH3>, 2: <CH2>, 3: <CH>, 4: <C>, 5: <CH2=CH>, 6: <CH=CH>, 7:
<CH2=C>, 8: <CH=C>, 9: <ACH>, 10: <AC>, 11: <ACCH3>, 12: <ACCH2>, 13: <ACCH>, 14:
<OH(P)>, 15: <CH3OH>, 16: <H2O>, 17: <ACOH>, 18: <CH3CO>, 19: <CH2CO>, 20: <CHO>, 21:
<CH3COO>, 22: <CH2COO>, 23: <HCOO>, 24: <CH3O>, 25: <CH2O>, 26: <CHO>, 27: <THF>, 28:
<CH3NH2>, 29: <CH2NH2>, 30: <CHNH2>, 31: <CH3NH>, 32: <CH2NH>, 33: <CHNH>, 34: <CH3N>,
35: <CH2N>, 36: <ACNH2>, 40: <CH3CN>, 41: <CH2CN>, 44: <CH2CL>, 45: <CHCL>, 46: <CCL>,
47: <CH2CL2>, 48: <CHCL2>, 49: <CCL2>, 50: <CHCL3>, 51: <CCL3>, 52: <CCL4>, 53: <ACCL>,
54: <CH3NO2>, 55: <CH2NO2>, 56: <CHNO2>, 58: <CS2>, 59: <CH3SH>, 60: <CH2SH>, 61:
<FURFURAL>, 62: <DOH>, 63: <I>, 64: <BR>, 67: <DMSO>, 70: <C=C>, 72: <DMF>, 73:
<HCON(..>, 78: <CY-CH2>, 79: <CY-CH>, 80: <CY-C>, 81: <OH(S)>, 82: <OH(T)>, 83:
<CY-CH2O>, 84: <TRIOXAN>, 85: <CNH2>, 86: <NMP>, 87: <NEP>, 88: <NIPP>, 89: <NTBP>, 97:
<Allene>, 98: <=CHCH=>, 99: <=CCH=>, 107: <H2COCH>, 108: <COCH>, 109: <HCOCH>, 116:
<AC-CHO>, 119: <H2COCH2>, 129: <CHCOO>, 139: <CF2H>, 140: <CF2H2>, 142: <CF2Cl>, 143:
<CF2Cl2>, 146: <CF4>, 148: <CF3Br>, 153: <H2COC>, 180: <CHCOO>, 250: <H2C=CH2>, 300:
<NH3>, 301: <CO>, 302: <H2>, 303: <H2S>, 304: <N2>, 305: <Ar>, 306: <CO2>, 307: <CH4>,
308: <O2>, 309: <D2>, 310: <SO2>, 312: <N2O>, 314: <He>, 315: <Ne>, 319: <HCl>, 345:
<Hg>}

thermo.unifac.VTPRMG = {1: ('CH2', [1, 2, 3, 4]), 2: ('H2C=CH2', [5, 6, 7, 8, 70, 97, 98,
99, 250]), 3: ('ACH', [9, 10]), 4: ('ACCH2', [11, 12, 13]), 5: ('OH', [14, 81, 82]), 6:
('CH3OH', [15]), 7: ('H2O', [16]), 8: ('ACOH', [17]), 9: ('CH2CO', [18, 19]), 10: ('CHO',
[20]), 11: ('CCOO', [21, 22, 129, 180]), 12: ('HCOO', [23]), 13: ('CH2O', [24, 25, 26]),
14: ('CH2NH2', [28, 29, 30, 85]), 15: ('CH2NH', [31, 32, 33]), 16: ('(C)3N', [34, 35]),
17: ('ACNH2', [36]), 19: ('CH2CN', [40, 41]), 21: ('CCL', [44, 45, 46]), 22: ('CCL2',
[47, 48, 49]), 23: ('CCL3', [51]), 24: ('CCL4', [52]), 25: ('ACCL', [53]), 26: ('CNO2',
[54, 55, 56]), 28: ('CS2', [58]), 29: ('CH3SH', [59, 60]), 30: ('FURFURAL', [61]), 31:
('DOH', [62]), 32: ('I', [63]), 33: ('BR', [64]), 35: ('DMSO', [67]), 39: ('DMF', [72,
73]), 42: ('CY-CH2', [78, 79, 80]), 43: ('CY-CH2O', [27, 83, 84]), 45: ('CHCL3', [50]),
46: ('CY-CONC', [86, 87, 88, 89]), 53: ('EPOXIDES', [107, 108, 109, 119, 153]), 57:
('AC-CHO', [116]), 68: ('CF2H', [139, 140]), 70: ('CF2Cl2', [142, 143, 148]), 73: ('CF4',
[146]), 150: ('NH3', [300]), 151: ('CO2', [306]), 152: ('CH4', [307]), 153: ('O2',
[308]), 154: ('Ar', [305]), 155: ('N2', [304]), 156: ('H2S', [303]), 157: ('D2', [302,
309]), 158: ('CO', [301]), 160: ('SO2', [310]), 162: ('N2O', [312]), 164: ('He', [314]),
165: ('Ne', [315]), 169: ('HCl', [319]), 185: ('Hg', [345])}

thermo.unifac.VTPRIP
Interaction parameters for the VTPRIP UNIFAC model.

Type dict[int: dict[int: tuple(float, 3)]]

7.30 Support for pint Quantities (thermo.units)

Basic module which wraps some of thermo functions and classes to be compatible with the pint unit handling library.
All other object - dicts, lists, etc - are not wrapped.

>>> from fluids.units import *
>>> import thermo
>>> thermo.units.PRMIX
<class 'fluids.units.PRMIX'>
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>>> kwargs = dict(T=400.0*u.degC, P=30*u.psi, Tcs=[126.1, 190.6]*u.K, Pcs=[33.94E5, 46.
→˓04E5]*u.Pa, omegas=[0.04, 0.011]*u.dimensionless, zs=[0.5, 0.5]*u.dimensionless,␣
→˓kijs=[[0.0, 0.0289], [0.0289, 0.0]]*u.dimensionless)
>>> thermo.units.PRMIX(**kwargs)
PRMIX(Tcs=array([126.1, 190.6]), Pcs=array([3394000., 4604000.]), omegas=array([0.04 , 0.
→˓011]), kijs=array([[0. , 0.0289],

[0.0289, 0. ]]), zs=array([0.5, 0.5]), T=673.15, P=206842.7187950509)

Note that values which can normally be numpy arrays or python lists, are required to always be numpy arrays in this
interface.

This is interface is powerful but not complex enough to handle many of the objects in Thermo. A list of the types of
classes which are not supported is as follows:

• TDependentProperty, TPDependentProperty, MixtureProperty

• Phase objects

• Flash object

• ChemicalConstantsPackage

• PropertyCorrelationsPackage

For further information on this interface, please see the documentation of fluids.units which is built in the same way.

7.31 Utilities and Base Classes (thermo.utils)

This module contains base classes for temperature T, pressure P, and composition zs dependent properties. These
power the various interfaces for each property.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Temperature Dependent

• Temperature and Pressure Dependent

• Temperature, Pressure, and Composition Dependent

7.31.1 Temperature Dependent

class thermo.utils.TDependentProperty(extrapolation, **kwargs)
Class for calculating temperature-dependent chemical properties.

On creation, a TDependentProperty examines all the possible methods implemented for calculating the prop-
erty, loads whichever coefficients it needs (unless load_data is set to False), examines its input parameters, and
selects the method it prefers. This method will continue to be used for all calculations until the method is changed
by setting a new method to the to method attribute.

The default list of preferred method orderings is at ranked_methods for all properties; the order can be modified
there in-place, and this will take effect on all new TDependentProperty instances created but NOT on existing
instances.

All methods have defined criteria for determining if they are valid before calculation, i.e. a minimum and max-
imum temperature for coefficients to be valid. For constant property values used due to lack of temperature-
dependent data, a short range is normally specified as valid.
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It is not assumed that a specified method will succeed; for example many expressions are not mathematically valid
past the critical point, and in some cases there is no easy way to determine the temperature where a property stops
being reasonable.

Accordingly, all properties calculated are checked by a sanity function test_property_validity, which has
basic sanity checks. If the property is not reasonable, None is returned.

This framework also supports tabular data, which is interpolated from if specified. Interpolation is cubic-spline
based if 5 or more points are given, and linearly interpolated with if few points are given. A transform may
be applied so that a property such as vapor pressure can be interpolated non-linearly. These are functions
or lambda expressions which are set for the variables interpolation_T, interpolation_property, and
interpolation_property_inv.

In order to calculate properties outside of the range of their correlations, a number of extrapolation method are
available. Extrapolation is used by default on some properties but not all. The extrapolation methods available
are as follows:

• ‘constant’ - returns the model values as calculated at the temperature limits

• ‘linear’ - fits the model at its temperature limits to a linear model

• ‘nolimit’ - attempt to evaluate the model outside of its limits; this will error in most cases and return None

• ‘interp1d’ - SciPy’s interp1d is used to extrapolate

• ‘AntoineAB’ - fits the model to Antoine’s equation at the temperature limits using only the A and B
coefficient

• ‘DIPPR101_ABC’ - fits the model at its temperature limits to the EQ101 equation

• ‘Watson’ - fits the model to the Heat of Vaporization model Watson

• ‘EXP_POLY_LN_TAU2’ - uses the models’s critical temperature and derivative to fit the model linearly
in the equation prop = exp(𝑎 + 𝑏 · ln 𝜏), so that it is always zero at the critical point; suitable for surface
tension.

• ‘DIPPR106_AB’ - uses the models’s critical temperature and derivative to fit the model linearly in the
equation EQ106’s equation at the temperature limits using only the A and B coefficient

• ‘DIPPR106_ABC’ - uses the models’s critical temperature and first two derivatives to fit the model quadrat-
ically in the equation EQ106’s equation at the temperature limits using only the A, B, and C coefficient.

It is possible to use different extrapolation methods for the low-temperature and the high-temperature region.
Specify the extrapolation parameter with the ‘|’ symbols between the two methods; the first method is used for
low-temperature, and the second for the high-temperature.

Attributes
name [str] The name of the property being calculated, [-]

units [str] The units of the property, [-]

method [str] Method used to set a specific property method or to obtain the name of the method
in use.

interpolation_T [callable or None] A function or lambda expression to transform the tempera-
tures of tabular data for interpolation; e.g. ‘lambda self, T: 1./T’

interpolation_T_inv [callable or None] A function or lambda expression to invert the transform
of temperatures of tabular data for interpolation; e.g. ‘lambda self, x: self.Tc*(1 - x)’

interpolation_property [callable or None] A function or lambda expression to transform tabu-
lar property values prior to interpolation; e.g. ‘lambda self, P: log(P)’
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interpolation_property_inv [callable or None] A function or property expression to transform
interpolated property values from the transform performed by interpolation_property
back to their actual form, e.g. ‘lambda self, P: exp(P)’

Tmin [float] Minimum temperature (K) at which the current method can calculate the property.

Tmax [float] Maximum temperature (K) at which the current method can calculate the property.

property_min [float] Lowest value expected for a property while still being valid; this is a cri-
teria used by test_method_validity.

property_max [float] Highest value expected for a property while still being valid; this is a
criteria used by test_method_validity.

ranked_methods [list] Constant list of ranked methods by default

tabular_data [dict] Stores all user-supplied property data for interpolation in format {name:
(Ts, properties)}, [-]

tabular_data_interpolators [dict] Stores all interpolation objects, idexed by name and property
transform methods with the format {(name, interpolation_T, interpolation_property, interpo-
lation_property_inv): (extrapolator, spline)}, [-]

all_methods [set] Set of all methods available for a given CASRN and set of properties, [-]

Methods

T_dependent_property(T) Method to calculate the property with sanity check-
ing and using the selected method .

T_dependent_property_derivative(T[, order]) Method to obtain a derivative of a property with re-
spect to temperature, of a given order.

T_dependent_property_integral(T1, T2) Method to calculate the integral of a property with
respect to temperature, using the selected method.

T_dependent_property_integral_over_T(T1,
T2)

Method to calculate the integral of a property over
temperature with respect to temperature, using the se-
lected method.

__call__(T) Convenience method to calculate the property; calls
T_dependent_property.

add_correlation(name, model, Tmin, Tmax, ...) Method to add a new set of emperical fit equation co-
efficients to the object and select it for future property
calculations.

add_method(f[, Tmin, Tmax, f_der, f_der2, ...]) Define a new method and select it for future property
calculations.

add_tabular_data(Ts, properties[, name, ...]) Method to set tabular data to be used for interpola-
tion.

as_json([references]) Method to create a JSON serialization of the property
model which can be stored, and reloaded later.

calculate(T, method) Method to calculate a property with a specified
method, with no validity checking or error handling.

calculate_derivative(T, method[, order]) Method to calculate a derivative of a property with
respect to temperature, of a given order using a spec-
ified method.

calculate_integral(T1, T2, method) Method to calculate the integral of a property with
respect to temperature, using a specified method.

continues on next page
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Table 97 – continued from previous page
calculate_integral_over_T(T1, T2, method) Method to calculate the integral of a property over

temperature with respect to temperature, using a
specified method.

extrapolate(T, method[, in_range]) Method to perform extrapolation on a given method
according to the extrapolation setting.

fit_add_model(name, model, Ts, data, **kwargs) Method to add a new emperical fit equation to the
object by fitting its coefficients to specified data.

fit_data_to_model(Ts, data, model[, ...]) Method to fit T-dependent property data to one of the
available model correlations.

from_json(json_repr) Method to create a property model from a JSON se-
rialization of another property model.

interpolate(T, name) Method to perform interpolation on a given tabular
data set previously added via add_tabular_data.

plot_T_dependent_property([Tmin, Tmax, ...]) Method to create a plot of the property vs temperature
according to either a specified list of methods, or user
methods (if set), or all methods.

polynomial_from_method(method[, n, start_n,
...])

Method to fit a T-dependent property to a polynomial.

solve_property(goal) Method to solve for the temperature at which a prop-
erty is at a specified value.

test_method_validity(T, method) Method to test the validity of a specified method for
a given temperature.

test_property_validity(prop) Method to test the validity of a calculated property.
valid_methods([T]) Method to obtain a sorted list of methods that have

data available to be used.

T_dependent_property(T)
Method to calculate the property with sanity checking and using the selected method .

In the unlikely event the calculation of the property fails, None is returned.

The calculated result is checked with test_property_validity and None is returned if the calculated
value is nonsensical.

Parameters
T [float] Temperature at which to calculate the property, [K]

Returns
prop [float] Calculated property, [units]

T_dependent_property_derivative(T, order=1)
Method to obtain a derivative of a property with respect to temperature, of a given order.

Calls calculate_derivative internally to perform the actual calculation.

derivative =
𝑑(property)

𝑑𝑇

Parameters
T [float] Temperature at which to calculate the derivative, [K]

order [int] Order of the derivative, >= 1

Returns
derivative [float] Calculated derivative property, [units/K^order]
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T_dependent_property_integral(T1, T2)
Method to calculate the integral of a property with respect to temperature, using the selected method.

Calls calculate_integral internally to perform the actual calculation.

integral =

∫︁ 𝑇2

𝑇1

property 𝑑𝑇

Parameters
T1 [float] Lower limit of integration, [K]

T2 [float] Upper limit of integration, [K]

Returns
integral [float] Calculated integral of the property over the given range, [units*K]

T_dependent_property_integral_over_T(T1, T2)
Method to calculate the integral of a property over temperature with respect to temperature, using the
selected method.

Calls calculate_integral_over_T internally to perform the actual calculation.

integral =

∫︁ 𝑇2

𝑇1

property
𝑇

𝑑𝑇

Parameters
T1 [float] Lower limit of integration, [K]

T2 [float] Upper limit of integration, [K]

Returns
integral [float] Calculated integral of the property over the given range, [units]

T_limits = {}
Dictionary containing method: (Tmin, Tmax) pairs for all methods applicable to the chemical

__call__(T)
Convenience method to calculate the property; calls T_dependent_property. Caches previously
calculated value, which is an overhead when calculating many different values of a property. See
T_dependent_property for more details as to the calculation procedure.

Parameters
T [float] Temperature at which to calculate the property, [K]

Returns
prop [float] Calculated property, [units]

__repr__()
Create and return a string representation of the object. The design of the return string is such that it can be
eval’d into itself. This is very convinient for creating tests. Note that several methods are not compatible
with the eval’ing principle.

Returns
repr [str] String representation, [-]

add_correlation(name, model, Tmin, Tmax, **kwargs)
Method to add a new set of emperical fit equation coefficients to the object and select it for future property
calculations.

A number of hardcoded model names are implemented; other models are not supported.

7.31. Utilities and Base Classes (thermo.utils) 843

https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/library/functions.html#eval


thermo Documentation, Release 0.2.20

Parameters
name [str] The name of the coefficient set; user specified, [-]

model [str] A string representing the supported models, [-]

Tmin [float] Minimum temperature to use the method at, [K]

Tmax [float] Maximum temperature to use the method at, [K]

kwargs [dict] Various keyword arguments accepted by the model, [-]

Notes

The correlation models and links to their functions, describing their parameters, are as follows:

• “Antoine”: Antoine, required parameters (‘A’, ‘B’, ‘C’), optional parameters (‘base’,).

• “TRC_Antoine_extended”: TRC_Antoine_extended, required parameters (‘Tc’, ‘to’, ‘A’, ‘B’, ‘C’,
‘n’, ‘E’, ‘F’).

• “Wagner_original”: Wagner_original, required parameters (‘Tc’, ‘Pc’, ‘a’, ‘b’, ‘c’, ‘d’).

• “Wagner”: Wagner, required parameters (‘Tc’, ‘Pc’, ‘a’, ‘b’, ‘c’, ‘d’).

• “Yaws_Psat”: Yaws_Psat, required parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “TDE_PVExpansion”: TDE_PVExpansion, required parameters (‘a1’, ‘a2’, ‘a3’), optional parameters
(‘a4’, ‘a5’, ‘a6’, ‘a7’, ‘a8’).

• “Alibakhshi”: Alibakhshi, required parameters (‘Tc’, ‘C’).

• “PPDS12”: PPDS12, required parameters (‘Tc’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “Watson”: Watson, required parameters (‘Hvap_ref’, ‘T_ref’, ‘Tc’), optional parameters (‘exponent’,).

• “Viswanath_Natarajan_2”: Viswanath_Natarajan_2, required parameters (‘A’, ‘B’).

• “Viswanath_Natarajan_2_exponential”: Viswanath_Natarajan_2_exponential, required param-
eters (‘C’, ‘D’).

• “Viswanath_Natarajan_3”: Viswanath_Natarajan_3, required parameters (‘A’, ‘B’, ‘C’).

• “PPDS5”: PPDS5, required parameters (‘Tc’, ‘a0’, ‘a1’, ‘a2’).

• “mu_TDE”: mu_TDE, required parameters (‘A’, ‘B’, ‘C’, ‘D’).

• “PPDS9”: PPDS9, required parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “mu_Yaws”: mu_Yaws, required parameters (‘A’, ‘B’), optional parameters (‘C’, ‘D’).

• “Poling”: Poling, required parameters (‘a’, ‘b’, ‘c’, ‘d’, ‘e’).

• “TRCCp”: TRCCp, required parameters (‘a0’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘a5’, ‘a6’, ‘a7’).

• “Zabransky_quasi_polynomial”: Zabransky_quasi_polynomial, required parameters (‘Tc’, ‘a1’,
‘a2’, ‘a3’, ‘a4’, ‘a5’, ‘a6’).

• “Zabransky_cubic”: Zabransky_cubic, required parameters (‘a1’, ‘a2’, ‘a3’, ‘a4’).

• “REFPROP_sigma”: REFPROP_sigma, required parameters (‘Tc’, ‘sigma0’, ‘n0’), optional parame-
ters (‘sigma1’, ‘n1’, ‘sigma2’, ‘n2’).

• “Somayajulu”: Somayajulu, required parameters (‘Tc’, ‘A’, ‘B’, ‘C’).

• “Jasper”: Jasper, required parameters (‘a’, ‘b’).

• “PPDS14”: PPDS14, required parameters (‘Tc’, ‘a0’, ‘a1’, ‘a2’).
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• “Watson_sigma”: Watson_sigma, required parameters (‘Tc’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘a5’).

• “ISTExpansion”: ISTExpansion, required parameters (‘Tc’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘a5’).

• “Chemsep_16”: Chemsep_16, required parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “PPDS8”: PPDS8, required parameters (‘Tc’, ‘a0’, ‘a1’, ‘a2’, ‘a3’).

• “PPDS3”: PPDS3, required parameters (‘Tc’, ‘a1’, ‘a2’, ‘a3’).

• “TDE_VDNS_rho”: TDE_VDNS_rho, required parameters (‘Tc’, ‘rhoc’, ‘a1’, ‘a2’, ‘a3’, ‘a4’, ‘MW’).

• “PPDS17”: PPDS17, required parameters (‘Tc’, ‘a0’, ‘a1’, ‘a2’, ‘MW’).

• “volume_VDI_PPDS”: volume_VDI_PPDS, required parameters (‘Tc’, ‘rhoc’, ‘a’, ‘b’, ‘c’, ‘d’, ‘MW’).

• “Rackett_fit”: Rackett_fit, required parameters (‘Tc’, ‘rhoc’, ‘b’, ‘n’, ‘MW’).

• “DIPPR100”: EQ100, required parameters (), optional parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’).

• “constant”: EQ100, required parameters (), optional parameters (‘A’,).

• “linear”: EQ100, required parameters (), optional parameters (‘A’, ‘B’).

• “quadratic”: EQ100, required parameters (), optional parameters (‘A’, ‘B’, ‘C’).

• “cubic”: EQ100, required parameters (), optional parameters (‘A’, ‘B’, ‘C’, ‘D’).

• “quintic”: EQ100, required parameters (), optional parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “polynomial”: horner_backwards, required parameters (‘coeffs’,).

• “exp_polynomial”: exp_horner_backwards, required parameters (‘coeffs’,).

• “polynomial_ln_tau”: horner_backwards_ln_tau, required parameters (‘Tc’, ‘coeffs’).

• “exp_polynomial_ln_tau”: exp_horner_backwards_ln_tau, required parameters (‘Tc’, ‘coeffs’).

• “DIPPR101”: EQ101, required parameters (‘A’, ‘B’), optional parameters (‘C’, ‘D’, ‘E’).

• “DIPPR102”: EQ102, required parameters (‘A’, ‘B’, ‘C’, ‘D’).

• “DIPPR104”: EQ104, required parameters (‘A’, ‘B’), optional parameters (‘C’, ‘D’, ‘E’).

• “DIPPR105”: EQ105, required parameters (‘A’, ‘B’, ‘C’, ‘D’).

• “DIPPR106”: EQ106, required parameters (‘Tc’, ‘A’, ‘B’), optional parameters (‘C’, ‘D’, ‘E’).

• “YawsSigma”: EQ106, required parameters (‘Tc’, ‘A’, ‘B’), optional parameters (‘C’, ‘D’, ‘E’).

• “DIPPR107”: EQ107, required parameters (), optional parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “DIPPR114”: EQ114, required parameters (‘Tc’, ‘A’, ‘B’, ‘C’, ‘D’).

• “DIPPR115”: EQ115, required parameters (‘A’, ‘B’), optional parameters (‘C’, ‘D’, ‘E’).

• “DIPPR116”: EQ116, required parameters (‘Tc’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’).

• “DIPPR127”: EQ127, required parameters (‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’).

• “Twu91_alpha_pure”: Twu91_alpha_pure, required parameters (‘Tc’, ‘c0’, ‘c1’, ‘c2’).

• “Heyen_alpha_pure”: Heyen_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’).

• “Harmens_Knapp_alpha_pure”: Harmens_Knapp_alpha_pure, required parameters (‘Tc’, ‘c1’,
‘c2’).

• “Mathias_Copeman_untruncated_alpha_pure”: Mathias_Copeman_untruncated_alpha_pure,
required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Mathias_1983_alpha_pure”: Mathias_1983_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’).
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• “Soave_1972_alpha_pure”: Soave_1972_alpha_pure, required parameters (‘Tc’, ‘c0’).

• “Soave_1979_alpha_pure”: Soave_1979_alpha_pure, required parameters (‘Tc’, ‘M’, ‘N’).

• “Gibbons_Laughton_alpha_pure”: Gibbons_Laughton_alpha_pure, required parameters (‘Tc’,
‘c1’, ‘c2’).

• “Soave_1984_alpha_pure”: Soave_1984_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’).

• “Yu_Lu_alpha_pure”: Yu_Lu_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’, ‘c4’).

• “Trebble_Bishnoi_alpha_pure”: Trebble_Bishnoi_alpha_pure, required parameters (‘Tc’, ‘c1’).

• “Melhem_alpha_pure”: Melhem_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’).

• “Androulakis_alpha_pure”: Androulakis_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Schwartzentruber_alpha_pure”: Schwartzentruber_alpha_pure, required parameters (‘Tc’, ‘c1’,
‘c2’, ‘c3’, ‘c4’).

• “Almeida_alpha_pure”: Almeida_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Soave_1993_alpha_pure”: Soave_1993_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’).

• “Gasem_alpha_pure”: Gasem_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Coquelet_alpha_pure”: Coquelet_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Haghtalab_alpha_pure”: Haghtalab_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Saffari_alpha_pure”: Saffari_alpha_pure, required parameters (‘Tc’, ‘c1’, ‘c2’, ‘c3’).

• “Chen_Yang_alpha_pure”: Chen_Yang_alpha_pure, required parameters (‘Tc’, ‘omega’, ‘c1’, ‘c2’,
‘c3’, ‘c4’, ‘c5’, ‘c6’, ‘c7’).

• “Wagner2,5”: Wagner, required parameters (‘Tc’, ‘Pc’, ‘a’, ‘b’, ‘c’, ‘d’).

• “Wagner3,6”: Wagner_original, required parameters (‘Tc’, ‘Pc’, ‘a’, ‘b’, ‘c’, ‘d’).

• “Andrade”: Viswanath_Natarajan_2, required parameters (‘A’, ‘B’).

• “YawsHvap”: EQ106, required parameters (‘Tc’, ‘A’, ‘B’), optional parameters (‘C’, ‘D’, ‘E’).

add_method(f, Tmin=None, Tmax=None, f_der=None, f_der2=None, f_der3=None, f_int=None,
f_int_over_T=None, name=None)

Define a new method and select it for future property calculations.

Parameters
f [callable] Object which calculates the property given the temperature in K, [-]

Tmin [float, optional] Minimum temperature to use the method at, [K]

Tmax [float, optional] Maximum temperature to use the method at, [K]

f_der [callable, optional] If specified, should take as an argument the temperature and return
the first derivative of the property, [-]

f_der2 [callable, optional] If specified, should take as an argument the temperature and return
the second derivative of the property, [-]

f_der3 [callable, optional] If specified, should take as an argument the temperature and return
the third derivative of the property, [-]

f_int [callable, optional] If specified, should take T1 and T2 and return the integral of the
property from T1 to T2, [-]
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f_int_over_T [callable, optional] If specified, should take T1 and T2 and return the integral
of the property over T from T1 to T2, [-]

name [str, optional] Name of method.

Notes

Once a custom method has been added to an object, that object can no longer be serialized to json and the
TDependentProperty.__repr__ method can no longer be used to reconstruct the object completely.

add_tabular_data(Ts, properties, name=None, check_properties=True)
Method to set tabular data to be used for interpolation. Ts must be in increasing order. If no name is given,
data will be assigned the name ‘Tabular data series #x’, where x is the number of previously added tabular
data series.

After adding the data, this method becomes the selected method.

Parameters
Ts [array-like] Increasing array of temperatures at which properties are specified, [K]

properties [array-like] List of properties at Ts, [units]

name [str, optional] Name assigned to the data

check_properties [bool] If True, the properties will be checked for validity with
test_property_validity and raise an exception if any are not valid

as_json(references=1)
Method to create a JSON serialization of the property model which can be stored, and reloaded later.

Parameters
references [int] How to handle references to other objects; internal parameter, [-]

Returns
json_repr [dict] JSON-friendly representation, [-]

calculate(T, method)
Method to calculate a property with a specified method, with no validity checking or error handling. Demo
function for testing only; must be implemented according to the methods available for each individual
method. Include the interpolation call here.

Parameters
T [float] Temperature at which to calculate the property, [K]

method [str] Method name to use

Returns
prop [float] Calculated property, [units]

calculate_derivative(T, method, order=1)
Method to calculate a derivative of a property with respect to temperature, of a given order using a specified
method. Uses SciPy’s derivative function, with a delta of 1E-6 K and a number of points equal to 2*order
+ 1.

This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
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T [float] Temperature at which to calculate the derivative, [K]

method [str] Method for which to find the derivative

order [int] Order of the derivative, >= 1

Returns
derivative [float] Calculated derivative property, [units/K^order]

calculate_integral(T1, T2, method)
Method to calculate the integral of a property with respect to temperature, using a specified method. Uses
SciPy’s quad function to perform the integral, with no options.

This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
T1 [float] Lower limit of integration, [K]

T2 [float] Upper limit of integration, [K]

method [str] Method for which to find the integral

Returns
integral [float] Calculated integral of the property over the given range, [units*K]

calculate_integral_over_T(T1, T2, method)
Method to calculate the integral of a property over temperature with respect to temperature, using a specified
method. Uses SciPy’s quad function to perform the integral, with no options.

This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
T1 [float] Lower limit of integration, [K]

T2 [float] Upper limit of integration, [K]

method [str] Method for which to find the integral

Returns
integral [float] Calculated integral of the property over the given range, [units]

critical_zero = False
Whether or not the property is declining and reaching zero at the critical point. This is used by numerical
solvers.

extrapolate(T, method, in_range='error')
Method to perform extrapolation on a given method according to the extrapolation setting.

Parameters
T [float] Temperature at which to extrapolate the property, [K]

method [str] The method to use, [-]

in_range [str] How to handle inputs which are not outside the temperature limits; set to ‘low’
to use the low T extrapolation, ‘high’ to use the high T extrapolation, ‘nearest’ to use the
nearest value, and ‘error’ or anything else to raise an error in those cases, [-]
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Returns
prop [float] Calculated property, [units]

property extrapolation
The string setting of the current extrapolation settings. This can be set to a new value to change which
extrapolation setting is used.

fit_add_model(name, model, Ts, data, **kwargs)
Method to add a new emperical fit equation to the object by fitting its coefficients to specified data. Once
added, the new method is set as the default.

A number of hardcoded model names are implemented; other models are not supported.

This is a wrapper around TDependentProperty.fit_data_to_model and TDependentProperty.
add_correlation.

The data is also stored in the object as a tabular method with the name name`+’_data’, through
:obj:`TDependentProperty.add_tabular_data.

Parameters
name [str] The name of the coefficient set; user specified, [-]

model [str] A string representing the supported models, [-]

Ts [list[float]] Temperatures of the data points, [K]

data [list[float]] Data points, [units]

kwargs [dict] Various keyword arguments accepted by fit_data_to_model, [-]

classmethod fit_data_to_model(Ts, data, model, model_kwargs=None, fit_method='lm', sigma=None,
use_numba=False, do_statistics=False, guesses=None,
solver_kwargs=None, objective='MeanSquareErr',
multiple_tries=False, multiple_tries_max_err=1e-05,
multiple_tries_max_objective='MeanRelErr')

Method to fit T-dependent property data to one of the available model correlations.

Parameters
Ts [list[float]] Temperatures of the data points, [K]

data [list[float]] Data points, [units]

model [str] A string representing the supported models, [-]

model_kwargs [dict, optional] Various keyword arguments accepted by the model; not nec-
essary for most models. Parameters which are normally fit, can be specified here as well
with a constant value and then that fixed value will be used instead of fitting the parameter.
[-]

fit_method [str, optional] The fit method to use; one of {lm, trf, dogbox, differen-
tial_evolution}, [-]

sigma [None or list[float]] Uncertainty parameters used by curve_fit, [-]

use_numba [bool, optional] Whether or not to try to use numba to speed up the computation,
[-]

do_statistics [bool, optional] Whether or not to compute statistical measures on the outputs,
[-]

guesses [dict[str: float], optional] Parameter guesses, by name; any number of parameters
can be specified, [-]

7.31. Utilities and Base Classes (thermo.utils) 849



thermo Documentation, Release 0.2.20

solver_kwargs [dict] Extra parameters to be passed to the solver chosen, [-]

objective [str] The minimimization criteria; supported by differential_evolution. One of:

• ‘MeanAbsErr’: Mean absolute error

• ‘MeanRelErr’: Mean relative error

• ‘MeanSquareErr’: Mean squared absolute error

• ‘MeanSquareRelErr’: Mean squared relative error

• ‘MaxAbsErr’: Maximum absolute error

• ‘MaxRelErr’: Maximum relative error

• ‘MaxSquareErr’: Maximum squared absolute error

• ‘MaxSquareRelErr’: Maximum squared relative error

multiple_tries [bool or int] For most solvers, multiple initial guesses are available and the
best guess is normally tried. When this is set to True, all guesses are tried until one is
found with an error lower than multiple_tries_max_err. If an int is supplied, the best mul-
tiple_tries guesses are tried only. [-]

multiple_tries_max_err [float] Only used when multiple_tries is true; if a solution is found
with lower error than this, no further guesses are tried, [-]

multiple_tries_max_objective [str] The error criteria to use for minimization, [-]

Returns
coefficients [dict[str: float]] Calculated coefficients, [various]

statistics [dict[str: float]] Statistics, calculated and returned only if do_statistics is True, [-]

classmethod from_json(json_repr)
Method to create a property model from a JSON serialization of another property model.

Parameters
json_repr [dict] JSON-friendly representation, [-]

Returns
model [TDependentProperty or TPDependentProperty] Newly created object from the

json serialization, [-]

Notes

It is important that the input string be in the same format as that created by TDependentProperty.
as_json.

interpolate(T, name)
Method to perform interpolation on a given tabular data set previously added via add_tabular_data.
This method will create the interpolators the first time it is used on a property set, and store them for quick
future use.

Interpolation is cubic-spline based if 5 or more points are available, and linearly interpolated if not.
Extrapolation is always performed linearly. This function uses the transforms interpolation_T,
interpolation_property, and interpolation_property_inv if set. If any of these are changed
after the interpolators were first created, new interpolators are created with the new transforms. All inter-
polation is performed via the interp1d function.

Parameters
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T [float] Temperature at which to interpolate the property, [K]

name [str] The name assigned to the tabular data set

Returns
prop [float] Calculated property, [units]

interpolation_T = None

interpolation_T_inv = None

interpolation_property = None

interpolation_property_inv = None

property method
Method used to set a specific property method or to obtain the name of the method in use.

When setting a method, an exception is raised if the method specified isnt’t available for the chemical with
the provided information.

If method is None, no calculations can be performed.

Parameters
method [str] Method to use, [-]

name = 'Property name'

plot_T_dependent_property(Tmin=None, Tmax=None, methods=[], pts=250, only_valid=True, order=0,
show=True, tabular_points=True, axes='semilogy')

Method to create a plot of the property vs temperature according to either a specified list of methods, or user
methods (if set), or all methods. User-selectable number of points, and temperature range. If only_valid
is set,:obj:test_method_validity will be used to check if each temperature in the specified range is valid,
and test_property_validity will be used to test the answer, and the method is allowed to fail; only
the valid points will be plotted. Otherwise, the result will be calculated and displayed as-is. This will not
suceed if the method fails.

Parameters
Tmin [float] Minimum temperature, to begin calculating the property, [K]

Tmax [float] Maximum temperature, to stop calculating the property, [K]

methods [list, optional] List of methods to consider

pts [int, optional] A list of points to calculate the property at; if Tmin to Tmax covers a wide
range of method validities, only a few points may end up calculated for a given method so
this may need to be large

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

show [bool] If True, displays the plot; otherwise, returns it

tabular_points [bool, optional] If True, tabular data will only be shows as the original points;
otherwise interpolated values are shown, [-]

polynomial_from_method(method, n=None, start_n=3, max_n=30, eval_pts=100, fit_form='POLY_FIT',
fit_method=None)

Method to fit a T-dependent property to a polynomial. The degree of the polynomial can be specified with
the n parameter, or it will be automatically selected for maximum accuracy.

Parameters
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method [str] Method name to fit, [-]

n [int, optional] The degree of the polynomial, if specified

start_n [int] If n is not specified, all polynomials of degree start_n to max_n will be tried
and the highest-accuracy will be selected; [-]

max_n [int] If n is not specified, all polynomials of degree start_n to max_n will be tried
and the highest-accuracy will be selected; [-]

eval_pts [int] The number of points to evaluate the fitted functions at to check for accuracy;
more is better but slower, [-]

fit_form [str] The shape of the polynomial; options are ‘POLY_FIT’, ‘EXP_POLY_FIT’,
‘EXP_POLY_FIT_LN_TAU’, and ‘POLY_FIT_LN_TAU’ [-]

Returns
coeffs [list[float]] Fit coefficients, [-]

Tmin [float] The minimum temperature used for the fitting, [K]

Tmax [float] The maximum temperature used for the fitting, [K]

err_avg [float] Mean error in the evaluated points, [-]

err_std [float] Standard deviation of errors in the evaluated points, [-]

min_ratio [float] Lowest ratio of calc/actual in any found points, [-]

max_ratio [float] Highest ratio of calc/actual in any found points, [-]

property_max = 10000.0

property_min = 0

ranked_methods = []

solve_property(goal)
Method to solve for the temperature at which a property is at a specified value. T_dependent_property
is used to calculate the value of the property as a function of temperature.

Checks the given property value with test_property_validity first and raises an exception if it is not
valid.

Parameters
goal [float] Propoerty value desired, [units]

Returns
T [float] Temperature at which the property is the specified value [K]

test_method_validity(T, method)
Method to test the validity of a specified method for a given temperature. Demo function for testing only;
must be implemented according to the methods available for each individual method. Include the interpo-
lation check here.

Parameters
T [float] Temperature at which to determine the validity of the method, [K]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid
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classmethod test_property_validity(prop)
Method to test the validity of a calculated property. Normally, this method is used by a given property class,
and has maximum and minimum limits controlled by the variables property_min and property_max.

Parameters
prop [float] property to be tested, [units]

Returns
validity [bool] Whether or not a specifid method is valid

units = 'Property units'

valid_methods(T=None)
Method to obtain a sorted list of methods that have data available to be used. The methods are ranked in
the following order:

• The currently selected method is first (if one is selected)

• Other available methods are ranked by the attribute ranked_methods

If T is provided, the methods will be checked against the temperature limits of the correlations as well.

Parameters
T [float or None] Temperature at which to test methods, [K]

Returns
sorted_valid_methods [list] Sorted lists of methods valid at T according to
test_method_validity, [-]

7.31.2 Temperature and Pressure Dependent

class thermo.utils.TPDependentProperty(extrapolation, **kwargs)
Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for calculating temperature and pressure dependent chemical properties.

On creation, a TPDependentProperty examines all the possible methods implemented for calculating the prop-
erty, loads whichever coefficients it needs (unless load_data is set to False), examines its input parameters, and
selects the method it prefers. This method will continue to be used for all calculations until the method is changed
by setting a new method to the to method attribute.

Because many pressure dependent property methods are implemented as a low-pressure correlation and a high-
pressure correlation, this class works essentially the same as TDependentProperty but with extra methods that
accept pressure as a parameter.

The object also selects the pressure-dependent method it prefers. This method will continue to be used for all
pressure-dependent calculations until the pressure-dependent method is changed by setting a new method_P to
the to method_P attribute.

The default list of preferred pressure-dependent method orderings is at ranked_methods_P for all properties;
the order can be modified there in-place, and this will take effect on all new TPDependentProperty instances
created but NOT on existing instances.

Tabular data can be provided as either temperature-dependent or pressure-dependent data. The same extrapola-
tion settings as in TDependentProperty are implemented here for the low-pressure correlations.

In addition to the methods and attributes shown here, all those from TPDependentProperty are also available.

Attributes
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method_P [str] Method used to set or get a specific property method.

method [str] Method used to set a specific property method or to obtain the name of the method
in use.

all_methods [set] All low-pressure methods available, [-]

all_methods_P [set] All pressure-dependent methods available, [-]

Methods

TP_dependent_property(T, P) Method to calculate the property given a temperature
and pressure according to the selected method_P and
method .

TP_dependent_property_derivative_P(T, P[,
order])

Method to calculate a derivative of a temperature and
pressure dependent property with respect to pressure
at constant temperature, of a given order, according
to the selected method_P.

TP_dependent_property_derivative_T(T, P[,
order])

Method to calculate a derivative of a temperature and
pressure dependent property with respect to temper-
ature at constant pressure, of a given order, according
to the selected method_P.

TP_or_T_dependent_property(T, P) Method to calculate the property given a temperature
and pressure according to the selected method_P and
method .

__call__(T, P) Convenience method to calculate the property; calls
TP_dependent_property.

add_method(f[, Tmin, Tmax, f_der, f_der2, ...]) Define a new method and select it for future property
calculations.

add_tabular_data(Ts, properties[, name, ...]) Method to set tabular data to be used for interpola-
tion.

add_tabular_data_P(Ts, Ps, properties[, ...]) Method to set tabular data to be used for interpola-
tion.

calculate(T, method) Method to calculate a property with a specified
method, with no validity checking or error handling.

calculate_derivative_P(P, T, method[, order]) Method to calculate a derivative of a temperature and
pressure dependent property with respect to pressure
at constant temperature, of a given order using a spec-
ified method.

calculate_derivative_T(T, P, method[, order]) Method to calculate a derivative of a temperature and
pressure dependent property with respect to temper-
ature at constant pressure, of a given order using a
specified method.

extrapolate(T, method[, in_range]) Method to perform extrapolation on a given method
according to the extrapolation setting.

plot_TP_dependent_property([Tmin, Tmax,
...])

Method to create a plot of the property vs tempera-
ture and pressure according to either a specified list
of methods, or user methods (if set), or all methods.

plot_isobar(P[, Tmin, Tmax, methods_P, pts, ...]) Method to create a plot of the property vs temperature
at a specific pressure according to either a specified
list of methods, or user methods (if set), or all meth-
ods.

continues on next page
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Table 98 – continued from previous page
plot_isotherm(T[, Pmin, Pmax, methods_P, ...]) Method to create a plot of the property vs pressure at a

specified temperature according to either a specified
list of methods, or the user methods (if set), or all
methods.

solve_property(goal) Method to solve for the temperature at which a prop-
erty is at a specified value.

test_method_validity(T, method) Method to test the validity of a specified method for
a given temperature.

test_property_validity(prop) Method to test the validity of a calculated property.
valid_methods([T]) Method to obtain a sorted list of methods that have

data available to be used.
valid_methods_P([T, P]) Method to obtain a sorted list of high-pressure meth-

ods that have data available to be used.

TP_dependent_property(T, P)
Method to calculate the property given a temperature and pressure according to the selected method_P and
method . The pressure-dependent method is always used and required to succeed. The result is checked
with test_property_validity.

If the method does not succeed, returns None.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

Returns
prop [float] Calculated property, [units]

TP_dependent_property_derivative_P(T, P, order=1)
Method to calculate a derivative of a temperature and pressure dependent property with respect to pressure
at constant temperature, of a given order, according to the selected method_P.

Calls calculate_derivative_P internally to perform the actual calculation.

derivative =
𝑑(property)

𝑑𝑃
|𝑇

Parameters
T [float] Temperature at which to calculate the derivative, [K]

P [float] Pressure at which to calculate the derivative, [Pa]

order [int] Order of the derivative, >= 1

Returns
dprop_dP_T [float] Calculated derivative property, [units/Pa^order]

TP_dependent_property_derivative_T(T, P, order=1)
Method to calculate a derivative of a temperature and pressure dependent property with respect to temper-
ature at constant pressure, of a given order, according to the selected method_P.

Calls calculate_derivative_T internally to perform the actual calculation.

derivative =
𝑑(property)

𝑑𝑇
|𝑃

Parameters

7.31. Utilities and Base Classes (thermo.utils) 855



thermo Documentation, Release 0.2.20

T [float] Temperature at which to calculate the derivative, [K]

P [float] Pressure at which to calculate the derivative, [Pa]

order [int] Order of the derivative, >= 1

Returns
dprop_dT_P [float] Calculated derivative property, [units/K^order]

TP_or_T_dependent_property(T, P)
Method to calculate the property given a temperature and pressure according to the selected
method_P and method . The pressure-dependent method is always tried. The result is checked with
test_property_validity.

If the pressure-dependent method does not succeed, the low-pressure method is tried and its result is re-
turned.

Warning: It can seem like a good idea to switch between a low-pressure and a high-pressure method
if the high pressure method is not working, however it can cause discontinuities and prevent numerical
methods from converging

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

Returns
prop [float] Calculated property, [units]

T_limits = {}
Dictionary containing method: (Tmin, Tmax) pairs for all methods applicable to the chemical

__call__(T, P)
Convenience method to calculate the property; calls TP_dependent_property. Caches previously
calculated value, which is an overhead when calculating many different values of a property. See
TP_dependent_property for more details as to the calculation procedure.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

Returns
prop [float] Calculated property, [units]

add_method(f, Tmin=None, Tmax=None, f_der=None, f_der2=None, f_der3=None, f_int=None,
f_int_over_T=None, name=None)

Define a new method and select it for future property calculations.

Parameters
f [callable] Object which calculates the property given the temperature in K, [-]

Tmin [float, optional] Minimum temperature to use the method at, [K]

Tmax [float, optional] Maximum temperature to use the method at, [K]
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f_der [callable, optional] If specified, should take as an argument the temperature and return
the first derivative of the property, [-]

f_der2 [callable, optional] If specified, should take as an argument the temperature and return
the second derivative of the property, [-]

f_der3 [callable, optional] If specified, should take as an argument the temperature and return
the third derivative of the property, [-]

f_int [callable, optional] If specified, should take T1 and T2 and return the integral of the
property from T1 to T2, [-]

f_int_over_T [callable, optional] If specified, should take T1 and T2 and return the integral
of the property over T from T1 to T2, [-]

name [str, optional] Name of method.

Notes

Once a custom method has been added to an object, that object can no longer be serialized to json and the
TDependentProperty.__repr__ method can no longer be used to reconstruct the object completely.

add_tabular_data(Ts, properties, name=None, check_properties=True)
Method to set tabular data to be used for interpolation. Ts must be in increasing order. If no name is given,
data will be assigned the name ‘Tabular data series #x’, where x is the number of previously added tabular
data series.

After adding the data, this method becomes the selected method.

Parameters
Ts [array-like] Increasing array of temperatures at which properties are specified, [K]

properties [array-like] List of properties at Ts, [units]

name [str, optional] Name assigned to the data

check_properties [bool] If True, the properties will be checked for validity with
test_property_validity and raise an exception if any are not valid

add_tabular_data_P(Ts, Ps, properties, name=None, check_properties=True)
Method to set tabular data to be used for interpolation. Ts and Psmust be in increasing order. If no name is
given, data will be assigned the name ‘Tabular data series #x’, where x is the number of previously added
tabular data series.

After adding the data, this method becomes the selected high-pressure method.

Parameters
Ts [array-like] Increasing array of temperatures at which properties are specified, [K]

Ps [array-like] Increasing array of pressures at which properties are specified, [Pa]

properties [array-like] List of properties at Ts and Ps; the data should be indexed [P][T],
[units]

name [str, optional] Name assigned to the data

check_properties [bool] If True, the properties will be checked for validity with
test_property_validity and raise an exception if any are not valid
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calculate(T, method)
Method to calculate a property with a specified method, with no validity checking or error handling. Demo
function for testing only; must be implemented according to the methods available for each individual
method. Include the interpolation call here.

Parameters
T [float] Temperature at which to calculate the property, [K]

method [str] Method name to use

Returns
prop [float] Calculated property, [units]

calculate_derivative_P(P, T, method, order=1)
Method to calculate a derivative of a temperature and pressure dependent property with respect to pressure
at constant temperature, of a given order using a specified method. Uses SciPy’s derivative function, with
a delta of 0.01 Pa and a number of points equal to 2*order + 1.

This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
P [float] Pressure at which to calculate the derivative, [Pa]

T [float] Temperature at which to calculate the derivative, [K]

method [str] Method for which to find the derivative

order [int] Order of the derivative, >= 1

Returns
dprop_dP_T [float] Calculated derivative property at constant temperature,

[units/Pa^order]

calculate_derivative_T(T, P, method, order=1)
Method to calculate a derivative of a temperature and pressure dependent property with respect to tempera-
ture at constant pressure, of a given order using a specified method. Uses SciPy’s derivative function, with
a delta of 1E-6 K and a number of points equal to 2*order + 1.

This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
T [float] Temperature at which to calculate the derivative, [K]

P [float] Pressure at which to calculate the derivative, [Pa]

method [str] Method for which to find the derivative

order [int] Order of the derivative, >= 1

Returns
dprop_dT_P [float] Calculated derivative property at constant pressure, [units/K^order]

extrapolate(T, method, in_range='error')
Method to perform extrapolation on a given method according to the extrapolation setting.
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Parameters
T [float] Temperature at which to extrapolate the property, [K]

method [str] The method to use, [-]

in_range [str] How to handle inputs which are not outside the temperature limits; set to ‘low’
to use the low T extrapolation, ‘high’ to use the high T extrapolation, ‘nearest’ to use the
nearest value, and ‘error’ or anything else to raise an error in those cases, [-]

Returns
prop [float] Calculated property, [units]

property extrapolation
The string setting of the current extrapolation settings. This can be set to a new value to change which
extrapolation setting is used.

interpolation_T = None

interpolation_T_inv = None

interpolation_property = None

interpolation_property_inv = None

property method
Method used to set a specific property method or to obtain the name of the method in use.

When setting a method, an exception is raised if the method specified isnt’t available for the chemical with
the provided information.

If method is None, no calculations can be performed.

Parameters
method [str] Method to use, [-]

property method_P
Method used to set or get a specific property method.

An exception is raised if the method specified isnt’t available for the chemical with the provided information.

Parameters
method [str or list] Methods by name to be considered or preferred

name = 'Property name'

plot_TP_dependent_property(Tmin=None, Tmax=None, Pmin=None, Pmax=None, methods_P=[],
pts=15, only_valid=True)

Method to create a plot of the property vs temperature and pressure according to either a specified list of
methods, or user methods (if set), or all methods. User-selectable number of points for each variable. If
only_valid is set,:obj:test_method_validity_P will be used to check if each condition in the specified range
is valid, and test_property_validity will be used to test the answer, and the method is allowed to fail;
only the valid points will be plotted. Otherwise, the result will be calculated and displayed as-is. This will
not suceed if the any method fails for any point.

Parameters
Tmin [float] Minimum temperature, to begin calculating the property, [K]

Tmax [float] Maximum temperature, to stop calculating the property, [K]

Pmin [float] Minimum pressure, to begin calculating the property, [Pa]

Pmax [float] Maximum pressure, to stop calculating the property, [Pa]
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methods_P [list, optional] List of methods to plot

pts [int, optional] A list of points to calculate the property at for both temperature and pres-
sure; pts^2 points will be calculated.

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

plot_isobar(P, Tmin=None, Tmax=None, methods_P=[], pts=50, only_valid=True, show=True)
Method to create a plot of the property vs temperature at a specific pressure according to either a specified
list of methods, or user methods (if set), or all methods. User-selectable number of points, and tempera-
ture range. If only_valid is set,:obj:test_method_validity_P will be used to check if each condition in the
specified range is valid, and test_property_validity will be used to test the answer, and the method is
allowed to fail; only the valid points will be plotted. Otherwise, the result will be calculated and displayed
as-is. This will not suceed if the method fails.

Parameters
P [float] Pressure for the isobar, [Pa]

Tmin [float] Minimum temperature, to begin calculating the property, [K]

Tmax [float] Maximum temperature, to stop calculating the property, [K]

methods_P [list, optional] List of methods to consider

pts [int, optional] A list of points to calculate the property at; if Tmin to Tmax covers a wide
range of method validities, only a few points may end up calculated for a given method so
this may need to be large

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

plot_isotherm(T, Pmin=None, Pmax=None, methods_P=[], pts=50, only_valid=True, show=True)
Method to create a plot of the property vs pressure at a specified temperature according to either a specified
list of methods, or the user methods (if set), or all methods. User-selectable number of points, and pressure
range. If only_valid is set, test_method_validity_P will be used to check if each condition in the
specified range is valid, and test_property_validity will be used to test the answer, and the method is
allowed to fail; only the valid points will be plotted. Otherwise, the result will be calculated and displayed
as-is. This will not suceed if the method fails.

Parameters
T [float] Temperature at which to create the plot, [K]

Pmin [float] Minimum pressure, to begin calculating the property, [Pa]

Pmax [float] Maximum pressure, to stop calculating the property, [Pa]

methods_P [list, optional] List of methods to consider

pts [int, optional] A list of points to calculate the property at; if Pmin to Pmax covers a wide
range of method validities, only a few points may end up calculated for a given method so
this may need to be large

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

show [bool] If True, displays the plot; otherwise, returns it

property_max = 10000.0
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property_min = 0

ranked_methods = []

solve_property(goal)
Method to solve for the temperature at which a property is at a specified value. T_dependent_property
is used to calculate the value of the property as a function of temperature.

Checks the given property value with test_property_validity first and raises an exception if it is not
valid.

Parameters
goal [float] Propoerty value desired, [units]

Returns
T [float] Temperature at which the property is the specified value [K]

test_method_validity(T, method)
Method to test the validity of a specified method for a given temperature. Demo function for testing only;
must be implemented according to the methods available for each individual method. Include the interpo-
lation check here.

Parameters
T [float] Temperature at which to determine the validity of the method, [K]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

classmethod test_property_validity(prop)
Method to test the validity of a calculated property. Normally, this method is used by a given property class,
and has maximum and minimum limits controlled by the variables property_min and property_max.

Parameters
prop [float] property to be tested, [units]

Returns
validity [bool] Whether or not a specifid method is valid

units = 'Property units'

valid_methods(T=None)
Method to obtain a sorted list of methods that have data available to be used. The methods are ranked in
the following order:

• The currently selected method is first (if one is selected)

• Other available methods are ranked by the attribute ranked_methods

If T is provided, the methods will be checked against the temperature limits of the correlations as well.

Parameters
T [float or None] Temperature at which to test methods, [K]

Returns
sorted_valid_methods [list] Sorted lists of methods valid at T according to
test_method_validity, [-]
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valid_methods_P(T=None, P=None)
Method to obtain a sorted list of high-pressure methods that have data available to be used. The methods
are ranked in the following order:

• The currently selected method_P is first (if one is selected)

• Other available pressure-depenent methods are ranked by the attribute ranked_methods_P

If T and P are provided, the methods will be checked against the temperature and pressure limits of the
correlations as well.

Parameters
T [float] Temperature at which to test methods, [K]

P [float] Pressure at which to test methods, [Pa]

Returns
sorted_valid_methods_P [list] Sorted lists of methods valid at T and P according to
test_method_validity_P

7.31.3 Temperature, Pressure, and Composition Dependent

class thermo.utils.MixtureProperty(**kwargs)
Bases: object

Attributes
correct_pressure_pure Method to set the pressure-dependence of the model; if set to False,

only temperature dependence is used, and if True, temperature and pressure dependence are
used.

method Method to set the T, P, and composition dependent property method desired.

prop_cached

Methods

__call__(T, P[, zs, ws]) Convenience method to calculate the property; calls
mixture_property.

as_json([references]) Method to create a JSON serialization of the mixture
property which can be stored, and reloaded later.

calculate_derivative_P(P, T, zs, ws, method) Method to calculate a derivative of a mixture prop-
erty with respect to pressure at constant temperature
and composition of a given order using a specified
method.

calculate_derivative_T(T, P, zs, ws, method) Method to calculate a derivative of a mixture prop-
erty with respect to temperature at constant pressure
and composition of a given order using a specified
method.

excess_property(T, P[, zs, ws]) Method to calculate the excess property with sanity
checking and without specifying a specific method.

from_json(string) Method to create a MixtureProperty from a JSON se-
rialization of another MixtureProperty.

continues on next page

862 Chapter 7. API Reference

https://docs.python.org/3/library/functions.html#object


thermo Documentation, Release 0.2.20

Table 99 – continued from previous page
mixture_property(T, P[, zs, ws]) Method to calculate the property with sanity check-

ing and without specifying a specific method.
partial_property(T, P, i[, zs, ws]) Method to calculate the partial molar property with

sanity checking and without specifying a specific
method for the specified compound index and com-
position.

plot_isobar(P[, zs, ws, Tmin, Tmax, ...]) Method to create a plot of the property vs tempera-
ture at a specific pressure and composition according
to either a specified list of methods, or the selected
method.

plot_isotherm(T[, zs, ws, Pmin, Pmax, ...]) Method to create a plot of the property vs pressure at
a specified temperature and composition according to
either a specified list of methods, or the set method.

plot_property([zs, ws, Tmin, Tmax, Pmin, ...]) Method to create a plot of the property vs tempera-
ture and pressure according to either a specified list
of methods, or the selected method.

property_derivative_P(T, P[, zs, ws, order]) Method to calculate a derivative of a mixture prop-
erty with respect to pressure at constant temperature
and composition, of a given order.

property_derivative_T(T, P[, zs, ws, order]) Method to calculate a derivative of a mixture prop-
erty with respect to temperature at constant pressure
and composition, of a given order.

test_property_validity(prop) Method to test the validity of a calculated property.

pure_objs
set_poly_fit_coeffs

RAISE_PROPERTY_CALCULATION_ERROR = False

TP_zs_ws_cached = (None, None, None, None)

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

all_methods
Set of all methods available for a given set of information; filled by load_all_methods.

all_poly_fit = False

as_json(references=1)
Method to create a JSON serialization of the mixture property which can be stored, and reloaded later.

Parameters
references [int] How to handle references to other objects; internal parameter, [-]

Returns
json_repr [dict] JSON-friendly representation, [-]

calculate_derivative_P(P, T, zs, ws, method, order=1)
Method to calculate a derivative of a mixture property with respect to pressure at constant temperature and
composition of a given order using a specified method. Uses SciPy’s derivative function, with a delta of
0.01 Pa and a number of points equal to 2*order + 1.
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This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
P [float] Pressure at which to calculate the derivative, [Pa]

T [float] Temperature at which to calculate the derivative, [K]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method for which to find the derivative

order [int] Order of the derivative, >= 1

Returns
d_prop_d_P_at_T [float] Calculated derivative property at constant temperature,

[units/Pa^order]

calculate_derivative_T(T, P, zs, ws, method, order=1)
Method to calculate a derivative of a mixture property with respect to temperature at constant pressure and
composition of a given order using a specified method. Uses SciPy’s derivative function, with a delta of
1E-6 K and a number of points equal to 2*order + 1.

This method can be overwritten by subclasses who may perfer to add analytical methods for some or all
methods as this is much faster.

If the calculation does not succeed, returns the actual error encountered.

Parameters
T [float] Temperature at which to calculate the derivative, [K]

P [float] Pressure at which to calculate the derivative, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method for which to find the derivative

order [int] Order of the derivative, >= 1

Returns
d_prop_d_T_at_P [float] Calculated derivative property at constant pressure,

[units/K^order]

property correct_pressure_pure
Method to set the pressure-dependence of the model; if set to False, only temperature dependence is used,
and if True, temperature and pressure dependence are used.

excess_property(T, P, zs=None, ws=None)
Method to calculate the excess property with sanity checking and without specifying a specific method.
This requires the calculation of the property as a function of composition at the limiting concentration of
each component. One or both of zs and ws are required.

𝑚𝐸 = 𝑚𝑚𝑖𝑥𝑖𝑛𝑔 = 𝑚−
∑︁
𝑖

𝑚𝑖,𝑝𝑢𝑟𝑒 · 𝑧𝑖

Parameters
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T [float] Temperature at which to calculate the excess property, [K]

P [float] Pressure at which to calculate the excess property, [Pa]

zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

Returns
excess_prop [float] Calculated excess property, [units]

classmethod from_json(string)
Method to create a MixtureProperty from a JSON serialization of another MixtureProperty.

Parameters
json_repr [dict] JSON-friendly representation, [-]

Returns
constants [MixtureProperty] Newly created object from the json serialization, [-]

Notes

It is important that the input string be in the same format as that created by MixtureProperty.as_json.

property method
Method to set the T, P, and composition dependent property method desired. See the all_methods attribute
for a list of methods valid for the specified chemicals and inputs.

mixture_property(T, P, zs=None, ws=None)
Method to calculate the property with sanity checking and without specifying a specific method.
valid_methods is used to obtain a sorted list of methods to try. Methods are then tried in order until one
succeeds. The methods are allowed to fail, and their results are checked with test_property_validity.
On success, the used method is stored in the variable method .

If method is set, this method is first checked for validity with test_method_validity for the specified
temperature, and if it is valid, it is then used to calculate the property. The result is checked for validity,
and returned if it is valid. If either of the checks fail, the function retrieves a full list of valid methods with
valid_methods and attempts them as described above.

If no methods are found which succeed, returns None. One or both of zs and ws are required.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

Returns
prop [float] Calculated property, [units]

name = 'Test'
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partial_property(T, P, i, zs=None, ws=None)
Method to calculate the partial molar property with sanity checking and without specifying a specific
method for the specified compound index and composition.

�̄�𝑖 =

(︂
𝜕(𝑛𝑇𝑚)

𝜕𝑛𝑖

)︂
𝑇,𝑃,𝑛𝑗 ̸=𝑖

Parameters
T [float] Temperature at which to calculate the partial property, [K]

P [float] Pressure at which to calculate the partial property, [Pa]

i [int] Compound index, [-]

zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

Returns
partial_prop [float] Calculated partial property, [units]

plot_isobar(P, zs=None, ws=None, Tmin=None, Tmax=None, methods=[], pts=50, only_valid=True)
Method to create a plot of the property vs temperature at a specific pressure and composition according to
either a specified list of methods, or the selected method. User-selectable number of points, and temperature
range. If only_valid is set,:obj:test_method_validity will be used to check if each condition in the specified
range is valid, and test_property_validity will be used to test the answer, and the method is allowed
to fail; only the valid points will be plotted. Otherwise, the result will be calculated and displayed as-is.
This will not suceed if the method fails. One or both of zs and ws are required.

Parameters
P [float] Pressure for the isobar, [Pa]

zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

Tmin [float] Minimum temperature, to begin calculating the property, [K]

Tmax [float] Maximum temperature, to stop calculating the property, [K]

methods [list, optional] List of methods to consider

pts [int, optional] A list of points to calculate the property at; if Tmin to Tmax covers a wide
range of method validities, only a few points may end up calculated for a given method so
this may need to be large

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

plot_isotherm(T, zs=None, ws=None, Pmin=None, Pmax=None, methods=[], pts=50, only_valid=True)
Method to create a plot of the property vs pressure at a specified temperature and composition according to
either a specified list of methods, or the set method. User-selectable number of points, and pressure range.
If only_valid is set, test_method_validity will be used to check if each condition in the specified range
is valid, and test_property_validity will be used to test the answer, and the method is allowed to fail;
only the valid points will be plotted. Otherwise, the result will be calculated and displayed as-is. This will
not suceed if the method fails. One or both of zs and ws are required.

Parameters
T [float] Temperature at which to create the plot, [K]
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zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

Pmin [float] Minimum pressure, to begin calculating the property, [Pa]

Pmax [float] Maximum pressure, to stop calculating the property, [Pa]

methods [list, optional] List of methods to consider

pts [int, optional] A list of points to calculate the property at; if Pmin to Pmax covers a wide
range of method validities, only a few points may end up calculated for a given method so
this may need to be large

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

plot_property(zs=None, ws=None, Tmin=None, Tmax=None, Pmin=100000.0, Pmax=1000000.0,
methods=[], pts=15, only_valid=True)

Method to create a plot of the property vs temperature and pressure according to either a specified list
of methods, or the selected method. User-selectable number of points for each variable. If only_valid is
set,:obj:test_method_validity will be used to check if each condition in the specified range is valid, and
test_property_validity will be used to test the answer, and the method is allowed to fail; only the
valid points will be plotted. Otherwise, the result will be calculated and displayed as-is. This will not
suceed if the any method fails for any point. One or both of zs and ws are required.

Parameters
zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

Tmin [float] Minimum temperature, to begin calculating the property, [K]

Tmax [float] Maximum temperature, to stop calculating the property, [K]

Pmin [float] Minimum pressure, to begin calculating the property, [Pa]

Pmax [float] Maximum pressure, to stop calculating the property, [Pa]

methods [list, optional] List of methods to consider

pts [int, optional] A list of points to calculate the property at for both temperature and pres-
sure; pts^2 points will be calculated.

only_valid [bool] If True, only plot successful methods and calculated properties, and handle
errors; if False, attempt calculation without any checking and use methods outside their
bounds

prop_cached = None

property_derivative_P(T, P, zs=None, ws=None, order=1)
Method to calculate a derivative of a mixture property with respect to pressure at constant temperature
and composition, of a given order. Methods found valid by valid_methods are attempted until a method
succeeds. If no methods are valid and succeed, None is returned.

Calls calculate_derivative_P internally to perform the actual calculation.

derivative =
𝑑(property)

𝑑𝑃
|𝑇,𝑧

Parameters
T [float] Temperature at which to calculate the derivative, [K]
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P [float] Pressure at which to calculate the derivative, [Pa]

zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

order [int] Order of the derivative, >= 1

Returns
d_prop_d_P_at_T [float] Calculated derivative property, [units/Pa^order]

property_derivative_T(T, P, zs=None, ws=None, order=1)
Method to calculate a derivative of a mixture property with respect to temperature at constant pressure
and composition, of a given order. Methods found valid by valid_methods are attempted until a method
succeeds. If no methods are valid and succeed, None is returned.

Calls calculate_derivative_T internally to perform the actual calculation.

derivative =
𝑑(property)

𝑑𝑇
|𝑃,𝑧

One or both of zs and ws are required.

Parameters
T [float] Temperature at which to calculate the derivative, [K]

P [float] Pressure at which to calculate the derivative, [Pa]

zs [list[float], optional] Mole fractions of all species in the mixture, [-]

ws [list[float], optional] Weight fractions of all species in the mixture, [-]

order [int] Order of the derivative, >= 1

Returns
d_prop_d_T_at_P [float] Calculated derivative property, [units/K^order]

property_max = 10.0

property_min = 0.0

pure_objs()

pure_reference_types = ()

pure_references = ()

ranked_methods = []

set_poly_fit_coeffs()

skip_method_validity_check = False
Flag to disable checking the validity of the method at the specified conditions. Saves a little time.

skip_prop_validity_check = False
Flag to disable checking the output of the value. Saves a little time.

classmethod test_property_validity(prop)
Method to test the validity of a calculated property. Normally, this method is used by a given property class,
and has maximum and minimum limits controlled by the variables property_min and property_max.

Parameters
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prop [float] property to be tested, [units]

Returns
validity [bool] Whether or not a specifid method is valid

units = 'test units'

7.32 Vapor Pressure and Sublimation Pressure
(thermo.vapor_pressure)

This module contains implementations of thermo.utils.TDependentProperty representing vapor pressure and
sublimation pressure. A variety of estimation and data methods are available as included in the chemicals library.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Vapor Pressure

• Sublimation Pressure

7.32.1 Vapor Pressure

class thermo.vapor_pressure.VaporPressure(Tb=None, Tc=None, Pc=None, omega=None, CASRN='',
eos=None, extrapolation='AntoineAB|DIPPR101_ABC',
**kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with vapor pressure as a function of temperature. Consists of five coefficient-based methods and
four data sources, one source of tabular information, four corresponding-states estimators, any provided equation
of state, the external library CoolProp, and one substance-specific formulation.

Parameters
Tb [float, optional] Boiling point, [K]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

omega [float, optional] Acentric factor, [-]

CASRN [str, optional] The CAS number of the chemical

eos [object, optional] Equation of State object after thermo.eos.GCEOS

load_data [bool, optional] If False, do not load property coefficients from data sources in files;
this can be used to reduce the memory consumption of an object as well, [-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.vapor_pressure.Wagner_original

chemicals.vapor_pressure.Wagner

7.32. Vapor Pressure and Sublimation Pressure (thermo.vapor_pressure) 869

https://github.com/CalebBell/thermo/
https://chemicals.readthedocs.io/chemicals.vapor_pressure.html#chemicals.vapor_pressure.Wagner_original
https://chemicals.readthedocs.io/chemicals.vapor_pressure.html#chemicals.vapor_pressure.Wagner


thermo Documentation, Release 0.2.20

chemicals.vapor_pressure.TRC_Antoine_extended

chemicals.vapor_pressure.Antoine

chemicals.vapor_pressure.boiling_critical_relation

chemicals.vapor_pressure.Lee_Kesler

chemicals.vapor_pressure.Ambrose_Walton

chemicals.vapor_pressure.Sanjari

chemicals.vapor_pressure.Edalat

chemicals.iapws.iapws95_Psat

Notes

To iterate over all methods, use the list stored in vapor_pressure_methods.

WAGNER_MCGARRY: The Wagner 3,6 original model equation documented in chemicals.
vapor_pressure.Wagner_original, with data for 245 chemicals, from [1],

WAGNER_POLING: The Wagner 2.5, 5 model equation documented in chemicals.vapor_pressure.
Wagner in [2], with data for 104 chemicals.

ANTOINE_EXTENDED_POLING: The TRC extended Antoine model equation documented in chemicals.
vapor_pressure.TRC_Antoine_extended with data for 97 chemicals in [2].

ANTOINE_POLING: Standard Antoine equation, as documented in the function chemicals.
vapor_pressure.Antoine and with data for 325 fluids from [2]. Coefficients were altered to be
in units of Pa and Kelvin.

ANTOINE_WEBBOOK: Standard Antoine equation, as documented in the function chemicals.
vapor_pressure.Antoine and with data for ~1400 fluids from [6]. Coefficients were altered to be in
units of Pa and Kelvin.

DIPPR_PERRY_8E: A collection of 341 coefficient sets from the DIPPR database published openly in [5].
Provides temperature limits for all its fluids. chemicals.dippr.EQ101 is used for its fluids.

VDI_PPDS: Coefficients for a equation form developed by the PPDS, published openly in [4].

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [3]. Very slow.

BOILING_CRITICAL: Fundamental relationship in thermodynamics making several approximations; see
chemicals.vapor_pressure.boiling_critical_relation for details. Least accurate method in
most circumstances.

LEE_KESLER_PSAT: CSP method documented in chemicals.vapor_pressure.Lee_Kesler. Widely
used.

AMBROSE_WALTON: CSP method documented in chemicals.vapor_pressure.Ambrose_Walton.

SANJARI: CSP method documented in chemicals.vapor_pressure.Sanjari.

EDALAT: CSP method documented in chemicals.vapor_pressure.Edalat.

VDI_TABULAR: Tabular data in [4] along the saturation curve; interpolation is as set by the user or the default.

EOS: Equation of state provided by user; must implement thermo.eos.GCEOS.Psat

IAPWS: IAPWS-95 formulation documented in chemicals.iapws.iapws95_Psat.
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References

[1], [2], [3], [4], [5], [6]

Methods

calculate(T, method) Method to calculate vapor pressure of a fluid at tem-
perature T with a given method.

interpolation_T(T) Function to make the data-based interpolation as lin-
ear as possible.

interpolation_property(P) log(P) interpolation transformation by default.
interpolation_property_inv(P) exp(P) interpolation transformation by default; re-

verses interpolation_property_inv.
test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate vapor pressure of a fluid at temperature T with a given method.

This method has no exception handling; see thermo.utils.TDependentProperty.
T_dependent_property for that.

Parameters
T [float] Temperature at calculate vapor pressure, [K]

method [str] Name of the method to use

Returns
Psat [float] Vapor pressure at T, [Pa]

static interpolation_T(T)
Function to make the data-based interpolation as linear as possible. This transforms the input T into the
1/T domain.

static interpolation_property(P)
log(P) interpolation transformation by default.

static interpolation_property_inv(P)
exp(P) interpolation transformation by default; reverses interpolation_property_inv.

name = 'Vapor pressure'

property_max = 10000000000.0
Maximum valid value of vapor pressure. Set slightly above the critical point estimated for Iridium; Mer-
cury’s 160 MPa critical point is the highest known.

property_min = 0
Mimimum valid value of vapor pressure.

ranked_methods = ['IAPWS', 'WAGNER_MCGARRY', 'WAGNER_POLING',
'ANTOINE_EXTENDED_POLING', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'COOLPROP',
'ANTOINE_POLING', 'VDI_TABULAR', 'ANTOINE_WEBBOOK', 'AMBROSE_WALTON',
'LEE_KESLER_PSAT', 'EDALAT', 'BOILING_CRITICAL', 'EOS', 'SANJARI']

Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
CSP methods, the models are considered valid from 0 K to the critical point. For tabular data, extrapolation
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outside of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is
considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'Pa'

thermo.vapor_pressure.vapor_pressure_methods = ['IAPWS', 'WAGNER_MCGARRY',
'WAGNER_POLING', 'ANTOINE_EXTENDED_POLING', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'COOLPROP',
'ANTOINE_POLING', 'VDI_TABULAR', 'ANTOINE_WEBBOOK', 'AMBROSE_WALTON', 'LEE_KESLER_PSAT',
'EDALAT', 'EOS', 'BOILING_CRITICAL', 'SANJARI']

Holds all methods available for the VaporPressure class, for use in iterating over them.

7.32.2 Sublimation Pressure

class thermo.vapor_pressure.SublimationPressure(CASRN=None, Tt=None, Pt=None, Hsub_t=None,
extrapolation='linear', **kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with sublimation pressure as a function of temperature. Consists of one estimation method.

Parameters
CASRN [str, optional] The CAS number of the chemical

Tt [float, optional] Triple temperature, [K]

Pt [float, optional] Triple pressure, [Pa]

Hsub_t [float, optional] Sublimation enthalpy at the triple point, [J/mol]

load_data [bool, optional] If False, do not load property coefficients from data sources in files;
this can be used to reduce the memory consumption of an object as well, [-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.vapor_pressure.Psub_Clapeyron
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Notes

To iterate over all methods, use the list stored in sublimation_pressure_methods.

PSUB_CLAPEYRON: Clapeyron thermodynamic identity, Psub_Clapeyron

References

[1]

Methods

calculate(T, method) Method to calculate sublimation pressure of a fluid at
temperature T with a given method.

interpolation_T(T) Function to make the data-based interpolation as lin-
ear as possible.

interpolation_property(P) log(P) interpolation transformation by default.
interpolation_property_inv(P) exp(P) interpolation transformation by default; re-

verses interpolation_property_inv.
test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate sublimation pressure of a fluid at temperature T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at calculate sublimation pressure, [K]

method [str] Name of the method to use

Returns
Psub [float] Sublimation pressure at T, [Pa]

static interpolation_T(T)
Function to make the data-based interpolation as linear as possible. This transforms the input T into the
1/T domain.

static interpolation_property(P)
log(P) interpolation transformation by default.

static interpolation_property_inv(P)
exp(P) interpolation transformation by default; reverses interpolation_property_inv.

name = 'Sublimation pressure'

property_max = 100000.0
Maximum valid value of sublimation pressure. Set to 1 bar tentatively.

property_min = 1e-300
Mimimum valid value of sublimation pressure.

ranked_methods = ['PSUB_CLAPEYRON']
Default rankings of the available methods.
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test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
CSP methods, the models are considered valid from 0 K to the critical point. For tabular data, extrapolation
outside of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is
considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'Pa'

thermo.vapor_pressure.sublimation_pressure_methods = ['PSUB_CLAPEYRON']
Holds all methods available for the SublimationPressure class, for use in iterating over them.

7.33 Viscosity (thermo.viscosity)

This module contains implementations of TPDependentProperty representing liquid and vapor viscosity. A variety
of estimation and data methods are available as included in the chemicals library. Additionally liquid and vapor mixture
viscosity predictor objects are implemented subclassing MixtureProperty.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Liquid Viscosity

• Pure Gas Viscosity

• Mixture Liquid Viscosity

• Mixture Gas Viscosity

7.33.1 Pure Liquid Viscosity

class thermo.viscosity.ViscosityLiquid(CASRN='', MW=None, Tm=None, Tc=None, Pc=None,
Vc=None, omega=None, Psat=None, Vml=None,
extrapolation='linear', extrapolation_min=1e-05, **kwargs)

Bases: thermo.utils.tp_dependent_property.TPDependentProperty

Class for dealing with liquid viscosity as a function of temperature and pressure.

For low-pressure (at 1 atm while under the vapor pressure; along the saturation line otherwise) liquids, there are
six coefficient-based methods from three data sources, one source of tabular information, two corresponding-
states estimators, one group contribution method, and the external library CoolProp.

For high-pressure liquids (also, <1 atm liquids), there is one corresponding-states estimator, and the external
library CoolProp.

Parameters
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CASRN [str, optional] The CAS number of the chemical

MW [float, optional] Molecular weight, [g/mol]

Tm [float, optional] Melting point, [K]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Vc [float, optional] Critical volume, [m^3/mol]

omega [float, optional] Acentric factor, [-]

Psat [float or callable, optional] Vapor pressure at a given temperature or callable for the same,
[Pa]

Vml [float or callable, optional] Liquid molar volume at a given temperature and pressure or
callable for the same, [m^3/mol]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.viscosity.Viswanath_Natarajan_3

chemicals.viscosity.Viswanath_Natarajan_2

chemicals.viscosity.Viswanath_Natarajan_2_exponential

chemicals.viscosity.Letsou_Stiel

chemicals.viscosity.Przedziecki_Sridhar

chemicals.viscosity.Lucas

thermo.joback.Joback

Notes

To iterate over all methods, use the lists stored in viscosity_liquid_methods and
viscosity_liquid_methods_P for low and high pressure methods respectively.

Low pressure methods:

DUTT_PRASAD: A simple function as expressed in [1], with data available for 100 fluids. Temperature limits
are available for all fluids. See chemicals.viscosity.Viswanath_Natarajan_3 for details.

VISWANATH_NATARAJAN_3: A simple function as expressed in [1], with data available for 432 fluids.
Temperature limits are available for all fluids. See chemicals.viscosity.Viswanath_Natarajan_3
for details.

VISWANATH_NATARAJAN_2: A simple function as expressed in [1], with data available for 135 fluids.
Temperature limits are available for all fluids. See chemicals.viscosity.Viswanath_Natarajan_2
for details.
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VISWANATH_NATARAJAN_2E: A simple function as expressed in [1], with data available for
14 fluids. Temperature limits are available for all fluids. See chemicals.viscosity.
Viswanath_Natarajan_2_exponential for details.

DIPPR_PERRY_8E: A collection of 337 coefficient sets from the DIPPR database published openly in [4].
Provides temperature limits for all its fluids. EQ101 is used for its fluids.

LETSOU_STIEL: CSP method, described in chemicals.viscosity.Letsou_Stiel.

PRZEDZIECKI_SRIDHAR: CSP method, described in chemicals.viscosity.Przedziecki_Sridhar.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [2]. Very slow.

VDI_TABULAR: Tabular data in [3] along the saturation curve; interpolation is as set by the user or the default.

VDI_PPDS: Coefficients for a equation form developed by the PPDS, published openly in [3]. Provides no
temperature limits, but has been designed for extrapolation. Extrapolated to low temperatures it provides
a smooth exponential increase. However, for some chemicals such as glycerol, extrapolated to higher tem-
peratures viscosity is predicted to increase above a certain point.

JOBACK: An estimation method for organic substances in [5]; this also requires molecular weight as an input.

High pressure methods:

LUCAS: CSP method, described in chemicals.viscosity.Lucas. Calculates a low-pressure liquid viscosity
as its input.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [2]. Very slow, but unparalled in accuracy for pressure dependence.

A minimum viscosity value of 1e-5 Pa*s is set according to [4]. This is also just above the lowest experimental
values of viscosity of helium, 9.4e-6 Pa*s. This excludes the behavior of superfluids, and also systems where
the mean free path between moleules approaches the geometry of the system and then the viscosity is geometry-
dependent.

References

[1], [2], [3], [4], [5], [6]

Attributes
Tmax Maximum temperature (K) at which the current method can calculate the property.

Tmin Minimum temperature (K) at which the current method can calculate the property.

Methods

calculate(T, method) Method to calculate low-pressure liquid viscosity at
tempearture T with a given method.

calculate_P(T, P, method) Method to calculate pressure-dependent liquid vis-
cosity at temperature T and pressure P with a given
method.

test_method_validity(T, method) Method to check the validity of a method.
test_method_validity_P(T, P, method) Method to check the validity of a high-pressure

method.

property Tmax
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Maximum temperature (K) at which the current method can calculate the property.

property Tmin
Minimum temperature (K) at which the current method can calculate the property.

calculate(T, method)
Method to calculate low-pressure liquid viscosity at tempearture T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate viscosity, [K]

method [str] Name of the method to use

Returns
mu [float] Viscosity of the liquid at T and a low pressure, [Pa*s]

calculate_P(T, P, method)
Method to calculate pressure-dependent liquid viscosity at temperature T and pressure P with a given
method.

This method has no exception handling; see TP_dependent_property for that.

Parameters
T [float] Temperature at which to calculate viscosity, [K]

P [float] Pressure at which to calculate viscosity, [K]

method [str] Name of the method to use

Returns
mu [float] Viscosity of the liquid at T and P, [Pa*s]

name = 'liquid viscosity'

property_max = 200000000.0
Maximum valid value of liquid viscosity. Generous limit, as the value is that of bitumen in a Pitch drop
experiment.

property_min = 0.0
Mimimum valid value of liquid viscosity.

ranked_methods = ['COOLPROP', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'DUTT_PRASAD',
'VISWANATH_NATARAJAN_3', 'VISWANATH_NATARAJAN_2', 'VISWANATH_NATARAJAN_2E',
'VDI_TABULAR', 'LETSOU_STIEL', 'JOBACK', 'PRZEDZIECKI_SRIDHAR']

Default rankings of the low-pressure methods.

ranked_methods_P = ['COOLPROP', 'LUCAS']
Default rankings of the high-pressure methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
CSP methods, the models are considered valid from 0 K to the critical point. For tabular data, extrapolation
outside of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is
considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
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T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

test_method_validity_P(T, P, method)
Method to check the validity of a high-pressure method. For COOLPROP, the fluid must be both a liquid
and under the maximum pressure of the fluid’s EOS. LUCAS doesn’t work on some occasions, due to
something related to Tr and negative powers - but is otherwise considered correct for all circumstances.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures and pressures.

Parameters
T [float] Temperature at which to test the method, [K]

P [float] Pressure at which to test the method, [Pa]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'Pa*s'

thermo.viscosity.viscosity_liquid_methods = ['COOLPROP', 'DIPPR_PERRY_8E', 'VDI_PPDS',
'DUTT_PRASAD', 'VISWANATH_NATARAJAN_3', 'VISWANATH_NATARAJAN_2',
'VISWANATH_NATARAJAN_2E', 'VDI_TABULAR', 'LETSOU_STIEL', 'JOBACK', 'PRZEDZIECKI_SRIDHAR']

Holds all low-pressure methods available for the ViscosityLiquid class, for use in iterating over them.

thermo.viscosity.viscosity_liquid_methods_P = ['COOLPROP', 'LUCAS']
Holds all high-pressure methods available for the ViscosityLiquid class, for use in iterating over them.

7.33.2 Pure Gas Viscosity

class thermo.viscosity.ViscosityGas(CASRN='', MW=None, Tc=None, Pc=None, Zc=None, dipole=None,
Vmg=None, extrapolation='linear', extrapolation_min=1e-05,
**kwargs)

Bases: thermo.utils.tp_dependent_property.TPDependentProperty

Class for dealing with gas viscosity as a function of temperature and pressure.

For gases at atmospheric pressure, there are 4 corresponding-states estimators, two sources of coefficient-based
models, one source of tabular information, and the external library CoolProp.

For gases under the fluid’s boiling point (at sub-atmospheric pressures), and high-pressure gases above the boiling
point, there are zero corresponding-states estimators, and the external library CoolProp.

Parameters
CASRN [str, optional] The CAS number of the chemical

MW [float, optional] Molecular weight, [g/mol]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Zc [float, optional] Critical compressibility, [-]
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dipole [float, optional] Dipole moment of the fluid, [debye]

Vmg [float, optional] Molar volume of the fluid at a pressure and temperature, [m^3/mol]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.viscosity.Gharagheizi_gas_viscosity

chemicals.viscosity.Yoon_Thodos

chemicals.viscosity.Stiel_Thodos

chemicals.viscosity.Lucas_gas

Notes

A string holding each method’s name is assigned to the following variables in this module, intended as the most
convenient way to refer to a method. To iterate over all methods, use the lists stored in viscosity_gas_methods
and viscosity_gas_methods_P for low and high pressure methods respectively.

Low pressure methods:

GHARAGHEIZI: CSP method, described in chemicals.viscosity.Gharagheizi_gas_viscosity.

YOON_THODOS: CSP method, described in chemicals.viscosity.Yoon_Thodos.

STIEL_THODOS: CSP method, described in chemicals.viscosity.Stiel_Thodos.

LUCAS_GAS: CSP method, described in chemicals.viscosity.Lucas_gas.

DIPPR_PERRY_8E: A collection of 345 coefficient sets from the DIPPR database published openly in [3].
Provides temperature limits for all its fluids. chemicals.dippr.EQ102 is used for its fluids.

VDI_PPDS: Coefficients for a equation form developed by the PPDS, published openly in [2]. Provides no
temperature limits, but provides reasonable values at fairly high and very low temperatures.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [1]. Very slow.

VDI_TABULAR: Tabular data in [2] along the saturation curve; interpolation is as set by the user or the default.

High pressure methods:

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [1]. Very slow, but unparalled in accuracy for pressure dependence.

A minimum viscosity value of 1e-5 Pa*s is set according to [4]. This is also just above the lowest experimental
values of viscosity of helium, 9.4e-6 Pa*s.
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References

[1], [2], [3], [4]

Attributes
Tmax Maximum temperature (K) at which the current method can calculate the property.

Tmin Minimum temperature (K) at which the current method can calculate the property.

Methods

calculate(T, method) Method to calculate low-pressure gas viscosity at
tempearture T with a given method.

calculate_P(T, P, method) Method to calculate pressure-dependent gas viscosity
at temperature T and pressure P with a given method.

test_method_validity(T, method) Method to check the validity of a temperature-
dependent low-pressure method.

test_method_validity_P(T, P, method) Method to check the validity of a high-pressure
method.

property Tmax
Maximum temperature (K) at which the current method can calculate the property.

property Tmin
Minimum temperature (K) at which the current method can calculate the property.

calculate(T, method)
Method to calculate low-pressure gas viscosity at tempearture T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature of the gas, [K]

method [str] Name of the method to use

Returns
mu [float] Viscosity of the gas at T and a low pressure, [Pa*s]

calculate_P(T, P, method)
Method to calculate pressure-dependent gas viscosity at temperature T and pressure P with a given method.

This method has no exception handling; see TP_dependent_property for that.

Parameters
T [float] Temperature at which to calculate gas viscosity, [K]

P [float] Pressure at which to calculate gas viscosity, [K]

method [str] Name of the method to use

Returns
mu [float] Viscosity of the gas at T and P, [Pa*]

name = 'Gas viscosity'
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property_max = 0.001
Maximum valid value of gas viscosity. Might be too high, or too low.

property_min = 0.0
Mimimum valid value of gas viscosity; limiting condition at low pressure is 0.

ranked_methods = ['COOLPROP', 'DIPPR_PERRY_8E', 'VDI_PPDS', 'VDI_TABULAR',
'GHARAGHEIZI', 'YOON_THODOS', 'STIEL_THODOS', 'LUCAS_GAS']

Default rankings of the low-pressure methods.

ranked_methods_P = ['COOLPROP']
Default rankings of the high-pressure methods.

test_method_validity(T, method)
Method to check the validity of a temperature-dependent low-pressure method. For CSP most methods,
the all methods are considered valid from 0 K up to 5000 K. For method GHARAGHEIZI, the method is
considered valud from 20 K to 2000 K.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

test_method_validity_P(T, P, method)
Method to check the validity of a high-pressure method. For COOLPROP, the fluid must be both a gas
and under the maximum pressure of the fluid’s EOS. No other methods are implemented.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures and pressures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

P [float] Pressure at which to test the method, [Pa]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'Pa*s'

thermo.viscosity.viscosity_gas_methods = ['COOLPROP', 'DIPPR_PERRY_8E', 'VDI_PPDS',
'VDI_TABULAR', 'GHARAGHEIZI', 'YOON_THODOS', 'STIEL_THODOS', 'LUCAS_GAS']

Holds all low-pressure methods available for the ViscosityGas class, for use in iterating over them.

thermo.viscosity.viscosity_gas_methods_P = ['COOLPROP']
Holds all high-pressure methods available for the ViscosityGas class, for use in iterating over them.

7.33. Viscosity (thermo.viscosity) 881



thermo Documentation, Release 0.2.20

7.33.3 Mixture Liquid Viscosity

class thermo.viscosity.ViscosityLiquidMixture(CASs=[], ViscosityLiquids=[], MWs=[], **kwargs)
Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with the viscosity of a liquid mixture as a function of temperature, pressure, and composi-
tion. Consists of one electrolyte-specific method, and logarithmic rules based on either mole fractions of mass
fractions.

Prefered method is mixing_logarithmic with mole fractions, or Laliberte if the mixture is aqueous and has
electrolytes.

Parameters
CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

ViscosityLiquids [list[ViscosityLiquid], optional] ViscosityLiquid objects created for all
species in the mixture, [-]

MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

correct_pressure_pure [bool, optional] Whether to try to use the better pressure-corrected pure
component models or to use only the T-only dependent pure species models, [-]

See also:

thermo.electrochem.Laliberte_viscosity

Notes

To iterate over all methods, use the list stored in viscosity_liquid_mixture_methods.

LALIBERTE_MU: Electrolyte model equation with coefficients; see thermo.electrochem.
Laliberte_viscosity for more details.

MIXING_LOG_MOLAR: Logarithmic mole fraction mixing rule described in chemicals.utils.
mixing_logarithmic.

MIXING_LOG_MASS: Logarithmic mole fraction mixing rule described in chemicals.utils.
mixing_logarithmic.

LINEAR: Linear mole fraction mixing rule described in mixing_simple.

References

[1]

Methods

calculate(T, P, zs, ws, method) Method to calculate viscosity of a liquid mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
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Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate viscosity of a liquid mixture at temperature T, pressure P, mole fractions zs and weight
fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
mu [float] Viscosity of the liquid mixture, [Pa*s]

name = 'liquid viscosity'

property_max = 200000000.0
Maximum valid value of liquid viscosity. Generous limit, as the value is that of bitumen in a Pitch drop
experiment.

property_min = 0
Mimimum valid value of liquid viscosity.

ranked_methods = ['Laliberte', 'Logarithmic mixing, molar', 'Logarithmic mixing,
mass', 'LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. If Laliberte is applicable, all
other methods are returned as inapplicable. Otherwise, there are no checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'Pa*s'

thermo.viscosity.viscosity_liquid_mixture_methods = ['Laliberte', 'Logarithmic mixing,
molar', 'Logarithmic mixing, mass', 'LINEAR']

Holds all mixing rules available for the ViscosityLiquidMixture class, for use in iterating over them.
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7.33.4 Mixture Gas Viscosity

class thermo.viscosity.ViscosityGasMixture(MWs=[], molecular_diameters=[], Stockmayers=[],
CASs=[], ViscosityGases=[], **kwargs)

Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with the viscosity of a gas mixture as a function of temperature, pressure, and composition.
Consists of three gas viscosity specific mixing rules and a mole-weighted simple mixing rule.

Prefered method is Brokaw.

Parameters
MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

molecular_diameters [list[float], optional] Lennard-Jones molecular diameters, [angstrom]

Stockmayers [list[float], optional] Lennard-Jones depth of potential-energy minimum over k or
epsilon_k, [K]

CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

ViscosityGases [list[ViscosityGas], optional] ViscosityGas objects created for all species in the
mixture, [-]

correct_pressure_pure [bool, optional] Whether to try to use the better pressure-corrected pure
component models or to use only the T-only dependent pure species models, [-]

See also:

chemicals.viscosity.Brokaw

chemicals.viscosity.Herning_Zipperer

chemicals.viscosity.Wilke

Notes

To iterate over all methods, use the list stored in viscosity_liquid_mixture_methods.

BROKAW: Mixing rule described in Brokaw.

HERNING_ZIPPERER: Mixing rule described in Herning_Zipperer.

WILKE: Mixing rule described in Wilke.

LINEAR: Mixing rule described in mixing_simple.

References

[1]

884 Chapter 7. API Reference

https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Brokaw
https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Brokaw
https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Herning_Zipperer
https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Wilke
https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Brokaw
https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Herning_Zipperer
https://chemicals.readthedocs.io/chemicals.viscosity.html#chemicals.viscosity.Wilke
https://chemicals.readthedocs.io/chemicals.utils.html#chemicals.utils.mixing_simple


thermo Documentation, Release 0.2.20

Methods

calculate(T, P, zs, ws, method) Method to calculate viscosity of a gas mixture at tem-
perature T, pressure P, mole fractions zs and weight
fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate viscosity of a gas mixture at temperature T, pressure P, mole fractions zs and weight
fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
mu [float] Viscosity of gas mixture, [Pa*s]

name = 'gas viscosity'

property_max = 0.001
Maximum valid value of gas viscosity. Might be too high, or too low.

property_min = 0
Mimimum valid value of gas viscosity; limiting condition at low pressure is 0.

ranked_methods = ['BROKAW', 'HERNING_ZIPPERER', 'LINEAR', 'WILKE']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid
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units = 'Pa*s'

thermo.viscosity.viscosity_gas_mixture_methods = ['BROKAW', 'HERNING_ZIPPERER', 'WILKE',
'LINEAR']

Holds all mixing rules available for the ViscosityGasMixture class, for use in iterating over them.

7.34 Density/Volume (thermo.volume)

This module contains implementations of TDependentProperty representing liquid, vapor, and solid volume. A
variety of estimation and data methods are available as included in the chemicals library. Additionally liquid, vapor,
and solid mixture volume predictor objects are implemented subclassing MixtureProperty.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Pure Liquid Volume

• Pure Gas Volume

• Pure Solid Volume

• Mixture Liquid Volume

• Mixture Gas Volume

• Mixture Solid Volume

7.34.1 Pure Liquid Volume

class thermo.volume.VolumeLiquid(MW=None, Tb=None, Tc=None, Pc=None, Vc=None, Zc=None,
omega=None, dipole=None, Psat=None, CASRN='', eos=None,
has_hydroxyl=None, extrapolation='constant', **kwargs)

Bases: thermo.utils.tp_dependent_property.TPDependentProperty

Class for dealing with liquid molar volume as a function of temperature and pressure.

For low-pressure (at 1 atm while under the vapor pressure; along the saturation line otherwise) liquids, there are
six coefficient-based methods from five data sources, one source of tabular information, one source of constant
values, eight corresponding-states estimators, the external library CoolProp and the equation of state.

For high-pressure liquids (also, <1 atm liquids), there is one corresponding-states estimator, and the external
library CoolProp.

Parameters
CASRN [str, optional] The CAS number of the chemical

MW [float, optional] Molecular weight, [g/mol]

Tb [float, optional] Boiling point, [K]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]

Vc [float, optional] Critical volume, [m^3/mol]

Zc [float, optional] Critical compressibility

omega [float, optional] Acentric factor, [-]
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dipole [float, optional] Dipole, [debye]

Psat [float or callable, optional] Vapor pressure at a given temperature, or callable for the same
[Pa]

eos [object, optional] Equation of State object after thermo.eos.GCEOS

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.volume.Yen_Woods_saturation

chemicals.volume.Rackett

chemicals.volume.Yamada_Gunn

chemicals.volume.Townsend_Hales

chemicals.volume.Bhirud_normal

chemicals.volume.COSTALD

chemicals.volume.Campbell_Thodos

chemicals.volume.SNM0

chemicals.volume.CRC_inorganic

chemicals.volume.COSTALD_compressed

Notes

A string holding each method’s name is assigned to the following variables in this module, intended as the most
convenient way to refer to a method. To iterate over all methods, use the lists stored in volume_liquid_methods
and volume_liquid_methods_P for low and high pressure methods respectively.

Low pressure methods:

DIPPR_PERRY_8E: A simple polynomial as expressed in [1], with data available for 344 fluids. Temperature
limits are available for all fluids. Believed very accurate.

VDI_PPDS: Coefficients for a equation form developed by the PPDS (EQ116 in terms of mass density), pub-
lished openly in [3]. Valid up to the critical temperature, and extrapolates to very low temperatures well.

MMSNM0FIT: Uses a fit coefficient for better accuracy in the SNM0method, Coefficients available for 73 fluids
from [2]. Valid to the critical point.

HTCOSTALDFIT: A method with two fit coefficients to the COSTALD method. Coefficients available for 192
fluids, from [3]. Valid to the critical point.

RACKETTFIT: The Rackett method, with a fit coefficient Z_RA. Data is available for 186 fluids, from [3].
Valid to the critical point.

CRC_INORG_L: Single-temperature coefficient linear model in terms of mass density for the density of in-
organic liquids; converted to molar units internally. Data is available for 177 fluids normally valid over a
narrow range above the melting point, from [4]; described in CRC_inorganic.
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MMSNM0: CSP method, described in SNM0.

HTCOSTALD: CSP method, described in COSTALD.

YEN_WOODS_SAT: CSP method, described in Yen_Woods_saturation.

RACKETT: CSP method, described in Rackett.

YAMADA_GUNN: CSP method, described in Yamada_Gunn.

BHIRUD_NORMAL: CSP method, described in Bhirud_normal.

TOWNSEND_HALES: CSP method, described in Townsend_Hales.

CAMPBELL_THODOS: CSP method, described in Campbell_Thodos.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [5]. Very slow.

CRC_INORG_L_CONST: Constant inorganic liquid densities, in [4].

VDI_TABULAR: Tabular data in [6] along the saturation curve; interpolation is as set by the user or the default.

EOS: Equation of state provided by user.

High pressure methods:

COSTALD_COMPRESSED: CSP method, described in COSTALD_compressed. Calculates a low-pressure
molar volume first, using T_dependent_property.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [5]. Very slow, but unparalled in accuracy for pressure dependence.

EOS: Equation of state provided by user.

References

[1], [2], [3], [4], [5], [6]

Attributes
Tmax Maximum temperature (K) at which the current method can calculate the property.

Tmin Minimum temperature (K) at which the current method can calculate the property.

Methods

calculate(T, method) Method to calculate low-pressure liquid molar vol-
ume at tempearture T with a given method.

calculate_P(T, P, method) Method to calculate pressure-dependent liquid molar
volume at temperature T and pressure P with a given
method.

test_method_validity(T, method) Method to check the validity of a method.
test_method_validity_P(T, P, method) Method to check the validity of a high-pressure

method.

property Tmax
Maximum temperature (K) at which the current method can calculate the property.

property Tmin
Minimum temperature (K) at which the current method can calculate the property.
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calculate(T, method)
Method to calculate low-pressure liquid molar volume at tempearture T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
T [float] Temperature at which to calculate molar volume, [K]

method [str] Name of the method to use

Returns
Vm [float] Molar volume of the liquid at T and a low pressure, [m^3/mol]

calculate_P(T, P, method)
Method to calculate pressure-dependent liquid molar volume at temperature T and pressure P with a given
method.

This method has no exception handling; see TP_dependent_property for that.

Parameters
T [float] Temperature at which to calculate molar volume, [K]

P [float] Pressure at which to calculate molar volume, [K]

method [str] Name of the method to use

Returns
Vm [float] Molar volume of the liquid at T and P, [m^3/mol]

name = 'Liquid molar volume'

property_max = 0.002
Maximum valid value of liquid molar volume. Generous limit.

property_min = 0
Mimimum valid value of liquid molar volume. It should normally occur at the triple point, and be well
above this.

ranked_methods = ['DIPPR_PERRY_8E', 'VDI_PPDS', 'COOLPROP', 'MMSNM0FIT',
'VDI_TABULAR', 'HTCOSTALDFIT', 'RACKETTFIT', 'CRC_INORG_L', 'CRC_INORG_L_CONST',
'COMMON_CHEMISTRY', 'MMSNM0', 'HTCOSTALD', 'YEN_WOODS_SAT', 'RACKETT',
'YAMADA_GUNN', 'BHIRUD_NORMAL', 'TOWNSEND_HALES', 'CAMPBELL_THODOS', 'EOS']

Default rankings of the low-pressure methods.

ranked_methods_P = ['COOLPROP', 'COSTALD_COMPRESSED', 'EOS']
Default rankings of the high-pressure methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
CSP methods, the models are considered valid from 0 K to the critical point. For tabular data, extrapolation
outside of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is
considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

BHIRUD_NORMAL behaves poorly at low temperatures and is not used under 0.35Tc. The constant
value available for inorganic chemicals, from method CRC_INORG_L_CONST, is considered valid for
all temperatures.

Parameters
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T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

test_method_validity_P(T, P, method)
Method to check the validity of a high-pressure method. For COOLPROP, the fluid must be both a liquid
and under the maximum pressure of the fluid’s EOS. COSTALD_COMPRESSED is considered valid for
all values of temperature and pressure. However, it very often will not actually work, due to the form of the
polynomial in terms of Tr, the result of which is raised to a negative power. For tabular data, extrapolation
outside of the range is used if tabular_extrapolation_permitted is set; if it is, the extrapolation is
considered valid for all temperatures and pressures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

P [float] Pressure at which to test the method, [Pa]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'm^3/mol'

thermo.volume.volume_liquid_methods = ['DIPPR_PERRY_8E', 'VDI_PPDS', 'COOLPROP',
'MMSNM0FIT', 'VDI_TABULAR', 'HTCOSTALDFIT', 'RACKETTFIT', 'CRC_INORG_L',
'CRC_INORG_L_CONST', 'COMMON_CHEMISTRY', 'MMSNM0', 'HTCOSTALD', 'YEN_WOODS_SAT',
'RACKETT', 'YAMADA_GUNN', 'BHIRUD_NORMAL', 'TOWNSEND_HALES', 'CAMPBELL_THODOS', 'EOS']

Holds all low-pressure methods available for the VolumeLiquid class, for use in iterating over them.

thermo.volume.volume_liquid_methods_P = ['COOLPROP', 'COSTALD_COMPRESSED', 'EOS']
Holds all high-pressure methods available for the VolumeLiquid class, for use in iterating over them.

7.34.2 Pure Gas Volume

class thermo.volume.VolumeGas(CASRN='', MW=None, Tc=None, Pc=None, omega=None, dipole=None,
eos=None, extrapolation=None, **kwargs)

Bases: thermo.utils.tp_dependent_property.TPDependentProperty

Class for dealing with gas molar volume as a function of temperature and pressure.

All considered methods are both temperature and pressure dependent. Included are four CSP methods for calcu-
lating second virial coefficients, one source of polynomials for calculating second virial coefficients, one equation
of state (Peng-Robinson), and the ideal gas law.

Parameters
CASRN [str, optional] The CAS number of the chemical

MW [float, optional] Molecular weight, [g/mol]

Tc [float, optional] Critical temperature, [K]

Pc [float, optional] Critical pressure, [Pa]
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omega [float, optional] Acentric factor, [-]

dipole [float, optional] Dipole, [debye]

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.virial.BVirial_Pitzer_Curl

chemicals.virial.BVirial_Abbott

chemicals.virial.BVirial_Tsonopoulos

chemicals.virial.BVirial_Tsonopoulos_extended

Notes

A string holding each method’s name is assigned to the following variables in this module, intended as the most
convenient way to refer to a method. To iterate over all methods, use the list stored in volume_gas_methods.

PR: Peng-Robinson Equation of State. See the appropriate module for more information.

CRC_VIRIAL: Short polynomials, for 105 fluids from [1]. The full expression is:

𝐵 =

4∑︁
1

𝑎𝑖 [𝑇0/298.15 − 1]
𝑖−1

TSONOPOULOS_EXTENDED: CSP method for second virial coefficients, described in chemicals.
virial.BVirial_Tsonopoulos_extended

TSONOPOULOS: CSP method for second virial coefficients, described in chemicals.virial.
BVirial_Tsonopoulos

ABBOTT: CSP method for second virial coefficients, described in chemicals.virial.BVirial_Abbott.
This method is the simplest CSP method implemented.

PITZER_CURL: CSP method for second virial coefficients, described in chemicals.virial.
BVirial_Pitzer_Curl.

COOLPROP: CoolProp external library; with select fluids from its library. Range is limited to that of the
equations of state it uses, as described in [2]. Very slow, but unparalled in accuracy for pressure dependence.
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References

[1], [2]

Attributes
Tmax Maximum temperature (K) at which the current method can calculate the property.

Tmin Minimum temperature (K) at which the current method can calculate the property.

Methods

calculate(T, method) Method to calculate a property with a specified
method, with no validity checking or error handling.

calculate_P(T, P, method) Method to calculate pressure-dependent gas molar
volume at temperature T and pressure P with a given
method.

test_method_validity(T, method) Method to test the validity of a specified method for
a given temperature.

test_method_validity_P(T, P, method) Method to check the validity of a pressure and tem-
perature dependent gas molar volume method.

property Tmax
Maximum temperature (K) at which the current method can calculate the property.

property Tmin
Minimum temperature (K) at which the current method can calculate the property.

calculate(T, method)
Method to calculate a property with a specified method, with no validity checking or error handling. Demo
function for testing only; must be implemented according to the methods available for each individual
method. Include the interpolation call here.

Parameters
T [float] Temperature at which to calculate the property, [K]

method [str] Method name to use

Returns
prop [float] Calculated property, [units]

calculate_P(T, P, method)
Method to calculate pressure-dependent gas molar volume at temperature T and pressure P with a given
method.

This method has no exception handling; see TP_dependent_property for that.

Parameters
T [float] Temperature at which to calculate molar volume, [K]

P [float] Pressure at which to calculate molar volume, [K]

method [str] Name of the method to use

Returns
Vm [float] Molar volume of the gas at T and P, [m^3/mol]
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name = 'Gas molar volume'

property_max = 10000000000.0
Maximum valid value of gas molar volume. Set roughly at an ideal gas at 1 Pa and 2 billion K.

property_min = 0
Mimimum valid value of gas molar volume. It should normally be well above this.

ranked_methods = []
Default rankings of the low-pressure methods.

ranked_methods_P = ['COOLPROP', 'EOS', 'TSONOPOULOS_EXTENDED', 'TSONOPOULOS',
'ABBOTT', 'PITZER_CURL', 'CRC_VIRIAL', 'IDEAL']

Default rankings of the pressure-dependent methods.

test_method_validity(T, method)
Method to test the validity of a specified method for a given temperature. Demo function for testing only;
must be implemented according to the methods available for each individual method. Include the interpo-
lation check here.

Parameters
T [float] Temperature at which to determine the validity of the method, [K]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

test_method_validity_P(T, P, method)
Method to check the validity of a pressure and temperature dependent gas molar volume method. For the
four CSP methods that calculate second virial coefficient, the method is considered valid for all temperatures
and pressures, with validity checking based on the result only. For CRC_VIRIAL, there is no limit but
there should be one; at some conditions, a negative volume will result! For COOLPROP, the fluid must
be both a gas at the given conditions and under the maximum pressure of the fluid’s EOS.

For the equation of state PR, the determined phase must be a gas. For IDEAL, there are no limits.

For tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is
set; if it is, the extrapolation is considered valid for all temperatures and pressures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

P [float] Pressure at which to test the method, [Pa]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'm^3/mol'

thermo.volume.volume_gas_methods = ['COOLPROP', 'EOS', 'CRC_VIRIAL',
'TSONOPOULOS_EXTENDED', 'TSONOPOULOS', 'ABBOTT', 'PITZER_CURL', 'IDEAL']

Holds all methods available for the VolumeGas class, for use in iterating over them.
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7.34.3 Pure Solid Volume

class thermo.volume.VolumeSolid(CASRN='', MW=None, Tt=None, Vml_Tt=None, extrapolation='linear',
**kwargs)

Bases: thermo.utils.t_dependent_property.TDependentProperty

Class for dealing with solid molar volume as a function of temperature. Consists of one constant value source,
and one simple estimator based on liquid molar volume.

Parameters
CASRN [str, optional] CAS number

MW [float, optional] Molecular weight, [g/mol]

Tt [float, optional] Triple temperature

Vml_Tt [float, optional] Liquid molar volume at the triple point

load_data [bool, optional] If False, do not load property coefficients from data sources in files
[-]

extrapolation [str or None] None to not extrapolate; see TDependentProperty for a full list
of all options, [-]

method [str or None, optional] If specified, use this method by default and do not use the ranked
sorting; an exception is raised if this is not a valid method for the provided inputs, [-]

See also:

chemicals.volume.Goodman

Notes

A string holding each method’s name is assigned to the following variables in this module, intended as the most
convenient way to refer to a method. To iterate over all methods, use the list stored in volume_solid_methods.

CRC_INORG_S: Constant values in [1], for 1872 chemicals.

GOODMAN: Simple method using the liquid molar volume. Good up to 0.3*Tt. See Goodman for details.

References

[1]

Methods

calculate(T, method) Method to calculate the molar volume of a solid at
tempearture T with a given method.

test_method_validity(T, method) Method to check the validity of a method.

calculate(T, method)
Method to calculate the molar volume of a solid at tempearture T with a given method.

This method has no exception handling; see T_dependent_property for that.

Parameters
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T [float] Temperature at which to calculate molar volume, [K]

method [str] Name of the method to use

Returns
Vms [float] Molar volume of the solid at T, [m^3/mol]

name = 'Solid molar volume'

property_max = 0.002
Maximum value of Heat capacity; arbitrarily set to 0.002, as the largest in the data is 0.00136.

property_min = 0.0
Molar volume cannot be under 0.

ranked_methods = ['CRC_INORG_S', 'GOODMAN']
Default rankings of the available methods.

test_method_validity(T, method)
Method to check the validity of a method. Follows the given ranges for all coefficient-based methods. For
tabular data, extrapolation outside of the range is used if tabular_extrapolation_permitted is set; if
it is, the extrapolation is considered valid for all temperatures.

It is not guaranteed that a method will work or give an accurate prediction simply because this method
considers the method valid.

Parameters
T [float] Temperature at which to test the method, [K]

method [str] Name of the method to test

Returns
validity [bool] Whether or not a method is valid

units = 'm^3/mol'

thermo.volume.volume_solid_methods = ['GOODMAN', 'CRC_INORG_S']
Holds all methods available for the VolumeSolid class, for use in iterating over them.

7.34.4 Mixture Liquid Volume

class thermo.volume.VolumeLiquidMixture(MWs=[], Tcs=[], Pcs=[], Vcs=[], Zcs=[], omegas=[],
CASs=[], VolumeLiquids=[], **kwargs)

Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with the molar volume of a liquid mixture as a function of temperature, pressure, and compo-
sition. Consists of one electrolyte-specific method, four corresponding states methods which do not use pure-
component volumes, and one mole-weighted averaging method.

Prefered method is LINEAR, or LALIBERTE if the mixture is aqueous and has electrolytes.

Parameters
MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

Tcs [list[float], optional] Critical temperatures of all species in the mixture, [K]

Pcs [list[float], optional] Critical pressures of all species in the mixture, [Pa]

Vcs [list[float], optional] Critical molar volumes of all species in the mixture, [m^3/mol]

Zcs [list[float], optional] Critical compressibility factors of all species in the mixture, [Pa]
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omegas [list[float], optional] Accentric factors of all species in the mixture, [-]

CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

VolumeLiquids [list[VolumeLiquid], optional] VolumeLiquid objects created for all species in
the mixture, [-]

correct_pressure_pure [bool, optional] Whether to try to use the better pressure-corrected pure
component models or to use only the T-only dependent pure species models, [-]

Notes

To iterate over all methods, use the list stored in volume_liquid_mixture_methods.

LALIBERTE: Aqueous electrolyte model equation with coefficients; see thermo.electrochem.
Laliberte_density for more details.

COSTALD_MIXTURE: CSP method described in COSTALD_mixture.

COSTALD_MIXTURE_FIT: CSP method described in COSTALD_mixture, with two mixture composition
independent fit coefficients, Vc and omega.

RACKETT: CSP method described in Rackett_mixture.

RACKETT_PARAMETERS: CSP method described in Rackett_mixture, but with a mixture independent
fit coefficient for compressibility factor for each species.

LINEAR: Linear mole fraction mixing rule described in mixing_simple; also known as Amgat’s law.

References

[1]

Methods

calculate(T, P, zs, ws, method) Method to calculate molar volume of a liquid mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate molar volume of a liquid mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]
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zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
Vm [float] Molar volume of the liquid mixture at the given conditions, [m^3/mol]

name = 'Liquid volume'

property_max = 0.002
Maximum valid value of liquid molar volume. Generous limit.

property_min = 0
Mimimum valid value of liquid molar volume. It should normally occur at the triple point, and be well
above this.

ranked_methods = ['LALIBERTE', 'LINEAR', 'COSTALD_MIXTURE_FIT',
'RACKETT_PARAMETERS', 'COSTALD_MIXTURE', 'RACKETT']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'm^3/mol'

thermo.volume.volume_liquid_mixture_methods = ['LALIBERTE', 'LINEAR',
'COSTALD_MIXTURE_FIT', 'RACKETT_PARAMETERS', <function COSTALD>, 'RACKETT']

Holds all low-pressure methods available for the VolumeLiquidMixture class, for use in iterating over them.

7.34.5 Mixture Gas Volume

class thermo.volume.VolumeGasMixture(eos=None, CASs=[], VolumeGases=[], MWs=[], **kwargs)
Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with the molar volume of a gas mixture as a function of temperature, pressure, and composition.
Consists of an equation of state, the ideal gas law, and one mole-weighted averaging method.

Prefered method is EOS, or IDEAL if critical properties of components are unavailable.

Parameters
CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

VolumeGases [list[VolumeGas], optional] VolumeGas objects created for all species in the mix-
ture, [-]
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eos [container[EOS Object], optional] Equation of state mixture object, [-]

MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]

See also:

chemicals.volume.ideal_gas

thermo.eos_mix

Notes

To iterate over all methods, use the list stored in volume_gas_mixture_methods.

EOS: Equation of state mixture object; see thermo.eos_mix for more details.

LINEAR: Linear mole fraction mixing rule described in mixing_simple; more correct than the ideal gas law.

IDEAL: The ideal gas law.

References

[1]

Methods

calculate(T, P, zs, ws, method) Method to calculate molar volume of a gas mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate molar volume of a gas mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
Vm [float] Molar volume of the gas mixture at the given conditions, [m^3/mol]
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name = 'Gas volume'

property_max = 10000000000.0
Maximum valid value of gas molar volume. Set roughly at an ideal gas at 1 Pa and 2 billion K.

property_min = 0.0
Mimimum valid value of gas molar volume. It should normally be well above this.

ranked_methods = ['EOS', 'LINEAR', 'IDEAL', 'LINEAR_MISSING_IDEAL']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'm^3/mol'

thermo.volume.volume_gas_mixture_methods = ['EOS', 'LINEAR', 'IDEAL']
Holds all methods available for the VolumeGasMixture class, for use in iterating over them.

7.34.6 Mixture Solid Volume

class thermo.volume.VolumeSolidMixture(CASs=[], VolumeSolids=[], MWs=[], **kwargs)
Bases: thermo.utils.mixture_property.MixtureProperty

Class for dealing with the molar volume of a solid mixture as a function of temperature, pressure, and composi-
tion. Consists of only mole-weighted averaging.

Parameters
CASs [list[str], optional] The CAS numbers of all species in the mixture, [-]

VolumeSolids [list[VolumeSolid], optional] VolumeSolid objects created for all species in the
mixture, [-]

MWs [list[float], optional] Molecular weights of all species in the mixture, [g/mol]
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Notes

To iterate over all methods, use the list stored in volume_solid_mixture_methods.

LINEAR: Linear mole fraction mixing rule described in mixing_simple.

Methods

calculate(T, P, zs, ws, method) Method to calculate molar volume of a solid mixture
at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

test_method_validity(T, P, zs, ws, method) Method to test the validity of a specified method for
the given conditions.

Tmax
Maximum temperature at which no method can calculate the property above.

Tmin
Minimum temperature at which no method can calculate the property under.

calculate(T, P, zs, ws, method)
Method to calculate molar volume of a solid mixture at temperature T, pressure P, mole fractions zs and
weight fractions ws with a given method.

This method has no exception handling; see mixture_property for that.

Parameters
T [float] Temperature at which to calculate the property, [K]

P [float] Pressure at which to calculate the property, [Pa]

zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Name of the method to use

Returns
Vm [float] Molar volume of the solid mixture at the given conditions, [m^3/mol]

name = 'Solid molar volume'

property_max = 0.002
Maximum value of Heat capacity; arbitrarily set to 0.002, as the largest in the data is 0.00136.

property_min = 0
Molar volume cannot be under 0.

ranked_methods = ['LINEAR']

test_method_validity(T, P, zs, ws, method)
Method to test the validity of a specified method for the given conditions. No methods have implemented
checks or strict ranges of validity.

Parameters
T [float] Temperature at which to check method validity, [K]

P [float] Pressure at which to check method validity, [Pa]
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zs [list[float]] Mole fractions of all species in the mixture, [-]

ws [list[float]] Weight fractions of all species in the mixture, [-]

method [str] Method name to use

Returns
validity [bool] Whether or not a specifid method is valid

units = 'm^3/mol'

thermo.volume.volume_solid_mixture_methods = ['LINEAR']
Holds all methods available for the VolumeSolidMixture class, for use in iterating over them.

7.35 Wilson Gibbs Excess Model (thermo.wilson)

This module contains a class Wilson for performing activity coefficient calculations with the Wilson model. An older,
functional calculation for activity coefficients only is also present, Wilson_gammas.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• Wilson Class

• Wilson Functional Calculations

• Wilson Regression Calculations

7.35.1 Wilson Class

class thermo.wilson.Wilson(T, xs, lambda_coeffs=None, ABCDEF=None, lambda_as=None,
lambda_bs=None, lambda_cs=None, lambda_ds=None, lambda_es=None,
lambda_fs=None)

Bases: thermo.activity.GibbsExcess

Class for representing an a liquid with excess gibbs energy represented by the Wilson equation. This model is
capable of representing most nonideal liquids for vapor-liquid equilibria, but is not recommended for liquid-liquid
equilibria.

The two basic equations are as follows; all other properties are derived from these.

𝑔𝐸 = −𝑅𝑇
∑︁
𝑖

𝑥𝑖 ln

⎛⎝∑︁
𝑗

𝑥𝑗𝜆𝑖,𝑗

⎞⎠
Λ𝑖𝑗 = exp

[︂
𝑎𝑖𝑗 +

𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2

+ 𝑓𝑖𝑗𝑇
2

]︂
Parameters

T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

lambda_coeffs [list[list[list[float]]], optional] Wilson parameters, indexed by [i][j] and then each
value is a 6 element list with parameters (a, b, c, d, e, f ); either lambda_coeffs or the lambda
parameters are required, [various]
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ABCDEF [tuple(list[list[float]], 6), optional] The lamba parameters can be provided as a tuple,
[various]

lambda_as [list[list[float]], optional] a parameters used in calculating Wilson.lambdas, [-]

lambda_bs [list[list[float]], optional] b parameters used in calculating Wilson.lambdas, [K]

lambda_cs [list[list[float]], optional] c parameters used in calculating Wilson.lambdas, [-]

lambda_ds [list[list[float]], optional] d paraemeters used in calculating Wilson.lambdas,
[1/K]

lambda_es [list[list[float]], optional] e parameters used in calculating Wilson.lambdas, [K^2]

lambda_fs [list[list[float]], optional] f parameters used in calculating Wilson.lambdas,
[1/K^2]

Notes

In addition to the methods presented here, the methods of its base class thermo.activity.GibbsExcess are
available as well.

Warning: If parameters are ommited for all interactions, this model reverts to thermo.activity.
IdealSolution. In large systems it is common to only regress parameters for the most important compo-
nents; set lambda parameters for other components to 0 to “ignore” them and treat them as ideal components.

This class works with python lists, numpy arrays, and can be accelerated with Numba or PyPy quite effectively.

References

[1], [2], [3]

Examples

Example 1
This object-oriented class provides access to many more thermodynamic properties than Wilson_gammas, but
it can also be used like that function. In the following example, gammas are calculated with both functions. The
lambdas cannot be specified in this class; but fixed values can be converted with the log function so that fixed
values will be obtained.

>>> Wilson_gammas([0.252, 0.748], [[1, 0.154], [0.888, 1]])
[1.881492608717, 1.165577493112]
>>> GE = Wilson(T=300.0, xs=[0.252, 0.748], lambda_as=[[0, log(0.154)], [log(0.888),
→˓ 0]])
>>> GE.gammas()
[1.881492608717, 1.165577493112]

We can check that the same lambda values were computed as well, and that there is no temperature dependency:

>>> GE.lambdas()
[[1.0, 0.154], [0.888, 1.0]]
>>> GE.dlambdas_dT()
[[0.0, 0.0], [0.0, 0.0]]
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In this case, there is no temperature dependency in the Wilson model as the lambda values are fixed, so the excess
enthalpy is always zero. Other properties are not always zero.

>>> GE.HE(), GE.CpE()
(0.0, 0.0)
>>> GE.GE(), GE.SE(), GE.dGE_dT()
(683.165839398, -2.277219464, 2.2772194646)

Example 2
ChemSep is a (partially) free program for modeling distillation. Besides being a wonderful program, it also
ships with a permissive license several sets of binary interaction parameters. The Wilson parameters in it can be
accessed from Thermo as follows. In the following case, we compute activity coefficients of the ethanol-water
system at mole fractions of [.252, 0.748].

>>> from thermo.interaction_parameters import IPDB
>>> CAS1, CAS2 = '64-17-5', '7732-18-5'
>>> lambda_as = IPDB.get_ip_asymmetric_matrix(name='ChemSep Wilson', CASs=[CAS1,␣
→˓CAS2], ip='aij')
>>> lambda_bs = IPDB.get_ip_asymmetric_matrix(name='ChemSep Wilson', CASs=[CAS1,␣
→˓CAS2], ip='bij')
>>> GE = Wilson(T=273.15+70, xs=[.252, .748], lambda_as=lambda_as, lambda_bs=lambda_
→˓bs)
>>> GE.gammas()
[1.95733110, 1.1600677]

In ChemSep, the form of the Wilson lambda equation is

Λ𝑖𝑗 =
𝑉𝑗
𝑉𝑖

exp

(︂
−𝐴𝑖𝑗

𝑅𝑇

)︂
The parameters were converted to the form used by Thermo as follows:

𝑎𝑖𝑗 = log

(︂
𝑉𝑗
𝑉𝑖

)︂
𝑏𝑖𝑗 =

−𝐴𝑖𝑗

𝑅
=

−𝐴𝑖𝑗

1.9872042586408316
This system was chosen because there is also a sample problem for the same components from the
DDBST which can be found here: http://chemthermo.ddbst.com/Problems_Solutions/Mathcad_Files/P05.01a%
20VLE%20Behavior%20of%20Ethanol%20-%20Water%20Using%20Wilson.xps

In that example, with different data sets and parameters, they obtain at the same conditions activity coefficients
of [1.881, 1.165]. Different sources of parameters for the same system will generally have similar behavior if
regressed in the same temperature range. As higher order lambda parameters are added, models become more
likely to behave differently. It is recommended in [3] to regress the minimum number of parameters required.

Example 3
The DDBST has published some sample problems which are fun to work with. Because the DDBST uses a
different equation form for the coefficients than this model implements, we must initialize the Wilson object
with a different method.

>>> T = 331.42
>>> N = 3
>>> Vs_ddbst = [74.04, 80.67, 40.73]
>>> as_ddbst = [[0, 375.2835, 31.1208], [-1722.58, 0, -1140.79], [747.217, 3596.17,␣
→˓0.0]]

(continues on next page)
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(continued from previous page)

>>> bs_ddbst = [[0, -3.78434, -0.67704], [6.405502, 0, 2.59359], [-0.256645, -6.
→˓2234, 0]]
>>> cs_ddbst = [[0.0, 7.91073e-3, 8.68371e-4], [-7.47788e-3, 0.0, 3.1e-5], [-1.
→˓24796e-3, 3e-5, 0.0]]
>>> dis = eis = fis = [[0.0]*N for _ in range(N)]
>>> params = Wilson.from_DDBST_as_matrix(Vs=Vs_ddbst, ais=as_ddbst, bis=bs_ddbst,␣
→˓cis=cs_ddbst, dis=dis, eis=eis, fis=fis, unit_conversion=False)
>>> xs = [0.229, 0.175, 0.596]
>>> GE = Wilson(T=T, xs=xs, lambda_as=params[0], lambda_bs=params[1], lambda_
→˓cs=params[2], lambda_ds=params[3], lambda_es=params[4], lambda_fs=params[5])
>>> GE
Wilson(T=331.42, xs=[0.229, 0.175, 0.596], lambda_as=[[0.0, 3.870101271243586, 0.
→˓07939943395502425], [-6.491263271243587, 0.0, -3.276991837288562], [0.
→˓8542855660449756, 6.906801837288562, 0.0]], lambda_bs=[[0.0, -375.2835, -31.1208],
→˓ [1722.58, 0.0, 1140.79], [-747.217, -3596.17, -0.0]], lambda_ds=[[-0.0, -0.
→˓00791073, -0.000868371], [0.00747788, -0.0, -3.1e-05], [0.00124796, -3e-05, -0.
→˓0]])
>>> GE.GE(), GE.dGE_dT(), GE.d2GE_dT2()
(480.2639266306882, 4.355962766232997, -0.029130384525017247)
>>> GE.HE(), GE.SE(), GE.dHE_dT(), GE.dSE_dT()
(-963.3892533542517, -4.355962766232997, 9.654392039281216, 0.029130384525017247)
>>> GE.gammas()
[1.2233934334, 1.100945902470, 1.205289928117]

The solution given by the DDBST has the same values [1.223, 1.101, 1.205], and can be found here:
http://chemthermo.ddbst.com/Problems_Solutions/Mathcad_Files/05.09%20Compare%20Experimental%
20VLE%20to%20Wilson%20Equation%20Results.xps

Example 4
A simple example is given in [1]; other textbooks sample problems are normally in the same form as this - with
only volumes and the a term specified. The system is 2-propanol/water at 353.15 K, and the mole fraction of
2-propanol is 0.25.

>>> T = 353.15
>>> N = 2
>>> Vs = [76.92, 18.07] # cm^3/mol
>>> ais = [[0.0, 437.98],[1238.0, 0.0]] # cal/mol
>>> bis = cis = dis = eis = fis = [[0.0]*N for _ in range(N)]
>>> params = Wilson.from_DDBST_as_matrix(Vs=Vs, ais=ais, bis=bis, cis=cis, dis=dis,␣
→˓eis=eis, fis=fis, unit_conversion=True)
>>> xs = [0.25, 0.75]
>>> GE = Wilson(T=T, xs=xs, lambda_as=params[0], lambda_bs=params[1], lambda_
→˓cs=params[2], lambda_ds=params[3], lambda_es=params[4], lambda_fs=params[5])
>>> GE.gammas()
[2.124064516, 1.1903745834]

The activity coefficients given in [1] are [2.1244, 1.1904]; matching ( with a slight deviation from their use of
1.987 as a gas constant).

Attributes
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]
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model_id [int] Unique identifier for the Wilson activity model, [-]

Methods

GE() Calculate and return the excess Gibbs energy of a liq-
uid phase represented with the Wilson model.

d2GE_dT2() Calculate and return the second temperature deriva-
tive of excess Gibbs energy of a liquid phase using
the Wilson activity coefficient model.

d2GE_dTdxs() Calculate and return the temperature derivative of
mole fraction derivatives of excess Gibbs energy of
a liquid represented by the Wilson model.

d2GE_dxixjs() Calculate and return the second mole fraction deriva-
tives of excess Gibbs energy for the Wilson model.

d2lambdas_dT2() Calculate and return the second temperature deriva-
tive of the lambda termsfor the Wilson model at the
system temperature.

d3GE_dT3() Calculate and return the third temperature derivative
of excess Gibbs energy of a liquid phase using the
Wilson activity coefficient model.

d3GE_dxixjxks() Calculate and return the third mole fraction deriva-
tives of excess Gibbs energy using the Wilson model.

d3lambdas_dT3() Calculate and return the third temperature derivative
of the lambda terms for the Wilson model at the sys-
tem temperature.

dGE_dT() Calculate and return the temperature derivative of ex-
cess Gibbs energy of a liquid phase represented by the
Wilson model.

dGE_dxs() Calculate and return the mole fraction derivatives of
excess Gibbs energy for the Wilson model.

dlambdas_dT() Calculate and return the temperature derivative of the
lambda terms for the Wilson model at the system
temperature.

from_DDBST(Vi, Vj, a, b, c[, d, e, f, ...]) Converts parameters for the wilson equation in the
DDBST to the basis used in this implementation.

from_DDBST_as_matrix(Vs[, ais, bis, cis, ...]) Converts parameters for the wilson equation in the
DDBST to the basis used in this implementation.

lambdas() Calculate and return the lambda terms for the Wilson
model for at system temperature.

to_T_xs(T, xs) Method to construct a new Wilson instance at tem-
perature T, and mole fractions xs with the same pa-
rameters as the existing object.

GE()
Calculate and return the excess Gibbs energy of a liquid phase represented with the Wilson model.

𝑔𝐸 = −𝑅𝑇
∑︁
𝑖

𝑥𝑖 ln

⎛⎝∑︁
𝑗

𝑥𝑗𝜆𝑖,𝑗

⎞⎠
Returns

GE [float] Excess Gibbs energy of an ideal liquid, [J/mol]
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d2GE_dT2()
Calculate and return the second temperature derivative of excess Gibbs energy of a liquid phase using the
Wilson activity coefficient model.

𝜕2𝐺𝐸

𝜕𝑇 2
= −𝑅

⎡⎣𝑇∑︁
𝑖

⎛⎝𝑥𝑖∑︀𝑗(𝑥𝑗
𝜕2Λ𝑖𝑗

𝜕𝑇 2 )∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

−
𝑥𝑖(
∑︀

𝑗 𝑥𝑗
𝜕Λ𝑖𝑗

𝜕𝑇 )2

(
∑︀

𝑗 𝑥𝑗Λ𝑖𝑗)2

⎞⎠+ 2
∑︁
𝑖

(︃
𝑥𝑖
∑︀

𝑗 𝑥𝑗
𝜕Λ𝑖𝑗

𝜕𝑇∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

)︃⎤⎦
Returns

d2GE_dT2 [float] Second temperature derivative of excess Gibbs energy, [J/(mol*K^2)]

d2GE_dTdxs()
Calculate and return the temperature derivative of mole fraction derivatives of excess Gibbs energy of a
liquid represented by the Wilson model.

𝜕2𝐺𝐸

𝜕𝑥𝑘𝜕𝑇
= −𝑅

[︃
𝑇

(︃∑︁
𝑖

(︃
𝑥𝑖

𝜕𝑛𝑖𝑘

𝜕𝑇∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

−
𝑥𝑖Λ𝑖𝑘(

∑︀
𝑗 𝑥𝑗

𝜕Λ𝑖𝑗

𝜕𝑇 )

(𝜕𝑗𝑥𝑗Λ𝑖𝑗)2

)︃
+

∑︀
𝑖 𝑥𝑖

𝜕Λ𝑘𝑖

𝜕𝑇∑︀
𝑗 𝑥𝑗Λ𝑘𝑗

)︃
+ ln

(︃∑︁
𝑖

𝑥𝑖Λ𝑘𝑖

)︃
+
∑︁
𝑖

𝑥𝑖Λ𝑖𝑘∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

]︃

Returns
d2GE_dTdxs [list[float]] Temperature derivative of mole fraction derivatives of excess

Gibbs energy, [J/mol/K]

d2GE_dxixjs()
Calculate and return the second mole fraction derivatives of excess Gibbs energy for the Wilson model.

𝜕2𝐺𝐸

𝜕𝑥𝑘𝜕𝑥𝑚
= 𝑅𝑇

(︃∑︁
𝑖

𝑥𝑖Λ𝑖𝑘Λ𝑖𝑚

(
∑︀

𝑗 𝑥𝑗Λ𝑖𝑗)2
− Λ𝑘𝑚∑︀

𝑗 𝑥𝑗Λ𝑘𝑗
− Λ𝑚𝑘∑︀

𝑗 𝑥𝑗Λ𝑚𝑗

)︃

Returns
d2GE_dxixjs [list[list[float]]] Second mole fraction derivatives of excess Gibbs energy,

[J/mol]

d2lambdas_dT2()
Calculate and return the second temperature derivative of the lambda termsfor the Wilson model at the
system temperature.

𝜕2Λ𝑖𝑗

𝜕2𝑇
=

(︃
2𝑓𝑖𝑗 +

(︂
2𝑇𝑓𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂2

− 𝑐𝑖𝑗
𝑇 2

+
2𝑏𝑖𝑗
𝑇 3

+
6𝑒𝑖𝑗
𝑇 4

)︃
𝑒𝑇

2𝑓𝑖𝑗+𝑇𝑑𝑖𝑗+𝑎𝑖𝑗+𝑐𝑖𝑗 ln (𝑇 )+
𝑏𝑖𝑗
𝑇 +

𝑒𝑖𝑗

𝑇2

Returns
d2lambdas_dT2 [list[list[float]]] Second temperature deriavtives of Lambda terms, asym-

metric matrix, [1/K^2]

Notes

These Lambda ij values (and the coefficients) are NOT symmetric.

d3GE_dT3()
Calculate and return the third temperature derivative of excess Gibbs energy of a liquid phase using the
Wilson activity coefficient model.

𝜕3𝐺𝐸

𝜕𝑇 3
= −𝑅

⎡⎣3

⎛⎝𝑥𝑖∑︀𝑗(𝑥𝑗
𝜕2Λ𝑖𝑗

𝜕𝑇 2 )∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

−
𝑥𝑖(
∑︀

𝑗 𝑥𝑗
𝜕Λ𝑖𝑗

𝜕𝑇 )2

(
∑︀

𝑗 𝑥𝑗Λ𝑖𝑗)2

⎞⎠+ 𝑇

⎛⎝∑︁
𝑖

𝑥𝑖(
∑︀

𝑗 𝑥𝑗
𝜕3Λ𝑖𝑗

𝜕𝑇 3 )∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

−
3𝑥𝑖(

∑︀
𝑗 𝑥𝑗

𝜕Λ2
𝑖𝑗

𝜕𝑇 2 )(
∑︀

𝑗 𝑥𝑗
𝜕Λ𝑖𝑗

𝜕𝑇 )

(
∑︀

𝑗 𝑥𝑗Λ𝑖𝑗)2
+ 2

𝑥𝑖(
∑︀

𝑗 𝑥𝑗
𝜕Λ𝑖𝑗

𝜕𝑇 )3

(
∑︀

𝑗 𝑥𝑗Λ𝑖𝑗)3

⎞⎠⎤⎦
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Returns
d3GE_dT3 [float] Third temperature derivative of excess Gibbs energy, [J/(mol*K^3)]

d3GE_dxixjxks()
Calculate and return the third mole fraction derivatives of excess Gibbs energy using the Wilson model.

𝜕3𝐺𝐸

𝜕𝑥𝑘𝜕𝑥𝑚𝜕𝑥𝑛
= −𝑅𝑇

[︃∑︁
𝑖

(︂
2𝑥𝑖Λ𝑖𝑘Λ𝑖𝑚Λ𝑖𝑛

(
∑︀
𝑥𝑗Λ𝑖𝑗)3

)︂
− Λ𝑘𝑚Λ𝑘𝑛

(
∑︀

𝑗 𝑥𝑗Λ𝑘𝑗)2
− Λ𝑚𝑘Λ𝑚𝑛

(
∑︀

𝑗 𝑥𝑗Λ𝑚𝑗)2
− Λ𝑛𝑘Λ𝑛𝑚

(
∑︀

𝑗 𝑥𝑗Λ𝑛𝑗)2

]︃
Returns

d3GE_dxixjxks [list[list[list[float]]]] Third mole fraction derivatives of excess Gibbs en-
ergy, [J/mol]

d3lambdas_dT3()
Calculate and return the third temperature derivative of the lambda terms for the Wilson model at the system
temperature.

𝜕3Λ𝑖𝑗

𝜕3𝑇
=

⎛⎝3

(︂
2𝑓𝑖𝑗 −

𝑐𝑖𝑗
𝑇 2

+
2𝑏𝑖𝑗
𝑇 3

+
6𝑒𝑖𝑗
𝑇 4

)︂(︂
2𝑇𝑓𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂
+

(︂
2𝑇𝑓𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂3

−
2
(︁
−𝑐𝑖𝑗 +

3𝑏𝑖𝑗
𝑇 +

12𝑒𝑖𝑗
𝑇 2

)︁
𝑇 3

⎞⎠ 𝑒𝑇
2𝑓𝑖𝑗+𝑇𝑑𝑖𝑗+𝑎𝑖𝑗+𝑐𝑖𝑗 ln (𝑇 )+

𝑏𝑖𝑗
𝑇 +

𝑒𝑖𝑗

𝑇2

Returns
d3lambdas_dT3 [list[list[float]]] Third temperature deriavtives of Lambda terms, asymmet-

ric matrix, [1/K^3]

Notes

These Lambda ij values (and the coefficients) are NOT symmetric.

dGE_dT()
Calculate and return the temperature derivative of excess Gibbs energy of a liquid phase represented by the
Wilson model.

𝜕𝐺𝐸

𝜕𝑇
= −𝑅

∑︁
𝑖

𝑥𝑖 ln

⎛⎝∑︁
𝑗

𝑥𝑖Λ𝑖𝑗

⎞⎠−𝑅𝑇
∑︁
𝑖

𝑥𝑖
∑︀

𝑗 𝑥𝑗
Λ𝑖𝑗

𝜕𝑇∑︀
𝑗 𝑥𝑗Λ𝑖𝑗

Returns
dGE_dT [float] First temperature derivative of excess Gibbs energy of a liquid phase repre-

sented by the Wilson model, [J/(mol*K)]

dGE_dxs()
Calculate and return the mole fraction derivatives of excess Gibbs energy for the Wilson model.

𝜕𝐺𝐸

𝜕𝑥𝑘
= −𝑅𝑇

⎡⎣∑︁
𝑖

𝑥𝑖Λ𝑖𝑘∑︀
𝑗 Λ𝑖𝑗𝑥𝑗

+ ln

⎛⎝∑︁
𝑗

𝑥𝑗Λ𝑘𝑗

⎞⎠⎤⎦
Returns

dGE_dxs [list[float]] Mole fraction derivatives of excess Gibbs energy, [J/mol]

dlambdas_dT()
Calculate and return the temperature derivative of the lambda terms for the Wilson model at the system
temperature.

𝜕Λ𝑖𝑗

𝜕𝑇
=

(︂
2𝑇ℎ𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂
𝑒𝑇

2ℎ𝑖𝑗+𝑇𝑑𝑖𝑗+𝑎𝑖𝑗+𝑐𝑖𝑗 ln (𝑇 )+
𝑏𝑖𝑗
𝑇 +

𝑒𝑖𝑗

𝑇2
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Returns
dlambdas_dT [list[list[float]]] Temperature deriavtives of Lambda terms, asymmetric ma-

trix [1/K]

Notes

These Lambda ij values (and the coefficients) are NOT symmetric.

static from_DDBST(Vi, Vj, a, b, c, d=0.0, e=0.0, f=0.0, unit_conversion=True)
Converts parameters for the wilson equation in the DDBST to the basis used in this implementation.

Λ𝑖𝑗 =
𝑉𝑗
𝑉𝑖

exp

(︂
−∆𝜆𝑖𝑗
𝑅𝑇

)︂
∆𝜆𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑇 + 𝑐𝑇 2 + 𝑑𝑖𝑗𝑇 ln𝑇 + 𝑒𝑖𝑗𝑇

3 + 𝑓𝑖𝑗/𝑇

Parameters
Vi [float] Molar volume of component i; needs only to be in the same units as Vj, [cm^3/mol]

Vj [float] Molar volume of component j; needs only to be in the same units as Vi, [cm^3/mol]

a [float] a parameter in DDBST form, [K]

b [float] b parameter in DDBST form, [-]

c [float] c parameter in DDBST form, [1/K]

d [float, optional] d parameter in DDBST form, [-]

e [float, optional] e parameter in DDBST form, [1/K^2]

f [float, optional] f parameter in DDBST form, [K^2]

unit_conversion [bool] If True, the input coefficients are in units of cal/K/mol, and a R gas
constant of 1.9872042. . . is used for the conversion; the DDBST uses this generally, [-]

Returns
a [float] a parameter in Wilson form, [-]

b [float] b parameter in Wilson form, [K]

c [float] c parameter in Wilson form, [-]

d [float] d parameter in Wilson form, [1/K]

e [float] e parameter in Wilson form, [K^2]

f [float] f parameter in Wilson form, [1/K^2]

Notes

The units show how the different variables are related to each other.
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Examples

>>> Wilson.from_DDBST(Vi=74.04, Vj=80.67, a=375.2835, b=-3.78434, c=0.00791073,␣
→˓d=0.0, e=0.0, f=0.0, unit_conversion=False)
(3.8701012712, -375.2835, -0.0, -0.00791073, -0.0, -0.0)

static from_DDBST_as_matrix(Vs, ais=None, bis=None, cis=None, dis=None, eis=None, fis=None,
unit_conversion=True)

Converts parameters for the wilson equation in the DDBST to the basis used in this implementation. Matrix
wrapper around Wilson.from_DDBST.

Parameters
Vs [list[float]] Molar volume of component; needs only to be in consistent units, [cm^3/mol]

ais [list[list[float]]] a parameters in DDBST form, [K]

bis [list[list[float]]] b parameters in DDBST form, [-]

cis [list[list[float]]] c parameters in DDBST form, [1/K]

dis [list[list[float]], optional] d parameters in DDBST form, [-]

eis [list[list[float]], optional] e parameters in DDBST form, [1/K^2]

fis [list[list[float]], optional] f parameters in DDBST form, [K^2]

unit_conversion [bool] If True, the input coefficients are in units of cal/K/mol, and a R gas
constant of 1.9872042. . . is used for the conversion; the DDBST uses this generally, [-]

Returns
a [list[list[float]]] a parameters in Wilson form, [-]

b [list[list[float]]] b parameters in Wilson form, [K]

c [list[list[float]]] c parameters in Wilson form, [-]

d [list[list[float]]] d paraemeters in Wilson form, [1/K]

e [list[list[float]]] e parameters in Wilson form, [K^2]

f [list[list[float]]] f parameters in Wilson form, [1/K^2]

lambdas()
Calculate and return the lambda terms for the Wilson model for at system temperature.

Λ𝑖𝑗 = exp

[︂
𝑎𝑖𝑗 +

𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2

+ 𝑓𝑖𝑗𝑇
2

]︂
Returns

lambdas [list[list[float]]] Lambda terms, asymmetric matrix [-]
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Notes

These Lambda ij values (and the coefficients) are NOT symmetric.

to_T_xs(T, xs)
Method to construct a new Wilson instance at temperature T, and mole fractions xs with the same param-
eters as the existing object.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions of each component, [-]

Returns
obj [Wilson] New Wilson object at the specified conditions [-]

Notes

If the new temperature is the same temperature as the existing temperature, if the lambda terms or their
derivatives have been calculated, they will be set to the new object as well.

7.35.2 Wilson Functional Calculations

thermo.wilson.Wilson_gammas(xs, params)
Calculates the activity coefficients of each species in a mixture using the Wilson method, given their mole frac-
tions, and dimensionless interaction parameters. Those are normally correlated with temperature, and need to
be calculated separately.

ln 𝛾𝑖 = 1 − ln

⎛⎝ 𝑁∑︁
𝑗

Λ𝑖𝑗𝑥𝑗

⎞⎠−
𝑁∑︁
𝑗

Λ𝑗𝑖𝑥𝑗
𝑁∑︁
𝑘

Λ𝑗𝑘𝑥𝑘

Parameters
xs [list[float]] Liquid mole fractions of each species, [-]

params [list[list[float]]] Dimensionless interaction parameters of each compound with each
other, [-]

Returns
gammas [list[float]] Activity coefficient for each species in the liquid mixture, [-]

Notes

This model needs N^2 parameters.

The original model correlated the interaction parameters using the standard pure-component molar volumes of
each species at 25°C, in the following form:

Λ𝑖𝑗 =
𝑉𝑗
𝑉𝑖

exp

(︂
−𝜆𝑖,𝑗
𝑅𝑇

)︂
If a compound is not liquid at that temperature, the liquid volume is taken at the saturated pressure; and if the
component is supercritical, its liquid molar volume should be extrapolated to 25°C.
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However, that form has less flexibility and offered no advantage over using only regressed parameters.

Most correlations for the interaction parameters include some of the terms shown in the following form:

ln Λ𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2

+ ℎ𝑖𝑗𝑇
2

The Wilson model is not applicable to liquid-liquid systems.

For this model to produce ideal acitivty coefficients (gammas = 1), all interaction parameters should be 1.

The specific process simulator implementations are as follows:

References

[1], [2]

Examples

Ethanol-water example, at 343.15 K and 1 MPa, from [2] also posted online http://chemthermo.ddbst.
com/Problems_Solutions/Mathcad_Files/P05.01a%20VLE%20Behavior%20of%20Ethanol%20-%20Water%
20Using%20Wilson.xps :

>>> Wilson_gammas([0.252, 0.748], [[1, 0.154], [0.888, 1]])
[1.881492608717, 1.165577493112]

7.35.3 Wilson Regression Calculations

thermo.wilson.wilson_gammas_binaries(xs, lambda12, lambda21, calc=None)
Calculates activity coefficients at fixed lambda values for a binary system at a series of mole fractions. This is
used for regression of lambda parameters. This function is highly optimized, and operates on multiple points at
a time.

ln 𝛾1 = − ln(𝑥1 + Λ12𝑥2) + 𝑥2

(︂
Λ12

𝑥1 + Λ12𝑥2
− Λ21

𝑥2 + Λ21𝑥1

)︂

ln 𝛾2 = − ln(𝑥2 + Λ21𝑥1) − 𝑥1

(︂
Λ12

𝑥1 + Λ12𝑥2
− Λ21

𝑥2 + Λ21𝑥1

)︂
Parameters

xs [list[float]] Liquid mole fractions of each species in the format x0_0, x1_0, (component 1
point1, component 2 point 1), x0_1, x1_1, (component 1 point2, component 2 point 2), . . .
[-]

lambda12 [float] lambda parameter for 12, [-]

lambda21 [float] lambda parameter for 21, [-]

gammas [list[float], optional] Array to store the activity coefficient for each species in the liquid
mixture, indexed the same as xs; can be omitted or provided for slightly better performance
[-]

Returns
gammas [list[float]] Activity coefficient for each species in the liquid mixture, indexed the same

as xs, [-]
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Notes

The lambda values are hard-coded to replace values under zero which are mathematically impossible, with a
very small number. This is helpful for regression which might try to make those values negative.

Examples

>>> wilson_gammas_binaries([.1, .9, 0.3, 0.7, .85, .15], 0.1759, 0.7991)
[3.42989, 1.03432, 1.74338, 1.21234, 1.01766, 2.30656]

7.36 UNIQUAC Gibbs Excess Model (thermo.uniquac)

This module contains a class UNIQUAC for performing activity coefficient calculations with the UNIQUAC model. An
older, functional calculation for activity coefficients only is also present, UNIQUAC_gammas.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker.

• UNIQUAC Class

• UNIQUAC Functional Calculations

7.36.1 UNIQUAC Class

class thermo.uniquac.UNIQUAC(T, xs, rs, qs, tau_coeffs=None, ABCDEF=None, tau_as=None, tau_bs=None,
tau_cs=None, tau_ds=None, tau_es=None, tau_fs=None)

Bases: thermo.activity.GibbsExcess

Class for representing an a liquid with excess gibbs energy represented by the UNIQUAC equation. This model
is capable of representing VL and LL behavior.

𝐺𝐸

𝑅𝑇
=
∑︁
𝑖

𝑥𝑖 ln
𝜑𝑖
𝑥𝑖

+
𝑧

2

∑︁
𝑖

𝑞𝑖𝑥𝑖 ln
𝜃𝑖
𝜑𝑖

−
∑︁
𝑖

𝑞𝑖𝑥𝑖 ln

⎛⎝∑︁
𝑗

𝜃𝑗𝜏𝑗𝑖

⎞⎠
𝜑𝑖 =

𝑟𝑖𝑥𝑖∑︀
𝑗 𝑟𝑗𝑥𝑗

𝜃𝑖 =
𝑞𝑖𝑥𝑖∑︀
𝑗 𝑞𝑗𝑥𝑗

𝜏𝑖𝑗 = exp

[︂
𝑎𝑖𝑗 +

𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2

+ 𝑓𝑖𝑗𝑇
2

]︂
Parameters

T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

rs [list[float]] r parameters 𝑟𝑖 =
∑︀𝑛

𝑘=1 𝜈𝑘𝑅𝑘 if from UNIFAC, otherwise regressed, [-]

qs [list[float]] q parameters 𝑞𝑖 =
∑︀𝑛

𝑘=1 𝜈𝑘𝑄𝑘 if from UNIFAC, otherwise regressed, [-]
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tau_coeffs [list[list[list[float]]], optional] UNIQUAC parameters, indexed by [i][j] and then each
value is a 6 element list with parameters [a, b, c, d, e, f ]; either tau_coeffs or ABCDEF are
required, [-]

ABCDEF [tuple[list[list[float]], 6], optional] Contains the following. One of tau_coeffs or
ABCDEF or some of the tau_as, etc parameters are required, [-]

tau_as [list[list[float]] or None, optional] a parameters used in calculating UNIQUAC.taus, [-]

tau_bs [list[list[float]] or None, optional] b parameters used in calculating UNIQUAC.taus, [K]

tau_cs [list[list[float]] or None, optional] c parameters used in calculating UNIQUAC.taus, [-]

tau_ds [list[list[float]] or None, optional] d paraemeters used in calculating UNIQUAC.taus,
[1/K]

tau_es [list[list[float]] or None, optional] e parameters used in calculating UNIQUAC.taus,
[K^2]

tau_fs [list[list[float]] or None, optional] f parameters used in calculating UNIQUAC.taus,
[1/K^2]

Notes

In addition to the methods presented here, the methods of its base class thermo.activity.GibbsExcess are
available as well.

Warning: There is no such thing as a missing parameter in the UNIQUAC model. It is possible to find 𝜏𝑖𝑗
and 𝜏𝑗𝑖 which make 𝛾𝑖 = 1 and 𝛾𝑗 = 1, but those tau values depend on rs, qs, and xs - the composition, which
obviously will change. It is therefore impossible to make an interaction parameter “missing”; whatever value
it has will always impact the phase equilibria problem. At best, the tau values can produce close to ideal
behavior.

References

[1], [2]

Examples

Example 1
Example 5.19 in [2] includes the calculation of liquid-liquid activity coefficients for the water-ethanol-benzene
system. Two calculations are reproduced accurately here. Note that the DDBST-style coefficients assume a
negative sign; for compatibility, their coefficients need to have their sign flipped.

>>> N = 3
>>> T = 25.0 + 273.15
>>> xs = [0.7273, 0.0909, 0.1818]
>>> rs = [.92, 2.1055, 3.1878]
>>> qs = [1.4, 1.972, 2.4]
>>> tausA = tausC = tausD = tausE = tausF = [[0.0]*N for i in range(N)]
>>> tausB = [[0, 526.02, 309.64], [-318.06, 0, -91.532], [1325.1, 302.57, 0]]
>>> tausB = [[-v for v in r] for r in tausB] # Flip the sign to come into UNIQUAC␣
→˓convention

(continues on next page)
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(continued from previous page)

>>> ABCDEF = (tausA, tausB, tausC, tausD, tausE, tausF)
>>> GE = UNIQUAC(T=T, xs=xs, rs=rs, qs=qs, ABCDEF=ABCDEF)
>>> GE.gammas()
[1.570393328, 0.2948241614, 18.114329048]

The given values in [2] are [1.570, 0.2948, 18.11], matching exactly. The second phase has a different compo-
sition; the expected values are [8.856, 0.860, 1.425]. Once the UNIQUAC object has been constructed, it is very
easy to obtain properties at different conditions:

>>> GE.to_T_xs(T=T, xs=[1/6., 1/6., 2/3.]).gammas()
[8.8559908058, 0.8595242462, 1.42546014081]

The string representation of the object presents enough information to reconstruct it as well.

>>> GE
UNIQUAC(T=298.15, xs=[0.7273, 0.0909, 0.1818], rs=[0.92, 2.1055, 3.1878], qs=[1.4,␣
→˓1.972, 2.4], ABCDEF=([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0, -
→˓526.02, -309.64], [318.06, 0, 91.532], [-1325.1, -302.57, 0]], [[0.0, 0.0, 0.0],␣
→˓[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0,␣
→˓0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.
→˓0, 0.0, 0.0], [0.0, 0.0, 0.0]]))

The phase exposes many properties and derivatives as well.

>>> GE.GE(), GE.dGE_dT(), GE.d2GE_dT2()
(1843.96486834, 6.69851118521, -0.015896025970)
>>> GE.HE(), GE.SE(), GE.dHE_dT(), GE.dSE_dT()
(-153.19624152, -6.69851118521, 4.7394001431, 0.0158960259705)

Example 2
Another problem is 8.32 in [1] - acetonitrile, benzene, n-heptane at 45 °C. The sign flip is needed here as well
to convert their single temperature-dependent values into the correct form, but it has already been done to the
coefficients:

>>> N = 3
>>> T = 45 + 273.15
>>> xs = [.1311, .0330, .8359]
>>> rs = [1.87, 3.19, 5.17]
>>> qs = [1.72, 2.4, 4.4]
>>> tausA = tausC = tausD = tausE = tausF = [[0.0]*N for i in range(N)]
>>> tausB = [[0.0, -60.28, -23.71], [-89.57, 0.0, 135.9], [-545.8, -245.4, 0.0]]
>>> ABCDEF = (tausA, tausB, tausC, tausD, tausE, tausF)
>>> GE = UNIQUAC(T=T, xs=xs, rs=rs, qs=qs, ABCDEF=ABCDEF)
>>> GE.gammas()
[7.1533533992, 1.25052436922, 1.060392792605]

The given values in [1] are [7.15, 1.25, 1.06].

Example 3
ChemSep is a program for modeling distillation. Chemsep ships with a permissive license several sets of binary
interaction parameters. The UNIQUAC parameters in it can be accessed from Thermo as follows. In the following
case, we compute activity coefficients of the ethanol-water system at mole fractions of [.252, 0.748].
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>>> from thermo.interaction_parameters import IPDB
>>> CAS1, CAS2 = '64-17-5', '7732-18-5'
>>> xs = [0.252, 0.748]
>>> rs = [2.11, 0.92]
>>> qs = [1.97, 1.400]
>>> N = 2
>>> T = 343.15
>>> tau_bs = IPDB.get_ip_asymmetric_matrix(name='ChemSep UNIQUAC', CASs=['64-17-5',
→˓'7732-18-5'], ip='bij')
>>> GE = UNIQUAC(T=T, xs=xs, rs=rs, qs=qs, tau_bs=tau_bs)
>>> GE.gammas()
[1.977454, 1.1397696]

In ChemSep, the form of the UNIQUAC tau equation is

𝜏𝑖𝑗 = exp

(︂
−𝐴𝑖𝑗

𝑅𝑇

)︂
The parameters were converted to the form used by Thermo as follows:

𝑏𝑖𝑗 =
−𝐴𝑖𝑗

𝑅
=

−𝐴𝑖𝑗

1.9872042586408316

This system was chosen because there is also a sample problem for the same components from the
DDBST which can be found here: http://chemthermo.ddbst.com/Problems_Solutions/Mathcad_Files/P05.01c%
20VLE%20Behavior%20of%20Ethanol%20-%20Water%20Using%20UNIQUAC.xps

In that example, with different data sets and parameters, they obtain at the same conditions activity coefficients
of [2.359, 1.244].

Attributes
T [float] Temperature, [K]

xs [list[float]] Mole fractions, [-]

Methods

GE() Calculate and return the excess Gibbs energy of a liq-
uid phase using the UNIQUAC model.

d2GE_dT2() Calculate and return the second temperature deriva-
tive of excess Gibbs energy of a liquid phase using
the UNIQUAC model.

d2GE_dTdxs() Calculate and return the temperature derivative of
mole fraction derivatives of excess Gibbs energy us-
ing the UNIQUAC model.

d2GE_dxixjs() Calculate and return the second mole fraction deriva-
tives of excess Gibbs energy using the UNIQUAC
model.

d2taus_dT2() Calculate and return the second temperature deriva-
tive of the tau

d3GE_dT3() Calculate and return the third temperature derivative
of excess Gibbs energy of a liquid phase using the
UNIQUAC model.

continues on next page
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Table 113 – continued from previous page
d3taus_dT3() Calculate and return the third temperature derivative

of the tau terms for the UNIQUAC model for a spec-
ified temperature.

dGE_dT() Calculate and return the temperature derivative of ex-
cess Gibbs energy of a liquid phase using the UNI-
QUAC model.

dGE_dxs() Calculate and return the mole fraction derivatives of
excess Gibbs energy using the UNIQUAC model.

dtaus_dT() Calculate and return the temperature derivative of the
tau terms for the UNIQUAC model for a specified
temperature.

phis() Calculate and return the phi parameters at the system
composition and temperature.

regress_binary_parameters(gammas, xs, rs, qs) Perform a basic regression to determine the values of
the tau terms in the UNIQUAC model, given a series
of known or predicted activity coefficients and mole
fractions.

taus() Calculate and return the tau terms for the UNIQUAC
model for the system temperature.

thetas() Calculate and return the theta parameters at the sys-
tem composition and temperature.

to_T_xs(T, xs) Method to construct a new UNIQUAC instance at tem-
perature T, and mole fractions xs with the same pa-
rameters as the existing object.

GE()
Calculate and return the excess Gibbs energy of a liquid phase using the UNIQUAC model.

𝐺𝐸

𝑅𝑇
=
∑︁
𝑖

𝑥𝑖 ln
𝜑𝑖
𝑥𝑖

+
𝑧

2

∑︁
𝑖

𝑞𝑖𝑥𝑖 ln
𝜃𝑖
𝜑𝑖

−
∑︁
𝑖

𝑞𝑖𝑥𝑖 ln

⎛⎝∑︁
𝑗

𝜃𝑗𝜏𝑗𝑖

⎞⎠
Returns

GE [float] Excess Gibbs energy, [J/mol]

d2GE_dT2()
Calculate and return the second temperature derivative of excess Gibbs energy of a liquid phase using the
UNIQUAC model.

𝜕𝐺𝐸

𝜕𝑇 2
= −𝑅

⎡⎣𝑇∑︁
𝑖

⎛⎝𝑞𝑖𝑥𝑖(∑︀𝑗 𝜃𝑗
𝜕2𝜏𝑗𝑖
𝜕𝑇 2 )∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖
−
𝑞𝑖𝑥𝑖(

∑︀
𝑗 𝜃𝑗

𝜕𝜏𝑗𝑖
𝜕𝑇 )2

(
∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖)
2

⎞⎠+ 2

(︃∑︁
𝑖

𝑞𝑖𝑥𝑖(
∑︀

𝑗 𝜃𝑗
𝜕𝜏𝑗𝑖
𝜕𝑇 )∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖

)︃⎤⎦
Returns

d2GE_dT2 [float] Second temperature derivative of excess Gibbs energy, [J/(mol*K^2)]

d2GE_dTdxs()
Calculate and return the temperature derivative of mole fraction derivatives of excess Gibbs energy using
the UNIQUAC model.

𝜕𝐺𝐸

𝜕𝑥𝑖𝜕𝑇
= 𝑅

⎡⎣−𝑇
⎧⎨⎩𝑞𝑖(

∑︀
𝑗 𝜃𝑗

𝜕𝜏𝑗𝑖
𝜕𝑇 )∑︀

𝑗 𝜏𝑘𝑖𝜃𝑘
+
∑︁
𝑗

𝑞𝑗𝑥𝑗(
∑︀

𝑘
𝜕𝜏𝑘𝑗

𝜕𝑇
𝜕𝜃𝑘
𝜕𝑥𝑖

)∑︀
𝑘 𝜏𝑘𝑗𝜃𝑘

−
∑︁
𝑗

𝑞𝑗𝑥𝑗(
∑︀

𝑘 𝜏𝑘𝑗
𝜕𝜃𝑘
𝜕𝑥𝑖

)(
∑︀

𝑘 𝜃𝑘
𝜕𝜏𝑘𝑗

𝜕𝑇 )

(
∑︀

𝑘 𝜏𝑘𝑗𝜃𝑘)2

⎫⎬⎭+
∑︁
𝑗

𝑞𝑗𝑥𝑗𝑧
(︁

𝜕𝜃𝑗
𝜕𝑥𝑖

− 𝜃𝑗
𝜑𝑗

𝜕𝜑𝑗

𝜕𝑥𝑖

)︁
2𝜃𝑗

−
∑︁
𝑗

𝑞𝑗𝑥𝑗
∑︀

𝑘 𝜏𝑘𝑗
𝜕𝜃𝑘
𝜕𝑥𝑖∑︀

𝑘 𝜏𝑘𝑗𝜃𝑘
+ 0.5𝑧𝑞𝑖 ln

(︂
𝜃𝑖
𝜑𝑖

)︂
− 𝑞𝑖 ln

⎛⎝∑︁
𝑗

𝜏𝑗𝑖𝜃𝑗

⎞⎠+ ln

(︂
𝜑𝑖
𝑥𝑖

)︂
+
𝑥𝑖
𝜑𝑖

(︂
𝜕𝜑𝑖
𝜕𝑥𝑖

− 𝜑𝑖
𝑥𝑖

)︂
+
∑︁
𝑗 ̸=𝑖

𝑥𝑗
𝜑𝑗

𝜕𝜑𝑗
𝜕𝑥𝑖

⎤⎦
Returns
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d2GE_dTdxs [list[float]] Temperature derivative of mole fraction derivatives of excess
Gibbs energy, [J/(mol*K)]

d2GE_dxixjs()
Calculate and return the second mole fraction derivatives of excess Gibbs energy using the UNIQUAC
model.

𝜕2𝑔𝐸

𝜕𝑥𝑖𝜕𝑥𝑗

Returns
d2GE_dxixjs [list[list[float]]] Second mole fraction derivatives of excess Gibbs energy,

[J/mol]

Notes

The formula is extremely long and painful; see the source code for details.

d2taus_dT2()

Calculate and return the second temperature derivative of the tau terms for the UNIQUAC model for
a specified temperature.

𝜕2𝜏𝑖𝑗
𝜕2𝑇

=

(︃
2𝑓𝑖𝑗 +

(︂
2𝑇𝑓𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂2

− 𝑐𝑖𝑗
𝑇 2

+
2𝑏𝑖𝑗
𝑇 3

+
6𝑒𝑖𝑗
𝑇 4

)︃
𝑒𝑇

2𝑓𝑖𝑗+𝑇𝑑𝑖𝑗+𝑎𝑖𝑗+𝑐𝑖𝑗 ln (𝑇 )+
𝑏𝑖𝑗
𝑇 +

𝑒𝑖𝑗

𝑇2

Returns
d2taus_dT2 [list[list[float]]] Second temperature derivatives of tau terms, asymmetric ma-

trix [1/K^2]

Notes

These values (and the coefficients) are NOT symmetric.

d3GE_dT3()
Calculate and return the third temperature derivative of excess Gibbs energy of a liquid phase using the
UNIQUAC model.

𝜕3𝐺𝐸

𝜕𝑇 3
= −𝑅

⎡⎣𝑇∑︁
𝑖

⎛⎝𝑞𝑖𝑥𝑖(∑︀𝑗 𝜃𝑗
𝜕3𝜏𝑗𝑖
𝜕𝑇 3 )

(
∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖)
−

3𝑞𝑖𝑥𝑖(
∑︀

𝑗 𝜃𝑗
𝜕2𝜏𝑗𝑖
𝜕𝑇 2 )(

∑︀
𝑗 𝜃𝑗

𝜕𝜏𝑗𝑖
𝜕𝑇 )

(
∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖)
2

+
2𝑞𝑖𝑥𝑖(

∑︀
𝑗 𝜃𝑗

𝜕𝜏𝑗𝑖
𝜕𝑇 )3

(
∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖)
3

⎞⎠+
∑︁
𝑖

⎛⎝3𝑞𝑖𝑥𝑖(
∑︀

𝑗 𝑥𝑗
𝜕2𝜏𝑗𝑖
𝜕𝑇 2 )∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖
−

3𝑞𝑖𝑥𝑖(
∑︀

𝑗 𝜃𝑗
𝜕𝜏𝑗𝑖
𝜕𝑇 )2

(
∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖)
2

⎞⎠⎤⎦
Returns

d3GE_dT3 [float] Third temperature derivative of excess Gibbs energy, [J/(mol*K^3)]

d3taus_dT3()
Calculate and return the third temperature derivative of the tau terms for the UNIQUAC model for a spec-
ified temperature.

𝜕3𝜏𝑖𝑗
𝜕3𝑇

=

⎛⎝3

(︂
2𝑓𝑖𝑗 −

𝑐𝑖𝑗
𝑇 2

+
2𝑏𝑖𝑗
𝑇 3

+
6𝑒𝑖𝑗
𝑇 4

)︂(︂
2𝑇𝑓𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂
+

(︂
2𝑇𝑓𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂3

−
2
(︁
−𝑐𝑖𝑗 +

3𝑏𝑖𝑗
𝑇 +

12𝑒𝑖𝑗
𝑇 2

)︁
𝑇 3

⎞⎠ 𝑒𝑇
2𝑓𝑖𝑗+𝑇𝑑𝑖𝑗+𝑎𝑖𝑗+𝑐𝑖𝑗 ln (𝑇 )+

𝑏𝑖𝑗
𝑇 +

𝑒𝑖𝑗

𝑇2

Returns
d3taus_dT3 [list[list[float]]] Third temperature derivatives of tau terms, asymmetric matrix

[1/K^3]

7.36. UNIQUAC Gibbs Excess Model (thermo.uniquac) 917



thermo Documentation, Release 0.2.20

Notes

These values (and the coefficients) are NOT symmetric.

dGE_dT()
Calculate and return the temperature derivative of excess Gibbs energy of a liquid phase using the UNI-
QUAC model.

𝜕𝐺𝐸

𝜕𝑇
=
𝐺𝐸

𝑇
−𝑅𝑇

(︃∑︁
𝑖

𝑞𝑖𝑥𝑖(
∑︀

𝑗 𝜃𝑗
𝜕𝜏𝑗𝑖
𝜕𝑇 )∑︀

𝑗 𝜃𝑗𝜏𝑗𝑖

)︃

Returns
dGE_dT [float] First temperature derivative of excess Gibbs energy, [J/(mol*K)]

dGE_dxs()
Calculate and return the mole fraction derivatives of excess Gibbs energy using the UNIQUAC model.

𝜕𝐺𝐸

𝜕𝑥𝑖
= 𝑅𝑇

⎡⎣∑︁
𝑗

𝑞𝑗𝑥𝑗𝜑𝑗𝑧

2𝜃𝑗

(︃
1

𝜑𝑗
· 𝜕𝜃𝑗
𝜕𝑥𝑖

− 𝜃𝑗
𝜑2𝑗

· 𝜕𝜑𝑗
𝜕𝑥𝑖

)︃
−
∑︁
𝑗

(︃
𝑞𝑗𝑥𝑗(

∑︀
𝑘 𝜏𝑘𝑗

𝜕𝜃𝑘
𝜕𝑥𝑖

)∑︀
𝑘 𝜏𝑘𝑗𝜃𝑘

)︃
+ 0.5𝑧𝑞𝑖 ln

(︂
𝜃𝑖
𝜑𝑖

)︂
− 𝑞𝑖 ln

⎛⎝∑︁
𝑗

𝜏𝑗𝑖𝜃𝑗

⎞⎠+
𝑥2𝑖
𝜑𝑖

(︂
𝜕𝜑𝑖
𝜕𝑥𝑖

/𝑥𝑖 − 𝜑𝑖/𝑥
2
𝑖

)︂
+
∑︁
𝑗!=𝑖

𝑥𝑗
𝜑𝑗

𝜕𝜑𝑗
𝜕𝑥𝑖

+ ln

(︂
𝜑𝑖
𝑥𝑖

)︂⎤⎦
Returns

dGE_dxs [list[float]] Mole fraction derivatives of excess Gibbs energy, [J/mol]

dtaus_dT()
Calculate and return the temperature derivative of the tau terms for the UNIQUAC model for a specified
temperature.

𝜕𝜏𝑖𝑗
𝜕𝑇

=

(︂
2𝑇ℎ𝑖𝑗 + 𝑑𝑖𝑗 +

𝑐𝑖𝑗
𝑇

− 𝑏𝑖𝑗
𝑇 2

− 2𝑒𝑖𝑗
𝑇 3

)︂
𝑒𝑇

2ℎ𝑖𝑗+𝑇𝑑𝑖𝑗+𝑎𝑖𝑗+𝑐𝑖𝑗 ln (𝑇 )+
𝑏𝑖𝑗
𝑇 +

𝑒𝑖𝑗

𝑇2

Returns
dtaus_dT [list[list[float]]] First temperature derivatives of tau terms, asymmetric matrix

[1/K]

Notes

These values (and the coefficients) are NOT symmetric.

phis()
Calculate and return the phi parameters at the system composition and temperature.

𝜑𝑖 =
𝑟𝑖𝑥𝑖∑︀
𝑗 𝑟𝑗𝑥𝑗

Returns
phis [list[float]] phi parameters, [-]

classmethod regress_binary_parameters(gammas, xs, rs, qs, use_numba=False, do_statistics=True,
**kwargs)

Perform a basic regression to determine the values of the tau terms in the UNIQUAC model, given a series
of known or predicted activity coefficients and mole fractions.

Parameters
gammas [list[list[float, 2]]] List of activity coefficient pairs, [-]
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xs [list[list[float, 2]]] List of binary mole fraction pairs, [-]

rs [list[float]] Van der Waals volume parameters for each species, [-]

qs [list[float]] Surface area parameters for each species, [-]

use_numba [bool, optional] Whether or not to try to use numba to speed up the computation,
[-]

do_statistics [bool, optional] Whether or not to compute statistical measures on the outputs,
[-]

kwargs [dict] Extra parameters to be passed to the fitting function (not yet documented), [-]

Returns
parameters [dict[str, float]] Dimentionless interaction parameters of each compound with

each other; these are the actual tau values. [-]

statistics [dict[str: float]] Statistics, calculated and returned only if do_statistics is True, [-]

Notes

Notes on getting fitting coefficients that yield gammas of 1:

• This is possible some of the time to a pretty high accuracy

• This is not possible whatsoever in some cases

• The values of rs, and qs determine how close the fitting can be

• If rs and qs are close to each other, it may well fit nicely

• If they are distant (1.2-1.5x) they usually will not fit

Examples

In the following example, the tau values required to zero-out the coefficients for the n-pentane and n-
hexane system are calculated. The parameters are converted back into aij parameters as used by this activity
coefficient object, and then the calculated values are verified to be fairly nearly one.

>>> from thermo import UNIQUAC
>>> import numpy as np
>>> pts = 30
>>> rs = [3.8254, 4.4998]
>>> qs = [3.316, 3.856]
>>> xs = [[xi, 1.0 - xi] for xi in np.linspace(1e-7, 1-1e-7, pts)]
>>> gammas = [[1, 1] for i in range(pts)]
>>> coeffs, stats = UNIQUAC.regress_binary_parameters(gammas, xs, rs, qs)
>>> coeffs
{'tau12': 1.04220685, 'tau21': 0.95538082}
>>> assert stats['MAE'] < 1e-6
>>> tausB = tausC = tausD = tausE = tausF = [[0.0]*2 for i in range(2)]
>>> tausA = [[0, np.log(coeffs['tau12'])], [np.log(coeffs['tau21']), 0]]
>>> ABCDEF = (tausA, tausB, tausC, tausD, tausE, tausF)
>>> GE = UNIQUAC(T=300, xs=[.5, .5], rs=rs, qs=qs, ABCDEF=ABCDEF)
>>> GE.gammas()
[1.000000466, 1.000000180]
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Note how the tau coefficients need to be converted into the a parameters of the tau equation. They could
also have been converted into any of the other parameters, but then the activity coefficients predicted would
no longer be close to 1 at other temperatures.

𝜏𝑖𝑗 = exp

[︂
𝑎𝑖𝑗 +

𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2

+ 𝑓𝑖𝑗𝑇
2

]︂
The UNIQUAC model’s r and q parameters create their own biases in the model, based on the structure of
each of the pure species. Water and n-pentane are not miscible liquids; they will form two liquid phases
except when one component is present in trace amounts. No matter the values of tau, it is not possible to
make the UNIQUAC equation predict activity coefficients very close to one for this system, as shown in the
following sample.

>>> rs = [3.8254, 0.92]
>>> qs = [3.316, 1.4]
>>> pts = 6
>>> xs = [[xi, 1.0 - xi] for xi in np.linspace(1e-7, 1-1e-7, pts)]
>>> gammas = [[1, 1] for i in range(pts)]
>>> coeffs, stats = UNIQUAC.regress_binary_parameters(gammas, xs, rs, qs)
>>> stats['MAE']
0.0254

taus()
Calculate and return the tau terms for the UNIQUAC model for the system temperature.

𝜏𝑖𝑗 = exp

[︂
𝑎𝑖𝑗 +

𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2

+ 𝑓𝑖𝑗𝑇
2

]︂
Returns

taus [list[list[float]]] tau terms, asymmetric matrix [-]

Notes

These tau ij values (and the coefficients) are NOT symmetric.

thetas()
Calculate and return the theta parameters at the system composition and temperature.

𝜃𝑖 =
𝑞𝑖𝑥𝑖∑︀
𝑗 𝑞𝑗𝑥𝑗

Returns
thetas [list[float]] theta parameters, [-]

to_T_xs(T, xs)
Method to construct a new UNIQUAC instance at temperature T, and mole fractions xs with the same param-
eters as the existing object.

Parameters
T [float] Temperature, [K]

xs [list[float]] Mole fractions of each component, [-]

Returns
obj [UNIQUAC] New UNIQUAC object at the specified conditions [-]
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Notes

If the new temperature is the same temperature as the existing temperature, if the tau terms or their deriva-
tives have been calculated, they will be set to the new object as well.

7.36.2 UNIQUAC Functional Calculations

thermo.uniquac.UNIQUAC_gammas(xs, rs, qs, taus)
Calculates the activity coefficients of each species in a mixture using the Universal quasi-chemical (UNIQUAC)
equation, given their mole fractions, rs, qs, and dimensionless interaction parameters. The interaction parameters
are normally correlated with temperature, and need to be calculated separately.

ln 𝛾𝑖 = ln
Φ𝑖

𝑥𝑖
+
𝑧

2
𝑞𝑖 ln

𝜃𝑖
Φ𝑖

+ 𝑙𝑖 −
Φ𝑖

𝑥𝑖

𝑁∑︁
𝑗

𝑥𝑗 𝑙𝑗 − 𝑞𝑖 ln

⎛⎝ 𝑁∑︁
𝑗

𝜃𝑗𝜏𝑗𝑖

⎞⎠+ 𝑞𝑖 − 𝑞𝑖

𝑁∑︁
𝑗

𝜃𝑗𝜏𝑖𝑗∑︀𝑁
𝑘 𝜃𝑘𝜏𝑘𝑗

𝜃𝑖 =
𝑥𝑖𝑞𝑖

𝑛∑︁
𝑗=1

𝑥𝑗𝑞𝑗

Φ𝑖 =
𝑥𝑖𝑟𝑖

𝑛∑︁
𝑗=1

𝑥𝑗𝑟𝑗

𝑙𝑖 =
𝑧

2
(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1)

Parameters
xs [list[float]] Liquid mole fractions of each species, [-]

rs [list[float]] Van der Waals volume parameters for each species, [-]

qs [list[float]] Surface area parameters for each species, [-]

taus [list[list[float]]] Dimensionless interaction parameters of each compound with each other,
[-]

Returns
gammas [list[float]] Activity coefficient for each species in the liquid mixture, [-]

Notes

This model needs N^2 parameters.

The original expression for the interaction parameters is as follows:

𝜏𝑗𝑖 = exp

(︂
−∆𝑢𝑖𝑗
𝑅𝑇

)︂
However, it is seldom used. Most correlations for the interaction parameters include some of the terms shown in
the following form:

ln 𝜏𝑖𝑗 = 𝑎𝑖𝑗 +
𝑏𝑖𝑗
𝑇

+ 𝑐𝑖𝑗 ln𝑇 + 𝑑𝑖𝑗𝑇 +
𝑒𝑖𝑗
𝑇 2
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This model is recast in a slightly more computationally efficient way in [2], as shown below:

ln 𝛾𝑖 = ln 𝛾𝑟𝑒𝑠𝑖 + ln 𝛾𝑐𝑜𝑚𝑏
𝑖

ln 𝛾𝑟𝑒𝑠𝑖 = 𝑞𝑖

⎛⎝1 − ln

∑︀𝑁
𝑗 𝑞𝑗𝑥𝑗𝜏𝑗𝑖∑︀𝑁
𝑗 𝑞𝑗𝑥𝑗

−
∑︁
𝑗

𝑞𝑘𝑥𝑗𝜏𝑖𝑗∑︀
𝑘 𝑞𝑘𝑥𝑘𝜏𝑘𝑗

⎞⎠
ln 𝛾𝑐𝑜𝑚𝑏

𝑖 = (1 − 𝑉𝑖 + ln𝑉𝑖) −
𝑧

2
𝑞𝑖

(︂
1 − 𝑉𝑖

𝐹𝑖
+ ln

𝑉𝑖
𝐹𝑖

)︂
𝑉𝑖 =

𝑟𝑖∑︀𝑁
𝑗 𝑟𝑗𝑥𝑗

𝐹𝑖 =
𝑞𝑖∑︀
𝑗 𝑞𝑗𝑥𝑗

There is no global set of parameters which will make this model yield ideal acitivty coefficients (gammas = 1)
for this model.

References

[1], [2], [3]

Examples

Ethanol-water example, at 343.15 K and 1 MPa:

>>> UNIQUAC_gammas(xs=[0.252, 0.748], rs=[2.1055, 0.9200], qs=[1.972, 1.400],
... taus=[[1.0, 1.0919744384510301], [0.37452902779205477, 1.0]])
[2.35875137797083, 1.2442093415968987]

7.37 Joback Group Contribution Method (thermo.group_contribution.joback)

This module contains an implementation of the Joback group-contribution method. This functionality requires the
RDKit library to work.

For submitting pull requests, please use the GitHub issue tracker.

Warning: The Joback class method does not contain all the groups for every chemical. There are often multiple
ways of fragmenting a chemical. Other times, the fragmentation algorithm will fail. These limitations are present
in both the implementation and the method itself. You are welcome to seek to improve this code but no to little help
can be offered.

class thermo.group_contribution.joback.Joback(mol, atom_count=None, MW=None, Tb=None)
Bases: object

Class for performing chemical property estimations with the Joback group contribution method as described
in [1] and [2]. This is a very common method with low accuracy but wide applicability. This routine can be
used with either its own automatic fragmentation routine, or user specified groups. It is applicable to organic
compounds only, and has only 41 groups with no interactions between them. Each method’s documentation
describes its accuracy. The automatic fragmentation routine is possible only because of the development of
SMARTS expressions to match the Joback groups by Dr. Jason Biggs. The list of SMARTS expressions was
posted publically on the RDKit mailing list.
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Parameters
mol [rdkitmol or smiles str] Input molecule for the analysis, [-]

atom_count [int, optional] The total number of atoms including hydrogen in the molecule; this
will be counted by rdkit if it not provided, [-]

MW [float, optional] Molecular weight of the molecule; this will be calculated by rdkit if not
provided, [g/mol]

Tb [float, optional] An experimentally known boiling temperature for the chemical; this in-
creases the accuracy of the calculated critical point if provided. [K]

Notes

Be sure to check the status of the automatic fragmentation; not all chemicals with the Joback method are appli-
cable.

Approximately 68% of chemcials in the thermo database seem to be able to be estimated with the Joback method.

If a group which was identified is missign a regressed contribution, the estimated property will be None. However,
if not all atoms of a molecule are identified as particular groups, property estimation will go ahead with heavily
reduced accuracy. Check the status attribute to be sure a molecule was properly fragmented.

References

[1], [2]

Examples

Analysis of Acetone:

>>> J = Joback('CC(=O)C')
>>> J.Hfus(J.counts)
5125.0
>>> J.Cpig(350)
84.69109750000001
>>> J.status
'OK'

All properties can be obtained in one go with the estimate method:

>>> J.estimate(callables=False)
{'Tb': 322.11, 'Tm': 173.5, 'Tc': 500.5590049525365, 'Pc': 4802499.604994407, 'Vc':␣
→˓0.0002095, 'Hf': -217829.99999999997, 'Gf': -154540.00000000003, 'Hfus': 5125.0,
→˓'Hvap': 29018.0, 'mul_coeffs': [839.1099999999998, -14.99], 'Cpig_coeffs': [7.
→˓520000000000003, 0.26084, -0.0001207, 1.545999999999998e-08]}

The results for propionic anhydride (if the status is not OK) should not be used.

>>> J = Joback('CCC(=O)OC(=O)CC')
>>> J.status
'Matched some atoms repeatedly: [4]'
>>> J.Cpig(300)
175.85999999999999
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None of the routines need to use the automatic routine; they can be used manually too:

>>> Joback.Tb({1: 2, 24: 1})
322.11

Attributes
calculated_Cpig_coeffs
calculated_mul_coeffs

Methods

Cpig(T) Computes ideal-gas heat capacity at a specified tem-
perature of an organic compound using the Joback
method as a function of chemical structure only.

Cpig_coeffs(counts) Computes the ideal-gas polynomial heat capacity co-
efficients of an organic compound using the Joback
method as a function of chemical structure only.

Gf (counts) Estimates the ideal-gas Gibbs energy of formation at
298.15 K of an organic compound using the Joback
method as a function of chemical structure only.

Hf (counts) Estimates the ideal-gas enthalpy of formation at
298.15 K of an organic compound using the Joback
method as a function of chemical structure only.

Hfus(counts) Estimates the enthalpy of fusion of an organic com-
pound at its melting point using the Joback method
as a function of chemical structure only.

Hvap(counts) Estimates the enthalpy of vaporization of an or-
ganic compound at its normal boiling point using the
Joback method as a function of chemical structure
only.

Pc(counts, atom_count) Estimates the critcal pressure of an organic com-
pound using the Joback method as a function of
chemical structure only.

Tb(counts) Estimates the normal boiling temperature of an or-
ganic compound using the Joback method as a func-
tion of chemical structure only.

Tc(counts[, Tb]) Estimates the critcal temperature of an organic com-
pound using the Joback method as a function of
chemical structure only, or optionally improved by
using an experimental boiling point.

Tm(counts) Estimates the melting temperature of an organic com-
pound using the Joback method as a function of
chemical structure only.

Vc(counts) Estimates the critcal volume of an organic compound
using the Joback method as a function of chemical
structure only.

estimate([callables]) Method to compute all available properties with the
Joback method; returns their results as a dict.

continues on next page
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Table 114 – continued from previous page
mul(T) Computes liquid viscosity at a specified temperature

of an organic compound using the Joback method as
a function of chemical structure only.

mul_coeffs(counts) Computes the liquid phase viscosity Joback coef-
ficients of an organic compound using the Joback
method as a function of chemical structure only.

Cpig(T)
Computes ideal-gas heat capacity at a specified temperature of an organic compound using the Joback
method as a function of chemical structure only.

𝐶𝑖𝑔
𝑝 =

∑︁
𝑖

𝑎𝑖 − 37.93 +

[︃∑︁
𝑖

𝑏𝑖 + 0.210

]︃
𝑇 +

[︃∑︁
𝑖

𝑐𝑖 − 3.91 · 10−4

]︃
𝑇 2 +

[︃∑︁
𝑖

𝑑𝑖 + 2.06 · 10−7

]︃
𝑇 3

Parameters
T [float] Temperature, [K]

Returns
Cpig [float] Ideal-gas heat capacity, [J/mol/K]

Examples

>>> J = Joback('CC(=O)C')
>>> J.Cpig(300)
75.32642000000001

static Cpig_coeffs(counts)
Computes the ideal-gas polynomial heat capacity coefficients of an organic compound using the Joback
method as a function of chemical structure only.

𝐶𝑖𝑔
𝑝 =

∑︁
𝑖

𝑎𝑖 − 37.93 +

[︃∑︁
𝑖

𝑏𝑖 + 0.210

]︃
𝑇 +

[︃∑︁
𝑖

𝑐𝑖 − 3.91 · 10−4

]︃
𝑇 2 +

[︃∑︁
𝑖

𝑑𝑖 + 2.06 · 10−7

]︃
𝑇 3

288 compounds were used by Joback in this determination. No overall error was reported.

The ideal gas heat capacity values used in developing the heat capacity polynomials used 9 data points
between 298 K and 1000 K.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
coefficients [list[float]] Coefficients which will result in a calculated heat capacity in in units

of J/mol/K, [-]
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Examples

>>> c = Joback.Cpig_coeffs({1: 2, 24: 1})
>>> c
[7.520000000000003, 0.26084, -0.0001207, 1.545999999999998e-08]
>>> Cp = lambda T : c[0] + c[1]*T + c[2]*T**2 + c[3]*T**3
>>> Cp(300)
75.32642000000001

static Gf(counts)
Estimates the ideal-gas Gibbs energy of formation at 298.15 K of an organic compound using the Joback
method as a function of chemical structure only.

𝐺𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 53.88 +
∑︁

𝐺𝑓,𝑖

In the above equation, Gibbs energy of formation is calculated in kJ/mol; it is converted to J/mol here.

328 compounds were used by Joback in this determination, with an absolute average error of 2.0 kcal/mol,
standard devaition 4.37 kcal/mol, and AARE of 15.7%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Gf [float] Estimated ideal-gas Gibbs energy of formation at 298.15 K, [J/mol]

Examples

>>> Joback.Gf({1: 2, 24: 1})
-154540.00000000003

static Hf(counts)
Estimates the ideal-gas enthalpy of formation at 298.15 K of an organic compound using the Joback method
as a function of chemical structure only.

𝐻𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 68.29 +
∑︁
𝑖

𝐻𝑓,𝑖

In the above equation, enthalpy of formation is calculated in kJ/mol; it is converted to J/mol here.

370 compounds were used by Joback in this determination, with an absolute average error of 2.2 kcal/mol,
standard devaition 2.0 kcal/mol, and AARE of 15.2%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Hf [float] Estimated ideal-gas enthalpy of formation at 298.15 K, [J/mol]
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Examples

>>> Joback.Hf({1: 2, 24: 1})
-217829.99999999997

static Hfus(counts)
Estimates the enthalpy of fusion of an organic compound at its melting point using the Joback method as a
function of chemical structure only.

∆𝐻𝑓𝑢𝑠 = −0.88 +
∑︁
𝑖

𝐻𝑓𝑢𝑠,𝑖

In the above equation, enthalpy of fusion is calculated in kJ/mol; it is converted to J/mol here.

For 155 compounds tested by Joback, the absolute average error was 485.2 cal/mol and standard deviation
was 661.4 cal/mol; the average relative error was 38.7%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Hfus [float] Estimated enthalpy of fusion of the compound at its melting point, [J/mol]

Examples

>>> Joback.Hfus({1: 2, 24: 1})
5125.0

static Hvap(counts)
Estimates the enthalpy of vaporization of an organic compound at its normal boiling point using the Joback
method as a function of chemical structure only.

∆𝐻𝑣𝑎𝑝 = 15.30 +
∑︁
𝑖

𝐻𝑣𝑎𝑝,𝑖

In the above equation, enthalpy of fusion is calculated in kJ/mol; it is converted to J/mol here.

For 368 compounds tested by Joback, the absolute average error was 303.5 cal/mol and standard deviation
was 429 cal/mol; the average relative error was 3.88%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Hvap [float] Estimated enthalpy of vaporization of the compound at its normal boiling point,

[J/mol]
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Examples

>>> Joback.Hvap({1: 2, 24: 1})
29018.0

static Pc(counts, atom_count)
Estimates the critcal pressure of an organic compound using the Joback method as a function of chemical
structure only. This correlation was developed using the actual number of atoms forming the molecule as
well.

𝑃𝑐 =

[︃
0.113 + 0.0032𝑁𝐴 −

∑︁
𝑖

𝑃𝑐,𝑖

]︃−2

In the above equation, critical pressure is calculated in bar; it is converted to Pa here.

392 compounds were used by Joback in this determination, with an absolute average error of 2.06 bar,
standard devaition 3.2 bar, and AARE of 5.2%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

atom_count [int] Total number of atoms (including hydrogens) in the molecule, [-]

Returns
Pc [float] Estimated critical pressure, [Pa]

Examples

>>> Joback.Pc({1: 2, 24: 1}, 10)
4802499.604994407

static Tb(counts)
Estimates the normal boiling temperature of an organic compound using the Joback method as a function
of chemical structure only.

𝑇𝑏 = 198.2 +
∑︁
𝑖

𝑇𝑏,𝑖

For 438 compounds tested by Joback, the absolute average error was 12.91 K and standard deviation was
17.85 K; the average relative error was 3.6%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Tb [float] Estimated normal boiling temperature, [K]

928 Chapter 7. API Reference



thermo Documentation, Release 0.2.20

Examples

>>> Joback.Tb({1: 2, 24: 1})
322.11

static Tc(counts, Tb=None)
Estimates the critcal temperature of an organic compound using the Joback method as a function of chemical
structure only, or optionally improved by using an experimental boiling point. If the experimental boiling
point is not provided it will be estimated with the Joback method as well.

𝑇𝑐 = 𝑇𝑏

⎡⎣0.584 + 0.965
∑︁
𝑖

𝑇𝑐,𝑖 −

(︃∑︁
𝑖

𝑇𝑐,𝑖

)︃2
⎤⎦−1

For 409 compounds tested by Joback, the absolute average error was 4.76 K and standard deviation was
6.94 K; the average relative error was 0.81%.

Appendix BI of Joback’s work lists 409 estimated critical temperatures.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Tb [float, optional] Experimental normal boiling temperature, [K]

Returns
Tc [float] Estimated critical temperature, [K]

Examples

>>> Joback.Tc({1: 2, 24: 1}, Tb=322.11)
500.5590049525365

static Tm(counts)
Estimates the melting temperature of an organic compound using the Joback method as a function of chem-
ical structure only.

𝑇𝑚 = 122.5 +
∑︁
𝑖

𝑇𝑚,𝑖

For 388 compounds tested by Joback, the absolute average error was 22.6 K and standard deviation was
24.68 K; the average relative error was 11.2%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Tm [float] Estimated melting temperature, [K]
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Examples

>>> Joback.Tm({1: 2, 24: 1})
173.5

static Vc(counts)
Estimates the critcal volume of an organic compound using the Joback method as a function of chemical
structure only.

𝑉𝑐 = 17.5 +
∑︁
𝑖

𝑉𝑐,𝑖

In the above equation, critical volume is calculated in cm^3/mol; it is converted to m^3/mol here.

310 compounds were used by Joback in this determination, with an absolute average error of 7.54 cm^3/mol,
standard devaition 13.16 cm^3/mol, and AARE of 2.27%.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
Vc [float] Estimated critical volume, [m^3/mol]

Examples

>>> Joback.Vc({1: 2, 24: 1})
0.0002095

calculated_Cpig_coeffs = None

calculated_mul_coeffs = None

estimate(callables=True)
Method to compute all available properties with the Joback method; returns their results as a dict. For the
tempearture dependent values Cpig and mul, both the coefficients and objects to perform calculations are
returned.

mul(T)
Computes liquid viscosity at a specified temperature of an organic compound using the Joback method as
a function of chemical structure only.

𝜇𝑙𝑖𝑞 = MW exp

(︃∑︀
𝑖 𝜇𝑎 − 597.82

𝑇
+
∑︁
𝑖

𝜇𝑏 − 11.202

)︃

Parameters
T [float] Temperature, [K]

Returns
mul [float] Liquid viscosity, [Pa*s]
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Examples

>>> J = Joback('CC(=O)C')
>>> J.mul(300)
0.0002940378347162687

static mul_coeffs(counts)
Computes the liquid phase viscosity Joback coefficients of an organic compound using the Joback method
as a function of chemical structure only.

𝜇𝑙𝑖𝑞 = MW exp

(︃∑︀
𝑖 𝜇𝑎 − 597.82

𝑇
+
∑︁
𝑖

𝜇𝑏 − 11.202

)︃

288 compounds were used by Joback in this determination. No overall error was reported.

The liquid viscosity data used was specified to be at “several temperatures for each compound” only. A
small and unspecified number of compounds were used in this estimation.

Parameters
counts [dict] Dictionary of Joback groups present (numerically indexed) and their counts,

[-]

Returns
coefficients [list[float]] Coefficients which will result in a liquid viscosity in in units of Pa*s,

[-]

Examples

>>> mu_ab = Joback.mul_coeffs({1: 2, 24: 1})
>>> mu_ab
[839.1099999999998, -14.99]
>>> MW = 58.041864812
>>> mul = lambda T : MW*exp(mu_ab[0]/T + mu_ab[1])
>>> mul(300)
0.0002940378347162687

7.37. Joback Group Contribution Method (thermo.group_contribution.joback) 931



thermo Documentation, Release 0.2.20

thermo.group_contribution.joback.J_BIGGS_JOBACK_SMARTS = [['Methyl', '-CH3', '[CX4H3]'],
['Secondary acyclic', '-CH2-', '[!R;CX4H2]'], ['Tertiary acyclic', '>CH-', '[!R;CX4H]'],
['Quaternary acyclic', '>C<', '[!R;CX4H0]'], ['Primary alkene', '=CH2', '[CX3H2]'],
['Secondary alkene acyclic', '=CH-', '[!R;CX3H1;!$([CX3H1](=O))]'], ['Tertiary alkene
acyclic', '=C<', '[$([!R;CX3H0]);!$([!R;CX3H0]=[#8])]'], ['Cumulative alkene', '=C=',
'[$([CX2H0](=*)=*)]'], ['Terminal alkyne', 'CH', '[$([CX2H1]#[!#7])]'], ['Internal
alkyne', 'C-', '[$([CX2H0]#[!#7])]'], ['Secondary cyclic', '-CH2- (ring)', '[R;CX4H2]'],
['Tertiary cyclic', '>CH- (ring)', '[R;CX4H]'], ['Quaternary cyclic', '>C< (ring)',
'[R;CX4H0]'], ['Secondary alkene cyclic', '=CH- (ring)', '[R;CX3H1,cX3H1]'], ['Tertiary
alkene cyclic', '=C< (ring)', '[$([R;CX3H0]);!$([R;CX3H0]=[#8])]'], ['Fluoro', '-F',
'[F]'], ['Chloro', '-Cl', '[Cl]'], ['Bromo', '-Br', '[Br]'], ['Iodo', '-I', '[I]'],
['Alcohol', '-OH (alcohol)', '[OX2H;!$([OX2H]-[#6]=[O]);!$([OX2H]-a)]'], ['Phenol', '-OH
(phenol)', '[$([OX2H]-a)]'], ['Ether acyclic', '-O- (nonring)',
'[OX2H0;!R;!$([OX2H0]-[#6]=[#8])]'], ['Ether cyclic', '-O- (ring)',
'[#8X2H0;R;!$([#8X2H0]~[#6]=[#8])]'], ['Carbonyl acyclic', '>C=O (nonring)',
'[$([CX3H0](=[OX1]));!$([CX3](=[OX1])-[OX2]);!R]=O'], ['Carbonyl cyclic', '>C=O (ring)',
'[$([#6X3H0](=[OX1]));!$([#6X3](=[#8X1])~[#8X2]);R]=O'], ['Aldehyde', 'O=CH- (aldehyde)',
'[CX3H1](=O)'], ['Carboxylic acid', '-COOH (acid)', '[OX2H]-[C]=O'], ['Ester', '-COO-
(ester)', '[#6X3H0;!$([#6X3H0](~O)(~O)(~O))](=[#8X1])[#8X2H0]'], ['Oxygen double bond
other', '=O (other than above)', '[OX1H0;!$([OX1H0]~[#6X3]);!$([OX1H0]~[#7X3]~[#8])]'],
['Primary amino', '-NH2', '[NX3H2]'], ['Secondary amino acyclic', '>NH (nonring)',
'[NX3H1;!R]'], ['Secondary amino cyclic', '>NH (ring)', '[#7X3H1;R]'], ['Tertiary amino',
'>N- (nonring)', '[#7X3H0;!$([#7](~O)~O)]'], ['Imine acyclic', '-N= (nonring)',
'[#7X2H0;!R]'], ['Imine cyclic', '-N= (ring)', '[#7X2H0;R]'], ['Aldimine', '=NH',
'[#7X2H1]'], ['Cyano', '-CN', '[#6X2]#[#7X1H0]'], ['Nitro', '-NO2',
'[$([#7X3,#7X3+][!#8])](=[O])~[O-]'], ['Thiol', '-SH', '[SX2H]'], ['Thioether acyclic',
'-S- (nonring)', '[#16X2H0;!R]'], ['Thioether cyclic', '-S- (ring)', '[#16X2H0;R]']]

Metadata for the Joback groups. The first element is the group name; the second is the group symbol; and the
third is the SMARTS matching string.

thermo.group_contribution.joback.J_BIGGS_JOBACK_SMARTS_id_dict = {1: '[CX4H3]', 2:
'[!R;CX4H2]', 3: '[!R;CX4H]', 4: '[!R;CX4H0]', 5: '[CX3H2]', 6:
'[!R;CX3H1;!$([CX3H1](=O))]', 7: '[$([!R;CX3H0]);!$([!R;CX3H0]=[#8])]', 8:
'[$([CX2H0](=*)=*)]', 9: '[$([CX2H1]#[!#7])]', 10: '[$([CX2H0]#[!#7])]', 11: '[R;CX4H2]',
12: '[R;CX4H]', 13: '[R;CX4H0]', 14: '[R;CX3H1,cX3H1]', 15:
'[$([R;CX3H0]);!$([R;CX3H0]=[#8])]', 16: '[F]', 17: '[Cl]', 18: '[Br]', 19: '[I]', 20:
'[OX2H;!$([OX2H]-[#6]=[O]);!$([OX2H]-a)]', 21: '[$([OX2H]-a)]', 22:
'[OX2H0;!R;!$([OX2H0]-[#6]=[#8])]', 23: '[#8X2H0;R;!$([#8X2H0]~[#6]=[#8])]', 24:
'[$([CX3H0](=[OX1]));!$([CX3](=[OX1])-[OX2]);!R]=O', 25:
'[$([#6X3H0](=[OX1]));!$([#6X3](=[#8X1])~[#8X2]);R]=O', 26: '[CX3H1](=O)', 27:
'[OX2H]-[C]=O', 28: '[#6X3H0;!$([#6X3H0](~O)(~O)(~O))](=[#8X1])[#8X2H0]', 29:
'[OX1H0;!$([OX1H0]~[#6X3]);!$([OX1H0]~[#7X3]~[#8])]', 30: '[NX3H2]', 31: '[NX3H1;!R]',
32: '[#7X3H1;R]', 33: '[#7X3H0;!$([#7](~O)~O)]', 34: '[#7X2H0;!R]', 35: '[#7X2H0;R]', 36:
'[#7X2H1]', 37: '[#6X2]#[#7X1H0]', 38: '[$([#7X3,#7X3+][!#8])](=[O])~[O-]', 39: '[SX2H]',
40: '[#16X2H0;!R]', 41: '[#16X2H0;R]'}
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7.38 Fedors Group Contribution Method (thermo.group_contribution.fedors)

This module contains an implementation of the Fedors group-contribution method. This functionality requires the
RDKit library to work.

thermo.group_contribution.Fedors(mol)
Estimate the critical volume of a molecule using the Fedors [1] method, which is a basic group contribution
method that also uses certain bond count features and the number of different types of rings.

Parameters
mol [str or rdkit.Chem.rdchem.Mol, optional] Smiles string representing a chemical or a rdkit

molecule, [-]

Returns
Vc [float] Estimated critical volume, [m^3/mol]

status [str] A string holding an explanation of why the molecule failed to be fragmented, if it
fails; ‘OK’ if it suceeds, [-]

unmatched_atoms [bool] Whether or not all atoms in the molecule were matched successfully;
if this is True, the results should not be trusted, [-]

unrecognized_bond [bool] Whether or not all bonds in the molecule were matched successfully;
if this is True, the results should not be trusted, [-]

unrecognized_ring_size [bool] Whether or not all rings in the molecule were matched success-
fully; if this is True, the results should not be trusted, [-]

Notes

Raises an exception if rdkit is not installed, or smi or rdkitmol is not defined.

References

[1], [2]

Examples

Example for sec-butanol in [2]:

>>> Vc, status, _, _, _ = Fedors('CCC(C)O')
>>> Vc, status
(0.000274024, 'OK')
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7.39 Wilson-Jasperson Group Contribution Method
(thermo.group_contribution.wilson_jasperson)

This module contains an implementation of the Wilson-Jasperson group-contribution method. This functionality re-
quires the RDKit library to work.

thermo.group_contribution.Wilson_Jasperson(mol, Tb, second_order=True)
Estimate the critical temperature and pressure of a molecule using the molecule itself, and a known or estimated
boiling point using the Wilson-Jasperson method.

Parameters
mol [str or rdkit.Chem.rdchem.Mol, optional] Smiles string representing a chemical or a rdkit

molecule, [-]

Tb [float] Known or estimated boiling point, [K]

second_order [bool] Whether to use the first order method (False), or the second order method,
[-]

Returns
Tc [float] Estimated critical temperature, [K]

Pc [float] Estimated critical pressure, [Pa]

missing_Tc_increments [bool] Whether or not there were missing atoms for the Tc calculation,
[-]

missing_Pc_increments [bool] Whether or not there were missing atoms for the Pc calculation,
[-]

Notes

Raises an exception if rdkit is not installed, or smi or rdkitmol is not defined.

Calculated values were published in [3] for 448 compounds, as calculated by NIST TDE. There appear to be
further modifications to the method in NIST TDE, as ~25% of values have differences larger than 5 K.

References

[1], [2], [3]

Examples

Example for 2-ethylphenol in [2]:

>>> Tc, Pc, _, _ = Wilson_Jasperson('CCC1=CC=CC=C1O', Tb=477.67)
>>> (Tc, Pc)
(693.567, 3743819.6667)
>>> Tc, Pc, _, _ = Wilson_Jasperson('CCC1=CC=CC=C1O', Tb=477.67, second_order=False)
>>> (Tc, Pc)
(702.883, 3794106.49)
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CHAPTER

EIGHT

EXAMPLE USES OF THERMO

The following Jupyter notebooks show some of the many calculations that can be done with Thermo.

These problems often make use of fluids, ht, chemicals, and pint so make sure you have them installed! More details
on the unit handling library can be found at fluids.units.

8.1 Working with Heat Transfer Fluids - Therminol LT

Heat transfer fluids are pure species or chemical mixtures with specially tailored properties that make them suitable
for use in heat exchangers. Usually this means not fouling, requiring little heat transfer area because of a high heat
capacity, thermal conductivity, and potentially high density and low flammability.

Therminol LT is a fluid chosen for the demonstration. It is in fact a pure chemical, 1,2-diethylbenzene.

The data comes from therminol itself, in the following PDF.

https://web.archive.org/web/20210615044602/https://www.therminol.com/sites/therminol/files/documents/TF-
8726_Therminol_LT.pdf

[1]: from fluids.core import C2K, F2K
from fluids.constants import R
import numpy as np
from chemicals import rho_to_Vm, Vm_to_rho, property_mass_to_molar, omega_definition,␣
→˓simple_formula_parser, similarity_variable, molecular_weight
from thermo import (TDependentProperty, VaporPressure, VolumeLiquid,␣
→˓ChemicalConstantsPackage, PropertyCorrelationsPackage,

HeatCapacityLiquid, HeatCapacityGas, ThermalConductivityLiquid,
ThermalConductivityGas, ViscosityGas, ViscosityLiquid,␣

→˓EnthalpyVaporization,
SurfaceTension)

name = '1,2-diethylbenzene'
CAS = "25340-17-4"
formula = "C10H14"
atoms = simple_formula_parser(formula)
sv = similarity_variable(atoms)
MW = molecular_weight(atoms)

Tc = 377.0 + 273.15
Pc = 34.5e5
rhoc_mass = 298.0 # kg/m^3
Vc = rho_to_Vm(rhoc_mass, MW)
Zc = Pc*Vc/(R*Tc)

(continues on next page)
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(continued from previous page)

Tm = C2K(-75.0)

Ts = [-73, -62, -51, -40, -29, -18, -7, 4, 16, 27, 38, 49, 60, 71, 82, 93, 104, 116, 127,
→˓ 138, 149, 160, 171, 181, 182, 193, 204, 216, 227, 238, 249, 260, 271, 282, 293, 304,␣
→˓316]
Ts = [C2K(v) for v in Ts]

Psats = [ 0.002, 0.006, 0.016, 0.038, 0.084, 0.175, 0.345, 0.649, 1.17, 2.02, 3.37, 5.43,
→˓ 8.51, 13.0, 19.3, 28.1, 40.1, 56.1, 77.1, 101, 104, 139, 183, 237, 304, 386, 484, 601,
→˓ 740, 904, 1090, 1310, 1570]
Psats = [v*1e3 for v in Psats] # kPa to Pa
Ts_Psats = Ts[len(Ts)-len(Psats):]

# Obtain the acentric factor from linear interpolation for convenience
Psat_07 = float(np.interp(0.7*Tc, Ts_Psats, Psats))
omega = omega_definition(Psat_07, Pc)

# Interpolate on pressure to find the normal boiling point
Tb = float(np.interp(101325.0, Psats, Ts_Psats))

rhols_mass = [938, 930, 921, 913, 904, 896, 887, 878, 869, 860, 852, 843, 833, 824, 815,␣
→˓806, 796, 786, 776, 766, 756, 746, 735, 726, 724, 713, 702, 690, 678, 666, 652, 639,␣
→˓625, 610, 594, 576, 558]
Vms = [rho_to_Vm(rho, MW) for rho in rhols_mass]

Cpls_mass = [1.44, 1.48, 1.53, 1.57, 1.61, 1.66, 1.70, 1.74, 1.78, 1.83, 1.87, 1.91, 1.
→˓95, 1.99, 2.03, 2.07, 2.11, 2.15, 2.19, 2.23, 2.27, 2.30, 2.34, 2.38, 2.38, 2.42, 2.46,
→˓ 2.50, 2.54, 2.58, 2.63, 2.67, 2.72, 2.78, 2.84, 2.91, 3.01]
Cpls_mass = [v*1000 for v in Cpls_mass] # kJ/(kg*K)
Cpls = [property_mass_to_molar(Cp, MW) for Cp in Cpls_mass] # J/(mol*K)

Cpgs_mass = [0.766, 0.813, 0.860, 0.908, 0.955, 1.002, 1.049, 1.095, 1.142, 1.188, 1.234,
→˓ 1.280, 1.325, 1.370, 1.415, 1.459, 1.503, 1.547, 1.590, 1.634, 1.676, 1.719, 1.761, 1.
→˓799, 1.803, 1.845, 1.886, 1.928, 1.970, 2.012, 2.055, 2.099, 2.144, 2.191, 2.241, 2.
→˓297, 2.362]
Cpgs_mass = [v*1000 for v in Cpgs_mass] # kJ/(kg*K)
Cpgs = [property_mass_to_molar(Cp, MW) for Cp in Cpgs_mass] # J/(mol*K)

kls = [0.1426, 0.1405, 0.1384, 0.1362, 0.1341, 0.1320, 0.1298, 0.1277, 0.1255, 0.1233, 0.
→˓1212, 0.1190, 0.1168, 0.1146, 0.1124, 0.1102, 0.1080, 0.1058, 0.1036, 0.1013, 0.0991,␣
→˓0.0968, 0.0946, 0.0926, 0.0923, 0.0901, 0.0878, 0.0855, 0.0832, 0.0810, 0.0786, 0.0763,
→˓ 0.0740, 0.0717, 0.0694, 0.0670, 0.0647]
muls = [10.09, 6.03, 3.99, 2.84, 2.13, 1.67, 1.35, 1.12, 0.947, 0.814, 0.708, 0.624, 0.
→˓554, 0.496, 0.447, 0.405, 0.369, 0.338, 0.310, 0.286, 0.265, 0.246, 0.229, 0.215, 0.
→˓213, 0.199, 0.187, 0.175, 0.165, 0.155, 0.146, 0.138, 0.131, 0.124, 0.117, 0.112, 0.
→˓106]
muls = [v*1e-3 for v in muls] # mPa*s to Pa*s

Hvaps_mass = [492.7, 485.2, 477.8, 470.4, 463.0, 455.7, 448.5, 441.3, 434.1, 427.0, 420.
→˓0, 412.9, 405.9, 399.0, 392.1, 385.2, 378.4, 371.6, 364.7, 357.9, 351.0, 344.1, 337.2,␣
→˓330.9, 330.1, 323.0, 315.7, 308.2, 300.5, 292.5, 284.3, 275.6, 266.4, 256.7, 246.2,␣
→˓234.7, 221.8]

(continues on next page)
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(continued from previous page)

Hvaps_mass = [v*1000 for v in Hvaps_mass] # kJ/(kg)
Hvaps = [property_mass_to_molar(Hvap, MW) for Hvap in Hvaps_mass] # J/(mol)

kgs = [ 0.0051, 0.0057, 0.0063, 0.0069, 0.0075, 0.0082, 0.0088, 0.0095, 0.0101, 0.0108,␣
→˓0.0115, 0.0122, 0.0130, 0.0137, 0.0144, 0.0152, 0.0160, 0.0168, 0.0176, 0.0184, 0.0192,
→˓ 0.0200, 0.0209, 0.0216, 0.0217, 0.0226, 0.0235, 0.0244, 0.0253, 0.0262, 0.0272, 0.
→˓0281, 0.0291, 0.0301, 0.0310, 0.0321, 0.0331]

mugs = [0.00434, 0.00458, 0.00482, 0.00506, 0.00530, 0.00554, 0.00578, 0.00603, 0.00628,␣
→˓0.00652, 0.00677, 0.00702, 0.00727, 0.00752, 0.00777, 0.00802, 0.00828, 0.00853, 0.
→˓00878, 0.00903, 0.00928, 0.00952, 0.00977, 0.01000, 0.01002, 0.01027, 0.01051, 0.01076,
→˓ 0.01100, 0.01124, 0.01148, 0.01172, 0.01196, 0.01220, 0.01243, 0.01267, 0.01290]
mugs = [v*1e-3 for v in mugs] # mPa*s to Pa*s

sigmas = [0.028, 0.0]
sigma_Ts = [298.15, Tc]

prop_kwargs = {'Tc': Tc, 'Pc': Pc, 'Vc': Vc, 'Zc': Zc, 'omega': omega,
'MW': MW, 'Tb': Tb, 'Tm': Tm, 'CASRN': CAS}

prop_kwargs = {} # Comment this out to show the estimation method results

plot_kwargs = {'pts': 30, 'Tmin': Ts[0]}

Now that the data has been added into Python objects, we can fit them to equations. The plots below show how good
the fits are.

[2]: source = 'TB7239175B'
plot = True
PsatObj = VaporPressure(**prop_kwargs)
PsatObj.fit_add_model(Ts=Ts_Psats, data=Psats, model='DIPPR101', name=source)

VolLiqObj = VolumeLiquid(**prop_kwargs)
VolLiqObj.fit_add_model(Ts=Ts, data=Vms, model='DIPPR100', name=source)

CpLiqObj = HeatCapacityLiquid(**prop_kwargs)
CpLiqObj.fit_add_model(Ts=Ts, data=Cpls, model='DIPPR100', name=source)

CpGasObj = HeatCapacityGas(**prop_kwargs)
CpGasObj.fit_add_model(Ts=Ts, data=Cpgs, model='DIPPR100', name=source)

MuLiqObj = ViscosityLiquid(**prop_kwargs)
MuLiqObj.fit_add_model(Ts=Ts, data=muls, model='mu_TDE', name=source)

MuGasObj = ViscosityGas(**prop_kwargs)
MuGasObj.fit_add_model(Ts=Ts, data=mugs, model='DIPPR100', name=source)

KGasObj = ThermalConductivityGas(**prop_kwargs)
KGasObj.fit_add_model(Ts=Ts, data=kgs, model='DIPPR100', name=source)

KLiqObj = ThermalConductivityLiquid(**prop_kwargs)
KLiqObj.fit_add_model(Ts=Ts, data=kls, model='DIPPR100', name=source)

(continues on next page)
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(continued from previous page)

HvapObj = EnthalpyVaporization(**prop_kwargs)
HvapObj.fit_add_model(Ts=Ts, data=Hvaps, model_kwargs={'Tc': Tc}, model='PPDS12',␣
→˓name=source)

SigmaObj = SurfaceTension(**prop_kwargs)
SigmaObj.fit_add_model(Ts=sigma_Ts, data=sigmas, model_kwargs={'Tc': Tc}, model='linear',
→˓ name=source)

if plot:
PsatObj.plot_T_dependent_property(axes='semilogy', **plot_kwargs)
VolLiqObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
CpLiqObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
CpGasObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
MuLiqObj.plot_T_dependent_property(axes='semilogy', **plot_kwargs)
MuGasObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
KGasObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
KLiqObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
HvapObj.plot_T_dependent_property(axes='plot', **plot_kwargs)
SigmaObj.plot_T_dependent_property(axes='plot', **plot_kwargs)

/home/caleb/.local/lib/python3.9/site-packages/scipy/optimize/minpack.py:475:␣
→˓RuntimeWarning: Number of calls to function has reached maxfev = 500.
warnings.warn(errors[info][0], RuntimeWarning)
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[3]: Vml_60F = VolLiqObj(F2K(60), None)
rhol_60Fs_mass = Vm_to_rho(Vml_60F, MW)

Vml_STP = VolLiqObj(298.15, None)
rhol_STPs_mass = Vm_to_rho(Vml_STP, MW)

constants = ChemicalConstantsPackage(Tcs=[Tc], Pcs=[Pc], Vcs=[Vc], Zcs=[Zc],␣
→˓omegas=[omega], MWs=[MW],

Vml_60Fs=[Vml_60F], rhol_60Fs=[1/Vml_60F], rhol_
→˓60Fs_mass=[rhol_60Fs_mass],

Vml_STPs=[Vml_STP], rhol_STPs_mass=[rhol_STPs_mass],
similarity_variables=[sv])

correlations = PropertyCorrelationsPackage(constants=constants, VaporPressures=[PsatObj],
→˓ VolumeLiquids=[VolLiqObj],

HeatCapacityLiquids=[CpLiqObj],␣
→˓HeatCapacityGases=[CpGasObj],

ViscosityLiquids=[MuLiqObj],␣
→˓ViscosityGases=[MuGasObj],

ThermalConductivityGases=[KGasObj],␣
→˓ThermalConductivityLiquids=[KLiqObj],

EnthalpyVaporizations=[HvapObj],␣
→˓SurfaceTensions=[SigmaObj])

Now that the ChemicalConstantsPackage and PropertyCorrelationsPackage have been created, we are ready to make
packages and do calculations with them.

[4]: from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CEOSGas, FlashPureVLS
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)

liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher_PR = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

(continues on next page)
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print(flasher_PR.flash(T=300, P=1e5))

<EquilibriumState, T=300.0000, P=100000.0000, zs=[1.0], betas=[1.0], phases=[<CEOSLiquid,
→˓ T=300 K, P=100000 Pa>]>

[5]: from thermo.phases import GibbsExcessLiquid, IdealGas
liquid = GibbsExcessLiquid(VaporPressures=correlations.VaporPressures,␣
→˓VolumeLiquids=correlations.VolumeLiquids,

HeatCapacityGases=correlations.HeatCapacityGases, equilibrium_basis=
→˓'Psat')
gas = IdealGas(HeatCapacityGases=correlations.HeatCapacityGases)
flasher_ideal = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid],␣
→˓solids=[])
print(flasher_ideal.flash(T=300, P=1e5))

<EquilibriumState, T=300.0000, P=100000.0000, zs=[1.0], betas=[1.0], phases=[
→˓<GibbsExcessLiquid, T=300 K, P=100000 Pa>]>

Using a thermodynamically consistent model is much more challenging than directly predicting a property. Liquid
heat capacity, heat of vaporization, and density are all particularly challenging properties. The following plots show
the accuracy of the models.

[9]: Cpls_calc_PR = []
Cpls_calc_ideal = []
for T in Ts:

Cpls_calc_PR.append(flasher_PR.flash(T=T, VF=0).Cp())
Cpls_calc_ideal.append(flasher_ideal.flash(T=T, VF=0).Cp())

Hvaps_calc_PR = []
Hvaps_calc_ideal = []
for T in Ts:

Hvaps_calc_PR.append(flasher_PR.flash(T=T, VF=1).H() - flasher_PR.flash(T=T, VF=0).
→˓H())

Hvaps_calc_ideal.append(flasher_ideal.flash(T=T, VF=1).H() - flasher_ideal.flash(T=T,
→˓ VF=0).H())

Vl_calc_PR = []
Vl_calc_ideal = []
for T in Ts:

Vl_calc_PR.append(flasher_PR.flash(T=T, VF=0).V())
Vl_calc_ideal.append(flasher_ideal.flash(T=T, VF=0).V())

[7]: import matplotlib.pyplot as plt
plt.plot(Ts, Hvaps, label='Data')
plt.plot(Ts, Hvaps_calc_PR, label='PR')
plt.plot(Ts, Hvaps_calc_ideal, label='ideal')
plt.xlabel("Temperature [K]")
plt.ylabel("Heat of Vaporiation [J/mol]")
plt.legend()
plt.show()
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[8]: import matplotlib.pyplot as plt
plt.plot(Ts, Cpls, label='Data')
plt.plot(Ts, Cpls_calc_PR, label='PR')
plt.plot(Ts, Cpls_calc_ideal, label='ideal')
plt.xlabel("Temperature [K]")
plt.ylabel("Liquid heat capacity [J/mol/K]")
plt.legend()
plt.show()

[11]: import matplotlib.pyplot as plt
plt.plot(Ts, Vms, label='Data')
plt.plot(Ts, Vl_calc_PR, label='PR')
plt.plot(Ts, Vl_calc_ideal, 'x', label='ideal')
plt.xlabel("Temperature [K]")
plt.ylabel("Molar volume [m^3/mol]")
plt.legend()
plt.show()
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8.2 Validating Flash Calculations

Finding the solution to multiphase equilibrium calculations is challenging and the topic of continuing research. Many
commercial packages offer users a great deal of confidence in their answers, but can they be trusted? Thermo can be
used to validate the results from other software or identify defects in them.

The following example uses a natural gas mixture two pseudocomponents C7-C16 and C17+. The properties of pure
components are taken from Thermo. To do a perfect comparison, the critical properties from other software packages
should be substituted into Thermo. This is example S3 from Fonseca-Pérez (2021). The kijs are from Harding and
Floudas (2000), and the original pseudocomponents are from Nagarajan, Cullick, and Griewank (1991).

Fonseca-Pérez, R. M., A. Bonilla-Petriciolet, J. C. Tapia-Picazo, and J. E. Jaime-Leal. “A Reconsideration on the
Resolution of Phase Stability Analysis Using Stochastic Global Optimization Methods: Proposal of a Reliable Set
of Benchmark Problems.” Fluid Phase Equilibria 548 (November 15, 2021): 113180. https://doi.org/10.1016/j.fluid.
2021.113180.

Harding, S. T., and C. A. Floudas. “Phase Stability with Cubic Equations of State: Global Optimization Approach.”
AIChE Journal 46, no. 7 (July 1, 2000): 1422–40. https://doi.org/10.1002/aic.690460715.

Nagarajan, N. R., A. S. Cullick, and A. Griewank. “New Strategy for Phase Equilibrium and Critical Point Calculations
by Thermodynamic Energy Analysis. Part I. Stability Analysis and Flash.” Fluid Phase Equilibria 62, no. 3 (January
1, 1991): 191–210. https://doi.org/10.1016/0378-3812(91)80010-S.

[39]: from thermo import *
from scipy.constants import atm
pure_constants = ChemicalConstantsPackage.constants_from_IDs(

['methane', 'ethane', 'propane', 'n-butane', 'n-pentane', 'n-hexane'])

pseudos = ChemicalConstantsPackage(Tcs=[606.28,825.67], Pcs=[25.42*atm, 14.39*atm],
omegas=[0.4019, 0.7987], MWs=[140.0, 325.0])

constants = pure_constants + pseudos

properties = PropertyCorrelationsPackage(constants=constants)

T = 353
(continues on next page)
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P = 38500e3
zs = [0.7212, 0.09205, 0.04455, 0.03123, 0.01273, 0.01361, 0.07215, 0.01248]

kijs = [[0.0, 0.002, 0.017, 0.015, 0.02, 0.039, 0.05, 0.09],
[0.002, 0.0, 0.0, 0.025, 0.01, 0.056, 0.04, 0.055],
[0.017, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01, 0.01],
[0.015, 0.025, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.02, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.039, 0.056, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.05, 0.04, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.09, 0.055, 0.01, 0.0, 0.0, 0.0, 0.0, 0.0]]

eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas,␣
→˓kijs=kijs)

gas = CEOSGas(PRMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases, T=T,␣
→˓P=P, zs=zs)
liq = CEOSLiquid(PRMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases, T=T,␣
→˓P=P, zs=zs)
liq2 = CEOSLiquid(PRMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases, T=T,
→˓ P=P, zs=zs)
phase_list = [gas, liq, liq]

flashN = FlashVLN(constants, properties, liquids=[liq, liq2], gas=gas)
# flashN.PT_SS_TOL = 1e-18
res = flashN.flash(T=T, P=P, zs=zs)
print('There are %s phases present' %(res.phase_count))
print('Mass densities of each liquid are %f and %f kg/m^3' %(res.liquid0.rho_mass(),␣
→˓res.liquid0.rho_mass()))

There are 2 phases present
Mass densities of each liquid are 527.867861 and 527.867861 kg/m^3

[45]: import numpy as np
max_fugacity_err = np.max(np.abs(1-np.array(res.liquid0.fugacities())/res.liquid1.
→˓fugacities()))
print('The maximum relative difference in fugacity is %e.' %(max_fugacity_err,))

The maximum relative difference in fugacity is 2.773985e-07.

8.3 High Molecular Weight Petroleum Pseudocomponents

Thermo is a general phase equilibrium engine, and if the user provides enough properties for the components, there is
no issue adding your own components. In this basic example below, a made-up extended gas analysis is used to specify
a gas consisting of the standard real components and three heavier fractions, C10+, C12+ and C15+.

A bare minimum of basic properties are estimated using the Kesler-Lee method (1976), and the estimated fraction
molecular weights are turned into atomic compositions. The heat capacities of each pseudocomponent is found with
the similarity variable concept of Lastovka and Shaw (2013) based on atomic composition.

This example ends with calculating a flash at 270 Kelvin and 1 bar.
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[72]: from math import log, exp
import numpy as np
from scipy.constants import psi
from thermo import *
from chemicals import *

def Tc_Kesler_Lee_SG_Tb(SG, Tb):
r'''Estimates critical temperature of a hydrocarbon compound or petroleum
fraction using only its specific gravity and boiling point, from
[1]_ as presented in [2]_.

.. math::
T_c = 341.7 + 811.1SG + [0.4244 + 0.1174SG]T_b
+ \frac{[0.4669 - 3.26238SG]10^5}{T_b}

Parameters
----------
SG : float

Specific gravity of the fluid at 60 degrees Farenheight [-]
Tb : float

Boiling point the fluid [K]

Returns
-------
Tc : float

Estimated critical temperature [K]

Notes
-----
Model shows predictions for Tc, Pc, MW, and omega.
Original units in degrees Rankine.

Examples
--------
Example 2.2 from [2]_, but with K instead of R.

>>> Tc_Kesler_Lee_SG_Tb(0.7365, 365.555)
545.0124354151242

References
----------
.. [1] Kesler, M. G., and B. I. Lee. "Improve Prediction of Enthalpy of
Fractions." Hydrocarbon Processing (March 1976): 153-158.

.. [2] Ahmed, Tarek H. Equations of State and PVT Analysis: Applications
for Improved Reservoir Modeling. Gulf Pub., 2007.

'''
Tb = 9/5.*Tb # K to R
Tc = 341.7 + 811.1*SG + (0.4244 + 0.1174*SG)*Tb + ((0.4669 - 3.26238*SG)*1E5)/Tb
Tc = 5/9.*Tc # R to K
return Tc

def Pc_Kesler_Lee_SG_Tb(SG, Tb):
r'''Estimates critical pressure of a hydrocarbon compound or petroleum

(continues on next page)
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fraction using only its specific gravity and boiling point, from
[1]_ as presented in [2]_.

.. math::
\ln(P_c) = 8.3634 - \frac{0.0566}{SG} - \left[0.24244 + \frac{2.2898}
{SG} + \frac{0.11857}{SG^2}\right]10^{-3}T_b
+ \left[1.4685 + \frac{3.648}{SG} + \frac{0.47227}{SG^2}\right]
10^{-7}T_b^2-\left[0.42019 + \frac{1.6977}{SG^2}\right]10^{-10}T_b^3

Parameters
----------
SG : float

Specific gravity of the fluid at 60 degrees Farenheight [-]
Tb : float

Boiling point the fluid [K]

Returns
-------
Pc : float

Estimated critical pressure [Pa]

Notes
-----
Model shows predictions for Tc, Pc, MW, and omega.
Original units in degrees Rankine and psi.

Examples
--------
Example 2.2 from [2]_, but with K instead of R and Pa instead of psi.

>>> Pc_Kesler_Lee_SG_Tb(0.7365, 365.555)
3238323.346840464

References
----------
.. [1] Kesler, M. G., and B. I. Lee. "Improve Prediction of Enthalpy of
Fractions." Hydrocarbon Processing (March 1976): 153-158.

.. [2] Ahmed, Tarek H. Equations of State and PVT Analysis: Applications
for Improved Reservoir Modeling. Gulf Pub., 2007.

'''
Tb = 9/5.*Tb # K to R
Pc = exp(8.3634 - 0.0566/SG - (0.24244 + 2.2898/SG + 0.11857/SG**2)*1E-3*Tb
+ (1.4685 + 3.648/SG + 0.47227/SG**2)*1E-7*Tb**2
-(0.42019 + 1.6977/SG**2)*1E-10*Tb**3)
Pc = Pc*psi
return Pc

def MW_Kesler_Lee_SG_Tb(SG, Tb):
r'''Estimates molecular weight of a hydrocarbon compound or petroleum
fraction using only its specific gravity and boiling point, from
[1]_ as presented in [2]_.

(continues on next page)
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.. math::
MW = -12272.6 + 9486.4SG + [4.6523 - 3.3287SG]T_b + [1-0.77084SG
- 0.02058SG^2]\left[1.3437 - \frac{720.79}{T_b}\right]\frac{10^7}{T_b}
+ [1-0.80882SG + 0.02226SG^2][1.8828 - \frac{181.98}{T_b}]
\frac{10^{12}}{T_b^3}

Parameters
----------
SG : float

Specific gravity of the fluid at 60 degrees Farenheight [-]
Tb : float

Boiling point the fluid [K]

Returns
-------
MW : float

Estimated molecular weight [g/mol]

Notes
-----
Model shows predictions for Tc, Pc, MW, and omega.
Original units in degrees Rankine.

Examples
--------
Example 2.2 from [2]_, but with K instead of R and Pa instead of psi.

>>> MW_Kesler_Lee_SG_Tb(0.7365, 365.555)
98.70887589833501

References
----------
.. [1] Kesler, M. G., and B. I. Lee. "Improve Prediction of Enthalpy of
Fractions." Hydrocarbon Processing (March 1976): 153-158.

.. [2] Ahmed, Tarek H. Equations of State and PVT Analysis: Applications
for Improved Reservoir Modeling. Gulf Pub., 2007.

'''
Tb = 9/5.*Tb # K to R
MW = (-12272.6 + 9486.4*SG + (4.6523 - 3.3287*SG)*Tb + (1.-0.77084*SG - 0.

→˓02058*SG**2)*
(1.3437 - 720.79/Tb)*1E7/Tb + (1.-0.80882*SG + 0.02226*SG**2)*
(1.8828 - 181.98/Tb)*1E12/Tb**3)
return MW

def omega_Kesler_Lee_SG_Tb_Tc_Pc(SG, Tb, Tc=None, Pc=None):
r'''Estimates accentric factor of a hydrocarbon compound or petroleum
fraction using only its specific gravity and boiling point, from
[1]_ as presented in [2]_. If Tc and Pc are provided, the Kesler-Lee
routines for estimating them are not used.

For Tbr > 0.8:
.. math::

(continues on next page)
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\omega = -7.904 + 0.1352K - 0.007465K^2 + 8.359T_{br}
+ ([1.408-0.01063K]/T_{br})

Otherwise:
.. math::

\omega = \frac{-\ln\frac{P_c}{14.7} - 5.92714 + \frac{6.09648}{T_{br}}
+ 1.28862\ln T_{br} - 0.169347T_{br}^6}{15.2518 - \frac{15.6875}{T_{br}}
- 13.4721\ln T_{br} + 0.43577T_{br}^6}

K = \frac{T_b^{1/3}}{SG}

T_{br} = \frac{T_b}{T_c}

Parameters
----------
SG : float

Specific gravity of the fluid at 60 degrees Farenheight [-]
Tb : float

Boiling point the fluid [K]
Tc : float, optional

Estimated critical temperature [K]
Pc : float, optional

Estimated critical pressure [Pa]

Returns
-------
omega : float

Acentric factor [-]

Notes
-----
Model shows predictions for Tc, Pc, MW, and omega.
Original units in degrees Rankine and psi.

Examples
--------
Example 2.2 from [2]_, but with K instead of R and Pa instead of psi.

>>> omega_Kesler_Lee_SG_Tb_Tc_Pc(0.7365, 365.555, 545.012, 3238323.)
0.306392118159797

References
----------
.. [1] Kesler, M. G., and B. I. Lee. "Improve Prediction of Enthalpy of
Fractions." Hydrocarbon Processing (March 1976): 153-158.

.. [2] Ahmed, Tarek H. Equations of State and PVT Analysis: Applications
for Improved Reservoir Modeling. Gulf Pub., 2007.

'''
if Tc is None:

Tc = Tc_Kesler_Lee_SG_Tb(SG, Tb)
if Pc is None:

Pc = Pc_Kesler_Lee_SG_Tb(SG, Tb)

(continues on next page)

8.3. High Molecular Weight Petroleum Pseudocomponents 951



thermo Documentation, Release 0.2.20

(continued from previous page)

Tb = 9/5.*Tb # K to R
Tc = 9/5.*Tc # K to R
K = Tb**(1/3.)/SG
Tbr = Tb/Tc
if Tbr > 0.8:

omega = -7.904 + 0.1352*K - 0.007465*K**2 + 8.359*Tbr + ((1.408-0.01063*K)/Tbr)
else:

omega = ((-log(Pc/101325.) - 5.92714 + 6.09648/Tbr + 1.28862*log(Tbr)
- 0.169347*Tbr**6) / (15.2518 - 15.6875/Tbr - 13.4721*log(Tbr) +0.43577*Tbr**6))

return omega

[112]: # Basic composition and names. All pure component properties are obtained from Chemicals␣
→˓and Thermo.
pure_constants = ChemicalConstantsPackage.constants_from_IDs(

['water', 'hydrogen', 'helium', 'nitrogen', 'carbon dioxide', 'hydrogen sulfide',
→˓'methane',
'ethane', 'propane', 'isobutane', 'n-butane', 'isopentane', 'n-pentane', 'hexane',
'heptane', 'octane', 'nonane'])

pure_fractions = [.02, .00005, .00018, .009, .02, .002, .82, .08, .031,
.009, .0035, .0033, .0003, .0007, .0004, .00005, .00002]

[105]: pseudo_names = ['C10-C11', 'C12-C14', 'C15+']
pseudo_carbon_numbers = [10.35, 12.5, 16.9]
pseudo_SGs = [.73, .76, .775] # Specific gravity values are based of the alkane series
pseudo_Tbs = [447, 526, 589]

# Using the estimation methods defined earlier, we obtain some critical properties
pseudo_Tcs = [Tc_Kesler_Lee_SG_Tb(SG, Tb) for SG, Tb in zip(pseudo_SGs, pseudo_Tbs)]
pseudo_Pcs = [Pc_Kesler_Lee_SG_Tb(SG, Tb) for SG, Tb in zip(pseudo_SGs, pseudo_Tbs)]
pseudo_MWs = [MW_Kesler_Lee_SG_Tb(SG, Tb) for SG, Tb in zip(pseudo_SGs, pseudo_Tbs)]
pseudo_omegas = [omega_Kesler_Lee_SG_Tb_Tc_Pc(SG, Tb) for SG, Tb in zip(pseudo_SGs,␣
→˓pseudo_Tbs)]
# Estimate the hydroen counts
hydrogen_counts = [(MW - C*periodic_table.C.MW)/periodic_table.H.MW

for C, MW in zip(pseudo_carbon_numbers, pseudo_MWs)]
# Get the atomic compositions
pseudo_atoms = [{'C': C, 'H': H} for C, H in zip(pseudo_carbon_numbers, hydrogen_counts)]
# Calculate the similarity variable of each species
similarity_variables = [similarity_variable(atoms=atoms) for atoms in pseudo_atoms]

pseudo_fractions = [.0003, .00015, .00005]

[113]: pseudos = ChemicalConstantsPackage(names=pseudo_names, MWs=pseudo_MWs, Tbs=pseudo_Tbs,
atomss=pseudo_atoms,
Tcs=pseudo_Tcs, Pcs=pseudo_Pcs, omegas=pseudo_omegas,
similarity_variables=similarity_variables)

# Add the pure components and the pseudocomponents to create a new package of constant␣
→˓values
# which will be used by the phase and flash objects
constants = pure_constants + pseudos

(continues on next page)
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# Obtain the temperature and pressure dependent objects
properties = PropertyCorrelationsPackage(constants=constants)
# This is the feed composition
zs = normalize(pure_fractions + pseudo_fractions)
T = 270 # K
P = 1e5 # bar

[132]: kijs = np.zeros((constants.N, constants.N)).tolist() # kijs left as zero in this example
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas,␣
→˓kijs=kijs)

# The API SRK equation of state is used, but other cubic equations of state can be uesd␣
→˓instead
gas = CEOSGas(APISRKMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases, T=T,
→˓ P=P, zs=zs)
liq = CEOSLiquid(APISRKMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases,␣
→˓T=T, P=P, zs=zs)
liq2 = CEOSLiquid(APISRKMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases,␣
→˓T=T, P=P, zs=zs)
phase_list = [gas, liq, liq]

# Set up the three phase flash engine
flashN = FlashVLN(constants, properties, liquids=[liq, liq2], gas=gas)

[133]: # Do the flash, and get some properties
res = flashN.flash(T=T, P=P, zs=zs)
res.phase_count, res.gas_beta, res.liquids_betas

[133]: (3, 0.9827041561275568, [0.01683884003998437, 0.0004570038324588659])

[134]: res.H(), res.Cp_mass(), res.MW(), res.gas.mu(), res.gas.k()

[134]: (-1961.508963322489,
1989.3915447041693,
19.675910651652533,
1.0011888443404098e-05,
0.027073401138714016)

[135]: res.heaviest_liquid.rho_mass(), res.lightest_liquid.rho_mass()

[135]: (769.2525386053419, 599.2086838769083)

8.4 Performing Large Numbers of Calculations with Thermo in Paral-
lel

A common request is to obtain a large number of properties from Thermo at once. Thermo is not NumPy - it cannot
just automatically do all of the calculations in parallel.

If you have a specific property that does not require phase equilibrium calculations to obtain, it is possible to use
the chemicals.numba interface to in your own numba-accelerated code. https://chemicals.readthedocs.io/chemicals.
numba.html
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For those cases where lots of flashes are needed, your best bet is to brute force it - use multiprocessing (and maybe a
beefy machine) to obtain the results faster. The following code sample uses joblib to facilitate the calculation. Note
that joblib won’t show any benefits on sub-second calculations. Also note that the threading backend of joblib will
not offer any performance improvements due to the CPython GIL.

[1]: import numpy as np
from thermo import *
from chemicals import *

constants, properties = ChemicalConstantsPackage.from_IDs(
['methane', 'ethane', 'propane', 'isobutane', 'n-butane', 'isopentane',
'n-pentane', 'hexane', 'heptane', 'octane', 'nonane', 'nitrogen'])

T, P = 200, 5e6
zs = [.8, .08, .032, .00963, .0035, .0034, .0003, .0007, .0004, .00005, .00002, .07]
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
gas = CEOSGas(SRKMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases, T=T,␣
→˓P=P, zs=zs)
liq = CEOSLiquid(SRKMIX, eos_kwargs, HeatCapacityGases=properties.HeatCapacityGases, T=T,
→˓ P=P, zs=zs)
# Set up a two-phase flash engine, ignoring kijs
flasher = FlashVL(constants, properties, liquid=liq, gas=gas)

# Set a composition - it could be modified in the inner loop as well
# Do a test flash
flasher.flash(T=T, P=P, zs=zs).gas_beta

[1]: 0.4595970727935113

[2]: def get_properties(T, P):
# This is the function that will be called in parallel
# note that Python floats are faster than numpy floats
res = flasher.flash(T=float(T), P=float(P), zs=zs)
return [res.rho_mass(), res.Cp_mass(), res.gas_beta]

[3]: from joblib import Parallel, delayed
pts = 30
Ts = np.linspace(200, 400, pts)
Ps = np.linspace(1e5, 1e7, pts)
Ts_grid, Ps_grid = np.meshgrid(Ts, Ps)
# processed_data = Parallel(n_jobs=16)(delayed(get_properties)(T, P) for T, P in zip(Ts_
→˓grid.flat, Ps_grid.flat))

[4]: # Naive loop in Python
%timeit -r 1 -n 1 processed_data = [get_properties(T, P) for T, P in zip(Ts_grid.flat,␣
→˓Ps_grid.flat)]

15.3 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

[5]: # Use the threading feature of Joblib
# Because the calculation is CPU-bound, the threads do not improve speed and Joblib's␣
→˓overhead slows down the calculation
%timeit -r 1 -n 1 processed_data = Parallel(n_jobs=16, prefer="threads")(delayed(get_
→˓properties)(T, P) for T, P in zip(Ts_grid.flat, Ps_grid.flat))
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43.9 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

[7]: # Use the multiprocessing feature of joblib
# We were able to improve the speed by 5x
%timeit -r 1 -n 1 processed_data = Parallel(n_jobs=16, batch_size=30)(delayed(get_
→˓properties)(T, P) for T, P in zip(Ts_grid.flat, Ps_grid.flat))

3.55 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

[8]: # For small multiprocessing jobs, the slowest job can cause a significant delay
# For longer and larger jobs the full benefit of using all cores is shown better.
%timeit -r 1 -n 1 processed_data = Parallel(n_jobs=8, batch_size=30)(delayed(get_
→˓properties)(T, P) for T, P in zip(Ts_grid.flat, Ps_grid.flat))

4.42 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)

[9]: # Joblib returns the data as a flat structure, but we can re-construct it into a grid
processed_data = Parallel(n_jobs=16, batch_size=30)(delayed(get_properties)(T, P) for T,␣
→˓P in zip(Ts_grid.flat, Ps_grid.flat))
phase_fractions = np.array([[processed_data[j*pts+i][2] for j in range(pts)] for i in␣
→˓range(pts)])

[10]: # Make a plot to show the results

import matplotlib.pyplot as plt
from matplotlib import ticker, cm
from matplotlib.colors import LogNorm
fig, ax = plt.subplots()
color_map = cm.viridis
im = ax.pcolormesh(Ts_grid, Ps_grid, phase_fractions.T, cmap=color_map)
cbar = fig.colorbar(im, ax=ax)
cbar.set_label('Gas phase fraction')

ax.set_yscale('log')
ax.set_xlabel('Temperature [K]')
ax.set_ylabel('Pressure [Pa]')
plt.show()

<ipython-input-10-719d0a113f9b>:8: MatplotlibDeprecationWarning: shading='flat' when X␣
→˓and Y have the same dimensions as C is deprecated since 3.3. Either specify the␣
→˓corners of the quadrilaterals with X and Y, or pass shading='auto', 'nearest' or
→˓'gouraud', or set rcParams['pcolor.shading']. This will become an error two minor␣
→˓releases later.
im = ax.pcolormesh(Ts_grid, Ps_grid, phase_fractions.T, cmap=color_map)
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8.5 Example 14.2 Joule-Thomson Effect

A stream of nitrogen is expanded from T1 = 300 K, P1 = 200 bar, to 1 bar by a throttling valve. An ideal throttling
valve has the conditions of being adiabatic (no heat loss, energy is conserved); and is either solved using a valve Cv to
solve for pressure or solved with the outlet pressure directly specified.

Calculate the outlet temperature using:

(1) A high precision (helmholtz fundamental) equation of state

(2) The Peng-Robinson equation of state

[1]: # Set the conditions and imports
from scipy.constants import bar
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CoolPropLiquid, CEOSGas,␣
→˓CoolPropGas, FlashPureVLS
fluid = 'nitrogen'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 300.0
P1 = 200*bar
P2 = 1*bar
zs = [1]

[2]: # Thermo can use CoolProp to provide properties of one or all phases
# For pure species this is quite reliable within the temperature,
# pressure, etc. limits of the EOSs implemented by CoolProp

backend = 'HEOS'
gas = CoolPropGas(backend, fluid, T=T1, P=P1, zs=zs)
liquid = CoolPropLiquid(backend, fluid, T=T1, P=P1, zs=zs)

flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

(continues on next page)
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state_1 = flasher.flash(T=T1, P=P1)
state_2 = flasher.flash(H=state_1.H(), P=P2)
T2_precise = state_2.T
T2_precise

[2]: 269.1866854380218

[3]: # Use the default originally published Peng-Robinson models
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

state_1 = flasher.flash(T=T1, P=P1)
state_2 = flasher.flash(H=state_1.H(), P=P2)
T2_PR = state_2.T
T2_PR

[3]: 265.50610736019723

The outlet temperature anwsers given in the book are 269.19 K for the high-precision EOS, and for the PR EOS they
used a very low precision Cp of 1 J/(g*K) and obtained an outlet temperature of 283.05 K.

The book textbook cites this 14 K difference as coming from the cubic EOS’s lack of precision but the above calculation
shows that if an accurate heat capacity is used the difference is only ~ 4K.

8.6 Example 14.3 Adiabatic Compression and Expansion

A heat pump using the refrigerant R-22 operates with a mass flow rate of 100 kg/hr. The fluid enters the compressor
at T1 = 300 K and P1 = 1 bar. The compressor heat loss is neglected. The outlet pressure of the compressor is 5 bar.
If the isentropic efficiency of the compressor is 0.7 and the mechanical efficiency is 0.9, what is the power draw of the
compressor and how how is the refrigerant when it exits the compressor?

The textbook uses the Peng-Robinson EOS, so to compare, use that as well.

[1]: # Set the conditions and imports
from scipy.constants import bar, hour
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CEOSGas, FlashPureVLS
fluid = 'R-22'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 300.0
P1 = 1*bar
P2 = 5*bar
eta_isentropic = 0.7
eta_mechanical = 0.9

[2]: # Use the default originally published Peng-Robinson models
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs) (continues on next page)
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gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

# Flash at inlet conditions to obtain initial enthalpy
state_1 = flasher.flash(T=T1, P=P1)
# Flash at outlet condition - entropy is conserved by compressors and expanders!
state_2_ideal = flasher.flash(S=state_1.S(), P=P2)
# Compute the change in enthalpy
delta_H_ideal = (state_2_ideal.H()-state_1.H())
# The definition of isentropic efficiency means that the actual amount of heat added is
# dH_actual = dH_idea/eta_isentropic
H_added_to_fluid_actual = delta_H_ideal/eta_isentropic

state_2 = flasher.flash(H=state_1.H() + H_added_to_fluid_actual, P=P2)

# To compute the actual power, itis more convinient to use the mass enthalpy
actual_power_per_kg = (state_2.H_mass() - state_1.H_mass())/(eta_mechanical) # W/kg
actual_power = actual_power_per_kg*100/hour
print(f'The actual power is {actual_power:.0f} W')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

The actual power is 2252 W
The actual outlet temperature is 406.60 K

The power given in the textbook is 2257 W and 405.68 K out. No details as to the liquid heat capacity are given. As
refrigerants are well defined substances, it is recommended for anyone doing modeling with them to use a high-accuracy
model wherever possible.

8.7 Problem 14.02 Work and Temperature Change Upon Isentropic
Compression of Oxygen

A stream of gaseous oxygen is compressed from 1 bar to 10 bar. The inlet temperature is 25 °C. Calculate the specific
work and the temperature of the outlet gas if the process as an isentropic efficiency of 1, using both the ideal gas law
and the SRK equation of state.

8.7.1 Solution

This requires a PT and then a PS flash only. This problem is also good for contrasting simple engineering formulas for
compression vs. rigorous thermodynamics.

[1]: # Set the conditions and imports
from scipy.constants import bar, hour
from thermo import ChemicalConstantsPackage, SRKMIX, IdealGas, CEOSLiquid, CEOSGas,␣
→˓FlashPureVLS
fluid = 'oxygen'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 298.15
(continues on next page)
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P1 = 1*bar
P2 = 10*bar

[2]: # Use the Ideal-Gas EOS
gas = IdealGas(HeatCapacityGases=correlations.HeatCapacityGases)
# Note that we can set-up a flasher object with only a gas phase
# This obviously has much more performance!
flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[], solids=[])

# Flash at inlet conditions to obtain initial enthalpy
state_1 = state_1_ideal = flasher.flash(T=T1, P=P1)
# Flash at outlet condition - entropy is conserved by compressors and expanders!
state_2 = state_2_ideal = flasher.flash(S=state_1.S(), P=P2)

actual_power = (state_2.H() - state_1.H()) # W/mol
print('With the ideal-gas EOS:')
print(f'The actual power is {actual_power:.4f} J/mol')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

With the ideal-gas EOS:
The actual power is 7991.2798 J/mol
The actual outlet temperature is 560.70 K

[3]: # SRK
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(SRKMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
gas = CEOSGas(SRKMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

# Flash at inlet conditions to obtain initial enthalpy
state_1 = flasher.flash(T=T1, P=P1)
# Flash at outlet condition - entropy is conserved by compressors and expanders!
state_2 = state_2_ideal = flasher.flash(S=state_1.S(), P=P2)

actual_power = (state_2.H() - state_1.H()) # W/mol
print('With the SRK EOS:')
print(f'The actual power is {actual_power:.4f} J/mol')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

With the SRK EOS:
The actual power is 8000.1749 J/mol
The actual outlet temperature is 561.06 K

These calculations make use of the full power of the Thermo engine. It is also possible to use simpler calculations to
calculate, as shown below.

[4]: from fluids import isentropic_work_compression, isentropic_T_rise_compression
k = state_1_ideal.isentropic_exponent()
Z = state_1_ideal.Z()
print(f'Using the ideal isentropic exponent {k:.3f}')
print(f'Using the ideal compressibility {Z:.3f}')

(continues on next page)
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molar_work = isentropic_work_compression(T1=T1, k=state_1_ideal.isentropic_exponent(),␣
→˓Z=state_1_ideal.Z(), P1=P1, P2=P2, eta=1)
T2 = isentropic_T_rise_compression(T1=T1, P1=P1, P2=P2, k=k, eta=1)
print(f'The simple power is {molar_work:.4f} J/mol')
print(f'The simple outlet temperature is {T2: .2f} K')

Using the ideal isentropic exponent 1.395
Using the ideal compressibility 1.000
The simple power is 8047.9387 J/mol
The simple outlet temperature is 572.15 K

From these results, we can see that for small pressure increases, the ideal-gas and SRK equations work quite similarly.
There is also a very large difference in outlet temperature between the simplified equations given in many textbooks, and
the real isentropic calculations when a temperature-dependent heat capacity is used. Therefore, there are substantial
advantages to rigorous modeling, regardless of the complexity of the EOS for the gas phase.

8.8 Problem 14.03 Reversible and Isothermal Compression of Liquid
Water

A flow of 2000 kg/h liquid water at 25 °C and 1 bar is pumped to a pressure of 100 bar. The pump is “cooled”, so the
process is reversible and isothermal. What is the duty of the pump shaft, and the energy that must be removed from the
water being compressed?

8.8.1 Solution

We can use the high-accuracy IAPWS-95 implementation of the properties of water to easily and extremely accurately
calculate these values.

[87]: from scipy.constants import bar, hour
import numpy as np
from thermo import FlashPureVLS, IAPWS95Liquid, IAPWS95Gas, iapws_constants, iapws_
→˓correlations
from scipy.integrate import quad
import numpy as np

T1 = T2 = 25 + 273.15
P1 = 1*bar
P2 = 100*bar

liquid = IAPWS95Liquid(T=T1, P=P1, zs=[1])
gas = IAPWS95Gas(T=T1, P=P1, zs=[1])
flasher = FlashPureVLS(iapws_constants, iapws_correlations, gas, [liquid], [])

mass_flow = 2000/hour
mole_flow = property_molar_to_mass(mass_flow, MW=iapws_constants.MWs[0])

entry = flasher.flash(T=T1, P=P1)
leaving = flasher.flash(T=T2, P=P2)

(continues on next page)

960 Chapter 8. Example uses of Thermo



thermo Documentation, Release 0.2.20

(continued from previous page)

def to_int(P, flasher):
state = flasher.flash(T=T1, P=P)
return state.V()

integral_result = quad(to_int, P1, P2, args=(flasher,))[0]
shaft_duty = integral_result*mole_flow

cooling_duty = shaft_duty - (leaving.H() - entry.H())*mole_flow

print(f'The shaft power is {shaft_duty:.8f} W')
print(f'The cooling duty is {cooling_duty:.4f} W')

The shaft power is 5504.05633851 W
The cooling duty is 431.1770 W

The above shows the numerical integral calculation. That is the correct formulation.

However, it can be a little unintuitive. We can contrast this with another calculation - a series of tiny isentropic com-
pression, then cooling steps.

[86]: cooling_duty = 0
compressing_duty = 0
increments = 30 # Number of increments
dP = (P2 - P1)/increments

old_state = entry
for i in range(increments):

P = P1+(i+1)*dP

# Compress another increment of pressure
new_compressed_state = flasher.flash(S=old_state.S(), P=P)
compressing_duty += (new_compressed_state.H() - old_state.H())*mole_flow

# Cool back to T1 at new pressure
new_cooled_state = flasher.flash(T=T1, P=P)
cooling_duty += (new_compressed_state.H() - new_cooled_state.H())*mole_flow

old_state = new_cooled_state

print(f'The shaft power is {compressing_duty:.4f} W')
print(f'The cooling duty is {cooling_duty:.4f} W')

The shaft power is 5504.0608 W
The cooling duty is 431.1815 W
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8.9 Problem 14.04 Heat Effect Upon Mixing of Methane and Dodecane
at Elevated Temperature and Pressure Using SRK

1600 kg/hr of methane is mixed with 170 kg/hr of dodecane. The inlet temperature of both streams is 160 °C, and each
enter at a pressure of 2 MPa. The mixing process is isobaric. What is the temperature of the combined stream? Use
the SRK EOS with no binary interaction parameters.

8.9.1 Solution

This is a straightforward calculation. The energy of both streams is combined; and the outlet pressure is known. The
calculation only requires calculating the inlet energy of both streams, adding it up, and finding the mole fractions of
the outlet.

[12]: from thermo import ChemicalConstantsPackage, SRKMIX, FlashVL, CEOSLiquid, CEOSGas
from chemicals import ws_to_zs, mixing_simple

constants, correlations = ChemicalConstantsPackage.from_IDs(['methane', 'dodecane'])
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(SRKMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
gas = CEOSGas(SRKMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher = FlashVL(constants, correlations, liquid=liquid, gas=gas)

P1 = P2 = 2e6
T1 = 160+273.15

ws = [1600, 170]
zs = ws_to_zs(ws=ws, MWs=constants.MWs)

methane_H = flasher.flash(T=T1, P=P1, zs=[1, 0]).H()
dodecane_H = flasher.flash(T=T1, P=P1, zs=[0, 1]).H()
H = zs[0]*methane_H + zs[1]*dodecane_H

res = flasher.flash(P=P2, H=H, zs=zs)
print(f'The outlet temperature is {res.T-273.15:.4f} °C')

The outlet temperature is 150.2259 °C

8.10 Problem 14.05 Required Power for R134a Compression Using a
High Precision Equation of State

Refrigerant R134a is compressed from a saturated vapor at 5 °C to an outlet pressure of 1 MPa. Calculate the power
of the compressor, using a high-precision EOS.

The mechanical efficiency is 0.95, and the isentropic efficiency 0.7; the mass flow rate is 3000 kg/hr.
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8.10.1 Solution

This is straightforward.

[8]: # Set the conditions and imports
from scipy.constants import bar, hour
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CoolPropLiquid, CEOSGas,␣
→˓CoolPropGas, FlashPureVLS
fluid = 'R134a'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 5 + 273.15
VF1 = 1
P2 = 10*bar
zs = [1]
eta_isentropic = 0.7
eta_mechanical = 0.9

[10]: backend = 'HEOS'
gas = CoolPropGas(backend, fluid, T=T1, P=1e5, zs=zs)
liquid = CoolPropLiquid(backend, fluid, T=T1, P=1e5, zs=zs)

flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

# Flash at inlet conditions to obtain initial enthalpy
state_1 = flasher.flash(T=T1, VF=VF1)
# Flash at outlet condition - entropy is conserved by compressors and expanders!
state_2_ideal = flasher.flash(S=state_1.S(), P=P2)
# Compute the change in enthalpy
delta_H_ideal = (state_2_ideal.H()-state_1.H())
# The definition of isentropic efficiency means that the actual amount of heat added is
# dH_actual = dH_idea/eta_isentropic
H_added_to_fluid_actual = delta_H_ideal/eta_isentropic

state_2 = flasher.flash(H=state_1.H() + H_added_to_fluid_actual, P=P2)

# To compute the actual power, itis more convinient to use the mass enthalpy
actual_power_per_kg = (state_2.H_mass() - state_1.H_mass())/(eta_mechanical) # W/kg
actual_power = actual_power_per_kg*3000/hour
print(f'The actual power is {actual_power:.0f} W')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

The actual power is 28858 W
The actual outlet temperature is 324.80 K

8.10. Problem 14.05 Required Power for R134a Compression Using a High Precision Equation of
State
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8.11 Problem 14.06 Required Volume for a Gas Storage Tank for Am-
monia

50 m^3 of liquid ammonia is stored at the conditions 50 °C and 100 bar. The vessel fails, and the contents empties into
a backup containment vessel. The backup vessel has a maximum pressure of 10 bar. What volume must be vessel be
to not exceed this pressure?

8.11.1 Solution

This is straightforward; energy is conserved and a pressure is specified. Find the amount of ammonia in the original
vessel; find the molar volume of ammonia in the new vessel; and multiply that by the amount of ammonia.

Ammonia is a highly non-ideal fluid, so we use a high-precision EOS.

[10]: # Set the conditions and imports
from scipy.constants import bar
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CoolPropLiquid, CEOSGas,␣
→˓CoolPropGas, FlashPureVLS
fluid = 'ammonia'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 50 + 273.15
P1 = 100*bar
P2 = 10*bar
zs = [1]
volume_1 = 50

backend = 'HEOS'
gas = CoolPropGas(backend, fluid, T=T1, P=1e5, zs=zs)
liquid = CoolPropLiquid(backend, fluid, T=T1, P=1e5, zs=zs)

flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

[12]: # Flash at inlet conditions to obtain initial enthalpy
state_1 = flasher.flash(T=T1, P=P1)
moles = volume_1/state_1.V()
state_2 = flasher.flash(P=P2, H=state_1.H())

volume_2 = moles*state_2.V()
print(f'The thermodynamically required secondary containment volume is {volume_2: .2f} m^
→˓3')

The thermodynamically required secondary containment volume is 433.83 m^3
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8.12 Problem 14.07 Liquid Nitrogen Production Via Volume Expan-
sion of the Compressed Gas

Nitrogen at -104 °C and 250 bar flows through a valve to a pressure of 1 bar. What fraction of the stream becomes
liquid?

8.12.1 Solution

This is straightforward; energy is conserved and outlet presure is specified, making this a PH flash. This problem is
also an important application that can show the results of different equations of state and how important good thermo-
dynamics are.

We can compare many different EOSs with Thermo easily.

[1]: from thermo import *
from thermo.interaction_parameters import SPDB
fluid = 'nitrogen'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = -104 + 273.15
P1 = 240*1e5
zs = [1]
P2 = 1e5

[2]: flasher_objects = []
flasher_names = []

gas = CoolPropGas('HEOS', fluid, T=T1, P=P1, zs=zs)
liquid = CoolPropLiquid('HEOS', fluid, T=T1, P=P1, zs=zs)
high_precision = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid],␣
→˓solids=[])
flasher_objects.append(high_precision)
flasher_names.append('High-Precision')

# Add the Peng-Robinson Pina-Martinez parameters EOS
Ls = SPDB.get_parameter_vector(name='PRTwu_PinaMartinez', CASs=constants.CASs, parameter=
→˓'TwuPRL')
Ms = SPDB.get_parameter_vector(name='PRTwu_PinaMartinez', CASs=constants.CASs, parameter=
→˓'TwuPRM')
Ns = SPDB.get_parameter_vector(name='PRTwu_PinaMartinez', CASs=constants.CASs, parameter=
→˓'TwuPRN')
cs = SPDB.get_parameter_vector(name='PRTwu_PinaMartinez', CASs=constants.CASs, parameter=
→˓'TwuPRc')
alpha_coeffs = [(Ls[i], Ms[i], Ns[i]) for i in range(constants.N)]
eos_kwargs = {'Pcs': constants.Pcs, 'Tcs': constants.Tcs, 'omegas': constants.omegas,
'cs': cs, 'alpha_coeffs':alpha_coeffs}

gas = CEOSGas(PRMIXTranslatedConsistent, eos_kwargs=eos_kwargs,␣
→˓HeatCapacityGases=correlations.HeatCapacityGases)
liquid = CEOSLiquid(PRMIXTranslatedConsistent, eos_kwargs=eos_kwargs,␣
→˓HeatCapacityGases=correlations.HeatCapacityGases)
eos_obj = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

(continues on next page)
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flasher_objects.append(eos_obj)
flasher_names.append('PR-Pina-Martinez')

# Add the SRK Pina-Martinez parameters EOS
Ls = SPDB.get_parameter_vector(name='SRKTwu_PinaMartinez', CASs=constants.CASs,␣
→˓parameter='TwuSRKL')
Ms = SPDB.get_parameter_vector(name='SRKTwu_PinaMartinez', CASs=constants.CASs,␣
→˓parameter='TwuSRKM')
Ns = SPDB.get_parameter_vector(name='SRKTwu_PinaMartinez', CASs=constants.CASs,␣
→˓parameter='TwuSRKN')
cs = SPDB.get_parameter_vector(name='SRKTwu_PinaMartinez', CASs=constants.CASs,␣
→˓parameter='TwuSRKc')
alpha_coeffs = [(Ls[i], Ms[i], Ns[i]) for i in range(constants.N)]
eos_kwargs = {'Pcs': constants.Pcs, 'Tcs': constants.Tcs, 'omegas': constants.omegas,
'cs': cs, 'alpha_coeffs':alpha_coeffs}

gas = CEOSGas(SRKMIXTranslatedConsistent, eos_kwargs=eos_kwargs,␣
→˓HeatCapacityGases=correlations.HeatCapacityGases)
liquid = CEOSLiquid(SRKMIXTranslatedConsistent, eos_kwargs=eos_kwargs,␣
→˓HeatCapacityGases=correlations.HeatCapacityGases)
eos_obj = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])
flasher_objects.append(eos_obj)
flasher_names.append('SRK-Pina-Martinez')

# Add a bunch of EOSs that don't require any parameters
eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)

cubic_EOSs = [('PR', PRMIX), ('SRK', SRKMIX),
('VDW', VDWMIX),
('PRSV', PRSVMIX), ('PRSV2', PRSV2MIX),
('TWUPR', TWUPRMIX), ('TWUSRK', TWUSRKMIX),
('PRTranslatedConsistent', PRMIXTranslatedConsistent),
('SRKTranslatedConsistent', SRKMIXTranslatedConsistent)]

for eos_name, eos_obj in cubic_EOSs:
liquid = CEOSLiquid(eos_obj, HeatCapacityGases=correlations.HeatCapacityGases, eos_

→˓kwargs=eos_kwargs)
gas = CEOSGas(eos_obj, HeatCapacityGases=correlations.HeatCapacityGases, eos_

→˓kwargs=eos_kwargs)
eos_obj = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

flasher_objects.append(eos_obj)
flasher_names.append(eos_name)

[3]: for obj, obj_name in zip(flasher_objects, flasher_names):
state_1 = obj.flash(T=T1, P=P1, zs=zs)
state_2 = obj.flash(P=P2, H=state_1.H(), zs=zs)
print(f'The {obj_name} EOS predicted liquid molar fraction is {state_2.LF:.8f}.')

The High-Precision EOS predicted liquid molar fraction is 0.03887228.
The PR-Pina-Martinez EOS predicted liquid molar fraction is 0.05536129.

(continues on next page)
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The SRK-Pina-Martinez EOS predicted liquid molar fraction is 0.06765522.
The PR EOS predicted liquid molar fraction is 0.05963486.
The SRK EOS predicted liquid molar fraction is 0.04341557.
The VDW EOS predicted liquid molar fraction is 0.00000000.
The PRSV EOS predicted liquid molar fraction is 0.06011654.
The PRSV2 EOS predicted liquid molar fraction is 0.06011654.
The TWUPR EOS predicted liquid molar fraction is 0.05491152.
The TWUSRK EOS predicted liquid molar fraction is 0.04670591.
The PRTranslatedConsistent EOS predicted liquid molar fraction is 0.05860220.
The SRKTranslatedConsistent EOS predicted liquid molar fraction is 0.07069564.

As can be see, the equation of state used changes the results drastically. Even the best of the cubic equations of state
given results 30-50% off from the high-precision equation of state. This problem was admittedly constructed to show
off the importance of using higher precision models, but the point applies elsewhere also.

8.13 Problem 14.08 Required Compressor Power for Isothermal and
Adiabatic Compression of a Gas Mixture (CO2, O2) Using the
Ideal Gas Law

A stream of 1000 mol/hour CO2 and 1000 mol/hour O2 is compressed from 290 K and 1 bar to 5 bar. Calculate
the compression power for both adiabatic compression, and isothermal compression. The compression is reversible
(assumed) in each case - no efficiencies are necessary.

8.13.1 Solution

This is a straightforward calculation. Using Thermo, working with complicated mixtures can be about as easy as pure
components - if binary interaction parameters are zero. In this case, we try to load a parameter from a sample ChemSep
database, but no values are available.

The values in that database are just a sample - it is entirely the user’s responsibility to provide the correct data to
Thermo. If garbage is put in, garbage will come out!

The problem says to use the ideal-gas law, so we can do that too and see how the answers compare.

[1]: from scipy.constants import hour
T1 = 290
P1 = 1e5
P2 = 5e5
flow = 2000/hour # mol/s

from thermo import ChemicalConstantsPackage, PRMIX, IGMIX, FlashVL, CEOSLiquid, CEOSGas
from thermo.interaction_parameters import IPDB

constants, correlations = ChemicalConstantsPackage.from_IDs(['CO2', 'O2'])
kijs = IPDB.get_ip_asymmetric_matrix('ChemSep PR', constants.CASs, 'kij')
print(f'The PR kij matrix is {kijs}')

eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas,
kijs=kijs)

liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs) (continues on next page)
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gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher = FlashVL(constants, correlations, liquid=liquid, gas=gas)
zs = [.5, .5]

liquid = CEOSLiquid(IGMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
gas = CEOSGas(IGMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
flasher_ideal = FlashVL(constants, correlations, liquid=liquid, gas=gas)

The PR kij matrix is [[0.0, 0], [0, 0.0]]

Adiabatic compression

[2]: # Solve with Peng-Robinson
state_1 = flasher.flash(T=T1, P=P1, zs=zs)
state_2 = flasher.flash(S=state_1.S(), P=P2, zs=zs)
shaft_duty = (state_2.H() - state_1.H())*flow

print(f'The shaft power with Peng-Robinson is {shaft_duty:.4f} W')

state_1 = flasher_ideal.flash(T=T1, P=P1, zs=zs)
state_2 = flasher_ideal.flash(S=state_1.S(), P=P2, zs=zs)
shaft_duty = (state_2.H() - state_1.H())*flow
print(f'The shaft power with ideal-gas is {shaft_duty:.4f} W')

The shaft power with Peng-Robinson is 2632.7895 W
The shaft power with ideal-gas is 2639.9248 W

Isothermal Compression

This problem is more interesting, because there is the cooling duty as well as the compressing duty.

From theory, in an ideal gas, the cooling duty will be exactly equal to the compressing duty.

For a real-gas, it will be different as enthalpy is pressure-dependent.

In both cases, the evaluation of the following integral is required.

duty = flow
∫︁ 𝑃2

𝑃1

𝑉 𝜕𝑃

[3]: from scipy.integrate import quad

def to_int(P, flasher):
state = flasher.flash(T=T1, P=P, zs=zs)
return state.V()

shaft_duty = cooling_duty = quad(to_int, P1, P2, args=(flasher_ideal,))[0]*flow
(continues on next page)
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print(f'The shaft power with ideal-gas is {shaft_duty:.4f} W')
print(f'The cooling duty with ideal-gas is {cooling_duty:.4f} W')

entry = flasher.flash(T=T1, P=P1, zs=zs)
exit = flasher.flash(T=T1, P=P2, zs=zs)

shaft_duty = quad(to_int, P1, P2, args=(flasher,))[0]*flow
cooling_duty = shaft_duty - (exit.H() - entry.H())*flow

print(f'The shaft power with Peng-Robinson is {shaft_duty:.8f} W')
print(f'The cooling duty with Peng-Robinson is {cooling_duty:.8f} W')

The shaft power with ideal-gas is 2155.9263 W
The cooling duty with ideal-gas is 2155.9263 W
The shaft power with Peng-Robinson is 2139.44610002 W
The cooling duty with Peng-Robinson is 2192.57596810 W

The above shows the numerical integral calculation. That is the correct formulation.

However, it can be a little unintuitive. We can contrast this with another calculation - a series of tiny isentropic com-
pression, then cooling steps.

[4]: cooling_duty = 0
compressing_duty = 0
increments = 3 # Number of increments
dP = (P2 - P1)/increments
old_state = entry
for i in range(increments):

P = P1+(i+1)*dP

# Compress another increment of pressure
new_compressed_state = flasher.flash(S=old_state.S(), P=P, zs=zs)
compressing_duty += (new_compressed_state.H() - old_state.H())*flow

# Cool back to T1 at new pressure
new_cooled_state = flasher.flash(T=T1, P=P, zs=zs)
cooling_duty += (new_compressed_state.H() - new_cooled_state.H())*flow

old_state = new_cooled_state

print(f'The shaft power is {compressing_duty:.8f} W')
print(f'The cooling duty is {cooling_duty:.8f} W')

The shaft power is 2322.61227046 W
The cooling duty is 2375.74213854 W

8.13. Problem 14.08 Required Compressor Power for Isothermal and Adiabatic Compression of a
Gas Mixture (CO2, O2) Using the Ideal Gas Law
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8.14 Problem 14.09 Temperature Change Upon Ethylene Expansion
in Throttle Valves Using a High Precision EOS

Ethylene is expanded from P1 = 3000 bar, T1 = 600 K to P2 = 300 bar by a first valve, and then to P3 = 1 bar by a
second valve. What are the temperatures T2 and T3? Neglect the velocity term in the solution.

8.14.1 Solution

This is straightforward - an initial PT flash calculation, followed by two separate PH flash calculations.

[1]: # Set the conditions and imports
from scipy.constants import bar, hour
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CoolPropLiquid, CEOSGas,␣
→˓CoolPropGas, FlashPureVLS
fluid = 'ethylene'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 600
P1 = 3000*bar
P2 = 300*bar
P3 = 1*bar
zs = [1]

[2]: backend = 'HEOS'
gas = CoolPropGas(backend, fluid, T=T1, P=P1, zs=zs)
liquid = CoolPropLiquid(backend, fluid, T=T1, P=P1, zs=zs)

flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

# Flash at inlet conditions to obtain initial enthalpy
state_1 = flasher.flash(T=T1, P=P1)
state_2 = flasher.flash(H=state_1.H(), P=P2)
state_3 = flasher.flash(H=state_1.H(), P=P3)

print(f'The second temperature is {state_2.T: .2f} K')
print(f'The third temperature is {state_3.T: .2f} K')

The second temperature is 676.94 K
The third temperature is 651.47 K

8.15 Problem 14.10 Leakage Rate Change in Vacuum Distillation
When Lowering the Column Pressure

In sub-atmospheric pressure distillation columns, a vacuum system removes entering air by removing a vapor stream,
usually near the top of the column. If air is not removed the pressure will continue to increase, as the air itself won’t
condense through the condenser (unless it is cryogenic). Air can also pose a fire hazard in some cases.

How will the leakage rate into the column change if the pressure of the column is lowered from 0.4 bar to 0.1 bar?
Assume the ambient pressure is 1.013 bar.

970 Chapter 8. Example uses of Thermo



thermo Documentation, Release 0.2.20

8.15.1 Solution

Leaks into a column are usually around flanges, through valve or pump packings, inspection or sampling ports, or
manholes.

There are a variety of empirical correlations that can be used to estimate leakage depending on pressure. The first
answer uses one of those. These are not truly mechanistic, however.

We can also imagine a single hole, and treat the flow as through an orifice. This is the second answer.

We can also treat the hole as an isothermal compressible gas flow problem. The third answer uses that.

[18]: from math import pi
from scipy.constants import hour
from fluids import *
V = 10
P1 = 0.4*1e5
P2 = 0.1*1e5
P_ambient = 101325

rho = 1.2

D = .8
H = 15
V = pi/4*D**2*H

m1 = vacuum_air_leakage_Seider(V=V, P=P1)*hour
m2 = vacuum_air_leakage_Seider(V=V, P=P2)*hour
m_ratio = m2/m1
print(f'Using an emperical correlation, the ratio of air increase is {m_ratio: .3f}.')

Using an emperical correlation, the ratio of air increase is 1.029.

[21]: # Imagine a 0.1 m hole in the tower
D_hole = 1e-7
beta = D_hole/D

m1 = differential_pressure_meter_solver(D=D_hole/beta, D2=D_hole, P1=P_ambient, P2=P1,
rho=rho, mu=1e-3, k=1.3, meter_type='ISO 5167␣

→˓orifice', taps='D')
m2 = differential_pressure_meter_solver(D=D_hole/beta, D2=D_hole, P1=P_ambient, P2=P2,

rho=rho, mu=1e-3, k=1.3, meter_type='ISO 5167␣
→˓orifice', taps='D')
m_ratio = m2/m1
print(f'Using a flow meter correlation, the ratio of air increase is {m_ratio: .3f}.')

Using a flow meter correlation, the ratio of air increase is 1.031.

[22]: t_hole = 0.008 # 0.8 mm thick wall
m1 = isothermal_gas(rho=rho, fd=0.01, P1=P_ambient, P2=P1, L=t_hole, D=D_hole)
m2 = isothermal_gas(rho=rho, fd=0.01, P1=P_ambient, P2=P2, L=t_hole, D=D_hole)
m_ratio = m2/m1
print(f'Using isothermal compressible gas flow, the ratio of air increase is {m_ratio: .
→˓3f}.')

8.15. Problem 14.10 Leakage Rate Change in Vacuum Distillation When Lowering the Column
Pressure
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Using isothermal compressible gas flow, the ratio of air increase is 1.081.

8.16 Problem 14.11 Pressure Rise In a Storage Tank Upon Heating

500 kg of propylene is contained in a 1 m^3 vessel stored at 30 °C. The vessel is heated - from solar radiation in the
problem statement. What is the initial pressure?

The safety valve of the tank activates at 60 bar. If the cooling system is disabled, what temperature will the contents of
the vessel be when the valve actuates?

8.16.1 Solution

This is straightforward - an initial solution with total volume, mass, and temperature specified, followed by solving for
the end temperature to obtain a specified pressure.

From experience the vessel is known to be liquid. Because of that, we can skip the flash calculations and work directly
with the liquid phase object. That is normally much faster than the flash calculations.

[1]: from scipy.constants import bar, hour
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CoolPropLiquid, CEOSGas,␣
→˓CoolPropGas, FlashPureVLS
fluid = 'propylene'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 30 + 273.15
P2 = 60*bar
zs = [1]
V_total = 1 # m^3
m = 500 # kg

backend = 'HEOS'
gas = CoolPropGas(backend, fluid, T=T1, P=1e5, zs=zs)
liquid = CoolPropLiquid(backend, fluid, T=T1, P=1e5, zs=zs)

flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[liquid], solids=[])

# Calculate the total number of moles
moles = m/(1e-3*constants.MWs[0])
# Calculate the molar volume
Vm_initial = V_total/moles

# We know the phase is liquid, so we can skip the flash and solve for the liquid at this␣
→˓state
state_1 = liquid.to(T=T1, V=Vm_initial, zs=zs)
print(f'The initial pressure is {state_1.P/1e6: .3f} MPa')

state_2 = liquid.to(P=P2, V=Vm_initial, zs=zs)
print(f'The end tempererature is {state_2.T: .3f} K')

The initial pressure is 1.979 MPa
The end tempererature is 311.102 K
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8.17 Problem 14.12 Work and Temperature Change Upon Adiabatic
Compression of Oxygen

A stream of oxygen is compressed by a compressor from a pressure P1 = 1 bar to P2 = 10 bar. The flow rate of the
oxygen stream is 250 kg/h and the temperature is 25°C.

What is the power of the compressor, and the outlet temperature of the gas?

8.17.1 Solution

This is a series of PH, PS and PT flashes.

[1]: from scipy.constants import bar, hour
from thermo import ChemicalConstantsPackage, SRKMIX, IGMIX, CEOSGas, CEOSLiquid,␣
→˓FlashPureVLS
fluid = 'oxygen'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 25 + 273.15
P1 = 1*bar
P2 = 10*bar
zs = [1]
eta_isentropic = 0.75
eta_mechanical = 0.95

[2]: eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(SRKMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_
→˓kwargs=eos_kwargs)
gas = CEOSGas(SRKMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
SRK_flasher = FlashPureVLS(constants, correlations, liquids=[liquid], gas=gas, solids=[])

gas = CEOSGas(IGMIX, HeatCapacityGases=correlations.HeatCapacityGases, eos_kwargs=eos_
→˓kwargs)
ideal_flasher = FlashPureVLS(constants, correlations, gas=gas, liquids=[], solids=[])

[3]: # Flash at inlet conditions to obtain initial enthalpy
state_1 = SRK_flasher.flash(T=T1, P=P1)
# Flash at outlet condition - entropy is conserved by compressors and expanders!
state_2_ideal = SRK_flasher.flash(S=state_1.S(), P=P2)
# Compute the change in enthalpy
delta_H_ideal = (state_2_ideal.H()-state_1.H())
# The definition of isentropic efficiency means that the actual amount of heat added is
# dH_actual = dH_idea/eta_isentropic
H_added_to_fluid_actual = delta_H_ideal/eta_isentropic

state_2 = SRK_flasher.flash(H=state_1.H() + H_added_to_fluid_actual, P=P2)

# To compute the actual power, itis more convinient to use the mass enthalpy
actual_power_per_kg = (state_2.H_mass() - state_1.H_mass())/(eta_mechanical) # W/kg

(continues on next page)
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actual_power = actual_power_per_kg*250/hour
print('With the SRK EOS:')
print(f'The actual power is {actual_power:.0f} W')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

With the SRK EOS:
The actual power is 24368 W
The actual outlet temperature is 643.85 K

[4]: # Flash at inlet conditions to obtain initial enthalpy
state_1 = ideal_flasher.flash(T=T1, P=P1)
# Flash at outlet condition - entropy is conserved by compressors and expanders!
state_2_ideal = ideal_flasher.flash(S=state_1.S(), P=P2)
# Compute the change in enthalpy
delta_H_ideal = (state_2_ideal.H()-state_1.H())
# The definition of isentropic efficiency means that the actual amount of heat added is
# dH_actual = dH_idea/eta_isentropic
H_added_to_fluid_actual = delta_H_ideal/eta_isentropic

state_2 = ideal_flasher.flash(H=state_1.H() + H_added_to_fluid_actual, P=P2)

# To compute the actual power, itis more convinient to use the mass enthalpy
actual_power_per_kg = (state_2.H_mass() - state_1.H_mass())/(eta_mechanical) # W/kg
actual_power = actual_power_per_kg*250/hour
print('With the ideal EOS:')
print(f'The actual power is {actual_power:.0f} W')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

With the ideal EOS:
The actual power is 24341 W
The actual outlet temperature is 643.68 K

8.18 Problem 14.13 Thermodynamic Cycle Calculation Using a High-
Precision EOS

A thermodynamic cycle with water as the working fluid consists of the following steps:

• Constant-pressure heating to P1 = 100 bar and T1 = 350 °C

• Isentropic expansion of the gas in a turbine to P2 = 1 bar (reversible; efficiency = 100%)

• Constant pressure condensation

• Isentropic compression of the liquid to P4 = 100 bar

What is the thermal efficiency of the process?

𝜂𝑡ℎ = −𝑃12 + 𝑃34

𝑄41
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8.18.1 Solution

This is quite straightforward.

[1]: import numpy as np
from thermo import FlashPureVLS, IAPWS95Liquid, IAPWS95Gas, iapws_constants, iapws_
→˓correlations
from scipy.integrate import quad
import numpy as np

T1 = 350 + 273.15
P1 = 100*1e5
P2 = 1e5
# Entropy conserved in step 2 as well
VF3 = 0
P3 = P2

P4 = P1
# entropy conserved in step 5 as well

liquid = IAPWS95Liquid(T=T1, P=P1, zs=[1])
gas = IAPWS95Gas(T=T1, P=P1, zs=[1])
flasher = FlashPureVLS(iapws_constants, iapws_correlations, gas, [liquid], [])

stage_1 = flasher.flash(P=P1, T=T1)
stage_2 = flasher.flash(P=P2, S=stage_1.S())
stage_3 = flasher.flash(VF=VF3, P=P3)
stage_4 = flasher.flash(P=P4, S=stage_3.S())

expander_duty = stage_2.H() - stage_1.H()
pump_duty = stage_4.H() - stage_3.H()
heating_duty = stage_1.H() - stage_4.H()
cooling_duty = stage_3.H() - stage_2.H()
heating_duty, cooling_duty, expander_duty, pump_duty

[1]: (44969.97634439414,
-31180.343551697508,
-13975.281899345828,
185.64910664919353)

[2]: # it is easy to check the cycle converged
cycle_error = sum([heating_duty, cooling_duty, expander_duty, pump_duty])
cycle_error

[2]: -9.094947017729282e-13

[3]: # Not quite sure what definition is being suggested by the textbook
eta_th = -expander_duty/heating_duty
print(f'The thermal efficiency is {eta_th*100:.2f} %')

The thermal efficiency is 31.08 %
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8.19 Problem 14.14 Refrigeration Cycle Calculation Using the Peng-
Robinson EOS

A refrigerator uses the refrigerant R-12, dichlorodifluoromethane. The steps and conditions of the cycle are as follows:

• Isobaric condensation to saturation temperature 30°C

• Adiabatic let-down to P2 = 20 degrees subcooling

• Isobaric evaporation to saturation temperature of 20 °C

• Isentropic compression to P4 = 30 °C

Use the Peng-Robinson EOS.

8.19.1 Solution

This is quite straightforward, with the only complication coming from the degrees of subcooling.

[1]: # Set the conditions and imports
from scipy.constants import bar
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CEOSGas, FlashPureVLS
fluid = 'dichlorodifluoromethane'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

zs = [1]

eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,

eos_kwargs=eos_kwargs)
gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,

eos_kwargs=eos_kwargs)
flasher = FlashPureVLS(constants, correlations, liquids=[liquid], gas=gas, solids=[])

T1 = 273.15+30
state_1 = flasher.flash(VF=0, T=T1)
saturation_state_1 = flasher.flash(T=-20+273.15, VF=1)
# Wording is unclear for state 2 but thermodynamically his is what makes sense
state_2 = flasher.flash(H=state_1.H(), P=saturation_state_1.P)
# Check the flash lowers the pressure
assert state_2.P < state_1.P
state_3 = flasher.flash(P=state_2.P, VF=1)
saturation_state_2 = flasher.flash(T=30+273.15, VF=1)
state_4 = flasher.flash(P=saturation_state_2.P, S=state_3.S())
states = [state_1, state_2, state_3, state_4]

condensation_duty = (state_1.H() - state_4.H())
heating_duty = state_3.H() - state_2.H()
compressing_duty = state_4.H() - state_3.H()
condensation_duty, heating_duty, compressing_duty

[1]: (-17242.594866461008, 13841.52397663936, 3401.0708898216462)
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[2]: # Check the cycle convergence
cycle_error = sum([condensation_duty, heating_duty, compressing_duty])
cycle_error

[2]: -9.094947017729282e-13

[3]: for state in states:
print(f'T={state.T:.2f} K, P={state.P:.2f} Pa, VF={state.VF:.2f}, S={state.S():.2f}␣

→˓J/(mol*K), H={state.H():.2f} J/(mol)')

T=303.15 K, P=746445.43 Pa, VF=0.00, S=-72.22 J/(mol*K), H=-17223.28 J/(mol)
T=253.15 K, P=152387.52 Pa, VF=0.29, S=-70.06 J/(mol*K), H=-17223.28 J/(mol)
T=253.15 K, P=152387.52 Pa, VF=1.00, S=-15.38 J/(mol*K), H=-3381.75 J/(mol)
T=312.16 K, P=746445.43 Pa, VF=1.00, S=-15.38 J/(mol*K), H=19.32 J/(mol)

8.20 Problem 14.15 Joule-Thomson Coefficient for Methane Using the
Peng-Robinson EOS

Calculate the Joule-Thomson coefficient of methane at 300 K and 30 bar, using the Peng Robinson model.

8.20.1 Solution

This is straightforward.

[1]: # Set the conditions and imports
from scipy.constants import bar
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CEOSGas, FlashPureVLS
fluid = 'methane'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T = 300
P = 30*bar
zs = [1]

eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,

eos_kwargs=eos_kwargs)
gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,

eos_kwargs=eos_kwargs)
flasher = FlashPureVLS(constants, correlations, liquids=[liquid], gas=gas, solids=[])

res = flasher.flash(T=T, P=P, zs=zs)
print(f'The JT coefficient at the specified conditions is {res.Joule_Thomson():.4g} K/Pa
→˓')

The JT coefficient at the specified conditions is 4.652e-06 K/Pa
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8.21 Problem 14.16 Compressor Duty and State Properties after Am-
monia Compression

Ammonia at 100 °C and 5 bar is compressed to a pressure of 10 bar. The thermal efficiency of the process is 0.8; and
the mechanical efficiency is 0.9. What is the compressor duty per mole and the temperature of the outlet?

8.21.1 Solution

This is just another compression problem.

[1]: # Set the conditions and imports
from scipy.constants import bar
from thermo import ChemicalConstantsPackage, PRMIX, CEOSLiquid, CEOSGas, FlashPureVLS
fluid = 'ammonia'
constants, correlations = ChemicalConstantsPackage.from_IDs([fluid])

T1 = 100 + 273.15
P1 = 5*bar
P2 = 10*bar
zs = [1]

eta_isentropic = 0.8
eta_mechanical = 0.9

eos_kwargs = dict(Tcs=constants.Tcs, Pcs=constants.Pcs, omegas=constants.omegas)
liquid = CEOSLiquid(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,

eos_kwargs=eos_kwargs)
gas = CEOSGas(PRMIX, HeatCapacityGases=correlations.HeatCapacityGases,

eos_kwargs=eos_kwargs)
flasher = FlashPureVLS(constants, correlations, liquids=[liquid], gas=gas, solids=[])

state_1 = flasher.flash(T=T1, P=P1)
state_2_ideal = flasher.flash(S=state_1.S(), P=P2)
# Compute the change in enthalpy
delta_H_ideal = (state_2_ideal.H()-state_1.H())
H_added_to_fluid_actual = delta_H_ideal/eta_isentropic

state_2 = flasher.flash(H=state_1.H() + H_added_to_fluid_actual, P=P2)

specific_power = (state_2.H() - state_1.H())/(eta_mechanical)
print(f'The actual power is {specific_power:.0f} W/mol')
print(f'The actual outlet temperature is {state_2.T: .2f} K')

The actual power is 3148 W/mol
The actual outlet temperature is 448.20 K
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CHAPTER

NINE

INSTALLATION

Get the latest version of Thermo from https://pypi.python.org/pypi/thermo/

If you have an installation of Python with pip, simple install it with:

$ pip install thermo

Alternatively, if you are using conda as your package management, you can simply install thermo in your environment
from conda-forge channel with:

$ conda install -c conda-forge thermo

To get the git version, run:

$ git clone git://github.com/CalebBell/thermo.git
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CHAPTER

TEN

LATEST SOURCE CODE

The latest development version of Thermo’s sources can be obtained at

https://github.com/CalebBell/thermo
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CHAPTER

ELEVEN

BUG REPORTS

To report bugs, please use the Thermo’s Bug Tracker at:

https://github.com/CalebBell/thermo/issues

If you have further questions about the usage of the library, feel free to contact the author at
Caleb.Andrew.Bell@gmail.com.
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CHAPTER

TWELVE

LICENSE INFORMATION

See LICENSE.txt for information on the terms & conditions for usage of this software, and a DISCLAIMER OF ALL
WARRANTIES.

Although not required by the Thermo license, if it is convenient for you, please cite Thermo if used in your work. Please
also consider contributing any changes you make back, and benefit the community.
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CHAPTER

THIRTEEN

CITATION

To cite Thermo in publications use:

Caleb Bell and Contributors (2016-2021). Thermo: Chemical properties component of␣
→˓Chemical Engineering Design Library (ChEDL)
https://github.com/CalebBell/thermo.
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CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search
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method), 389
a_alpha_pure() (thermo.eos_alpha_functions.Soave_1993_a_alpha

method), 390
a_alpha_pure() (thermo.eos_alpha_functions.Trebble_Bishnoi_a_alpha

method), 391
a_alpha_pure() (thermo.eos_alpha_functions.Twu91_a_alpha

method), 392
a_alpha_pure() (thermo.eos_alpha_functions.TwuPR95_a_alpha

method), 393

a_alpha_pure() (thermo.eos_alpha_functions.TwuSRK95_a_alpha
method), 395

a_alpha_pure() (thermo.eos_alpha_functions.Yu_Lu_a_alpha
method), 396

a_alpha_quadratic_terms() (in module
thermo.eos_mix_methods), 354

a_alphas_vectorized()
(thermo.eos_alpha_functions.Mathias_Copeman_poly_a_alpha
method), 385

a_alphas_vectorized()
(thermo.eos_alpha_functions.Soave_1979_a_alpha
method), 390

a_alphas_vectorized()
(thermo.eos_alpha_functions.Twu91_a_alpha
method), 392

a_alphas_vectorized()
(thermo.eos_alpha_functions.TwuPR95_a_alpha
method), 394

a_alphas_vectorized()
(thermo.eos_alpha_functions.TwuSRK95_a_alpha
method), 395

a_alphas_vectorized() (thermo.eos_mix.IGMIX
method), 350

a_alphas_vectorized() (thermo.eos_mix.PRMIX
method), 298

a_alphas_vectorized() (thermo.eos_mix.PRSV2MIX
method), 309

a_alphas_vectorized() (thermo.eos_mix.PRSVMIX
method), 307

a_alphas_vectorized() (thermo.eos_mix.RKMIX
method), 346

a_alphas_vectorized() (thermo.eos_mix.SRKMIX
method), 323

a_alphas_vectorized() (thermo.eos_mix.VDWMIX
method), 341

A_dep() (thermo.equilibrium.EquilibriumState method),
419

A_dep() (thermo.phases.Phase method), 627
A_dep_g (thermo.eos.GCEOS property), 160
A_dep_l (thermo.eos.GCEOS property), 160
A_formation_ideal_gas()

(thermo.equilibrium.EquilibriumState method),
419

A_formation_ideal_gas() (thermo.phases.Phase
method), 627

A_ideal_gas() (thermo.equilibrium.EquilibriumState
method), 419

A_ideal_gas() (thermo.phases.Phase method), 627
A_mass() (thermo.equilibrium.EquilibriumState

method), 419
A_mass() (thermo.phases.Phase method), 627
A_reactive() (thermo.equilibrium.EquilibriumState

method), 419
A_reactive() (thermo.phases.Phase method), 627

Index 1009



thermo Documentation, Release 0.2.20

absolute_permittivity (thermo.chemical.Chemical
property), 99

activities() (thermo.phases.Phase method), 649
add_correlation() (thermo.utils.TDependentProperty

method), 843
add_method() (thermo.utils.TDependentProperty

method), 846
add_method() (thermo.utils.TPDependentProperty

method), 856
add_tabular_data() (thermo.utils.TDependentProperty

method), 847
add_tabular_data() (thermo.utils.TPDependentProperty

method), 857
add_tabular_data_P()

(thermo.utils.TPDependentProperty method),
857

all_methods (thermo.utils.MixtureProperty attribute),
863

all_poly_fit (thermo.utils.MixtureProperty attribute),
863

Almeida_a_alpha (class in
thermo.eos_alpha_functions), 379

Almeida_alpha_pure() (in module
thermo.eos_alpha_functions), 397

alpha (thermo.chemical.Chemical property), 100
alpha (thermo.mixture.Mixture property), 587
alpha() (thermo.equilibrium.EquilibriumState method),

441
alphag (thermo.chemical.Chemical property), 100
alphag (thermo.mixture.Mixture property), 587
alphags (thermo.mixture.Mixture property), 587
alphal (thermo.chemical.Chemical property), 100
alphal (thermo.mixture.Mixture property), 588
alphals (thermo.mixture.Mixture property), 588
alphas() (thermo.nrtl.NRTL method), 556
Am (thermo.chemical.Chemical property), 87
Am (thermo.mixture.Mixture property), 571
Androulakis_a_alpha (class in

thermo.eos_alpha_functions), 379
Androulakis_alpha_pure() (in module

thermo.eos_alpha_functions), 397
API (thermo.chemical.Chemical property), 87
API (thermo.mixture.Mixture property), 570
API() (thermo.equilibrium.EquilibriumState method),

419
API() (thermo.phases.Phase method), 627
APISRK (class in thermo.eos), 230
APISRK_a_alpha_and_derivatives_vectorized()

(in module thermo.eos_alpha_functions), 377
APISRK_a_alphas_vectorized() (in module

thermo.eos_alpha_functions), 372
APISRKMIX (class in thermo.eos_mix), 326
aromatic_rings (thermo.chemical.Chemical property),

100

as_json() (thermo.activity.GibbsExcess method), 54
as_json() (thermo.bulk.BulkSettings method), 75
as_json() (thermo.chemical_package.ChemicalConstantsPackage

method), 117
as_json() (thermo.eos.GCEOS method), 172
as_json() (thermo.phases.Phase method), 649
as_json() (thermo.utils.MixtureProperty method), 863
as_json() (thermo.utils.TDependentProperty method),

847
atom_fractions (thermo.chemical.Chemical property),

101
atom_fractions (thermo.mixture.Mixture property),

588
atom_fractions() (thermo.equilibrium.EquilibriumState

method), 441
atom_fractions() (thermo.phases.Phase method), 650
atom_fractionss (thermo.mixture.Mixture property),

588
atom_mass_fractions()

(thermo.equilibrium.EquilibriumState method),
441

atom_mass_fractions() (thermo.phases.Phase
method), 650

atoms (thermo.mixture.Mixture property), 588
atomss (thermo.equilibrium.EquilibriumState property),

441
atomss (thermo.mixture.Mixture property), 589
atomss (thermo.phases.Phase property), 650
autoflash (thermo.mixture.Mixture attribute), 589

B
b (thermo.eos.IG attribute), 246
BAHADORI_L (in module thermo.thermal_conductivity),

792
balance_ions() (in module thermo.electrochem), 142
beta (thermo.bulk.Bulk property), 68
beta (thermo.phases.Phase property), 650
beta_g (thermo.eos.GCEOS property), 173
beta_l (thermo.eos.GCEOS property), 173
beta_mass (thermo.phases.Phase property), 650
BETA_METHODS (in module thermo.bulk), 76
beta_volume (thermo.phases.Phase property), 650
betas_liquids (thermo.equilibrium.EquilibriumState

property), 441
betas_mass (thermo.bulk.Bulk property), 68
betas_mass (thermo.equilibrium.EquilibriumState prop-

erty), 441
betas_mass_liquids (thermo.equilibrium.EquilibriumState

property), 441
betas_mass_states (thermo.equilibrium.EquilibriumState

property), 442
betas_states (thermo.equilibrium.EquilibriumState

property), 442
betas_volume (thermo.bulk.Bulk property), 68
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betas_volume (thermo.equilibrium.EquilibriumState
property), 442

betas_volume_liquids
(thermo.equilibrium.EquilibriumState prop-
erty), 442

betas_volume_states
(thermo.equilibrium.EquilibriumState prop-
erty), 442

Bond() (thermo.chemical.Chemical method), 87
Bond() (thermo.mixture.Mixture method), 571
Bulk (class in thermo.bulk), 62
BulkSettings (class in thermo.bulk), 72
Bvirial (thermo.chemical.Chemical property), 87
Bvirial (thermo.mixture.Mixture property), 571
Bvirial() (thermo.equilibrium.EquilibriumState

method), 419
BVirial_Tsonopoulos_extended_ab() (in module

thermo.functional_groups), 527

C
c1 (thermo.eos.GCEOS attribute), 173
c1 (thermo.eos.PR attribute), 206
c1 (thermo.eos.RK attribute), 243
c1 (thermo.eos.SRK attribute), 226
c2 (thermo.eos.GCEOS attribute), 173
c2 (thermo.eos.PR attribute), 206
c2 (thermo.eos.RK attribute), 243
c2 (thermo.eos.SRK attribute), 226
calc_H() (thermo.chemical.Chemical method), 101
calc_H_excess() (thermo.chemical.Chemical method),

101
calc_S() (thermo.chemical.Chemical method), 101
calc_S_excess() (thermo.chemical.Chemical method),

101
calculate() (thermo.chemical.Chemical method), 101
calculate() (thermo.heat_capacity.HeatCapacityGas

method), 532
calculate() (thermo.heat_capacity.HeatCapacityGasMixture

method), 538
calculate() (thermo.heat_capacity.HeatCapacityLiquid

method), 530
calculate() (thermo.heat_capacity.HeatCapacityLiquidMixture

method), 536
calculate() (thermo.heat_capacity.HeatCapacitySolid

method), 535
calculate() (thermo.heat_capacity.HeatCapacitySolidMixture

method), 539
calculate() (thermo.interface.SurfaceTension

method), 542
calculate() (thermo.interface.SurfaceTensionMixture

method), 544
calculate() (thermo.permittivity.PermittivityLiquid

method), 604

calculate() (thermo.phase_change.EnthalpySublimation
method), 733

calculate() (thermo.phase_change.EnthalpyVaporization
method), 731

calculate() (thermo.stream.Stream method), 784
calculate() (thermo.thermal_conductivity.ThermalConductivityGas

method), 795
calculate() (thermo.thermal_conductivity.ThermalConductivityGasMixture

method), 800
calculate() (thermo.thermal_conductivity.ThermalConductivityLiquid

method), 790
calculate() (thermo.thermal_conductivity.ThermalConductivityLiquidMixture

method), 798
calculate() (thermo.utils.TDependentProperty

method), 847
calculate() (thermo.utils.TPDependentProperty

method), 857
calculate() (thermo.vapor_pressure.SublimationPressure

method), 873
calculate() (thermo.vapor_pressure.VaporPressure

method), 871
calculate() (thermo.viscosity.ViscosityGas method),

880
calculate() (thermo.viscosity.ViscosityGasMixture

method), 885
calculate() (thermo.viscosity.ViscosityLiquid method),

877
calculate() (thermo.viscosity.ViscosityLiquidMixture

method), 883
calculate() (thermo.volume.VolumeGas method), 892
calculate() (thermo.volume.VolumeGasMixture

method), 898
calculate() (thermo.volume.VolumeLiquid method),

888
calculate() (thermo.volume.VolumeLiquidMixture

method), 896
calculate() (thermo.volume.VolumeSolid method), 894
calculate() (thermo.volume.VolumeSolidMixture

method), 900
calculate_derivative()

(thermo.utils.TDependentProperty method),
847

calculate_derivative_P()
(thermo.utils.MixtureProperty method), 863

calculate_derivative_P()
(thermo.utils.TPDependentProperty method),
858

calculate_derivative_T()
(thermo.utils.MixtureProperty method), 864

calculate_derivative_T()
(thermo.utils.TPDependentProperty method),
858

calculate_integral()
(thermo.utils.TDependentProperty method),
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848
calculate_integral_over_T()

(thermo.utils.TDependentProperty method),
848

calculate_P() (thermo.thermal_conductivity.ThermalConductivityGas
method), 795

calculate_P() (thermo.thermal_conductivity.ThermalConductivityLiquid
method), 791

calculate_P() (thermo.viscosity.ViscosityGas
method), 880

calculate_P() (thermo.viscosity.ViscosityLiquid
method), 877

calculate_P() (thermo.volume.VolumeGas method),
892

calculate_P() (thermo.volume.VolumeLiquid method),
889

calculate_PH() (thermo.chemical.Chemical method),
101

calculate_PS() (thermo.chemical.Chemical method),
101

calculate_TH() (thermo.chemical.Chemical method),
101

calculate_TS() (thermo.chemical.Chemical method),
101

calculated_Cpig_coeffs
(thermo.group_contribution.joback.Joback
attribute), 930

calculated_mul_coeffs
(thermo.group_contribution.joback.Joback
attribute), 930

Capillary() (thermo.chemical.Chemical method), 87
Capillary() (thermo.mixture.Mixture method), 571
Carcinogens (thermo.equilibrium.EquilibriumState

property), 420
Carcinogens (thermo.phases.Phase property), 628
CASs (thermo.equilibrium.EquilibriumState property),

420
CASs (thermo.phases.Phase property), 628
Ceilings (thermo.equilibrium.EquilibriumState prop-

erty), 420
Ceilings (thermo.phases.Phase property), 628
CEOSGas (class in thermo.phases), 713
CEOSLiquid (class in thermo.phases), 718
charge (thermo.chemical.Chemical property), 101
charge_balance (thermo.mixture.Mixture property),

589
charges (thermo.equilibrium.EquilibriumState prop-

erty), 442
charges (thermo.mixture.Mixture property), 589
charges (thermo.phases.Phase property), 650
check_sufficient_inputs() (thermo.eos.GCEOS

method), 173
chemgroups_to_matrix() (in module thermo.unifac),

830

Chemical (class in thermo.chemical), 76
chemical_potential() (thermo.phases.Phase

method), 651
ChemicalConstantsPackage (class in

thermo.chemical_package), 112
Chen_Yang_a_alpha (class in

thermo.eos_alpha_functions), 380
Chen_Yang_alpha_pure() (in module

thermo.eos_alpha_functions), 397
clean (thermo.stream.StreamArgs property), 787
composition_independent (thermo.phases.Phase at-

tribute), 651
composition_spec (thermo.stream.StreamArgs prop-

erty), 787
composition_specified

(thermo.stream.EquilibriumStream property),
772

composition_specified (thermo.stream.Stream prop-
erty), 784

composition_specified (thermo.stream.StreamArgs
property), 787

compound_index() (thermo.mixture.Mixture method),
589

conductivities (thermo.equilibrium.EquilibriumState
property), 442

conductivities (thermo.phases.Phase property), 651
conductivity (thermo.mixture.Mixture attribute), 589
conductivity() (in module thermo.electrochem), 139
conductivity_all_methods (in module

thermo.electrochem), 139
conductivity_McCleskey() (in module

thermo.electrochem), 137
conductivity_methods() (in module

thermo.electrochem), 139
conductivity_Ts (thermo.equilibrium.EquilibriumState

property), 442
conductivity_Ts (thermo.phases.Phase property), 651
constants (thermo.mixture.Mixture property), 589
constants_from_IDs()

(thermo.chemical_package.ChemicalConstantsPackage
static method), 118

COOLPROP (in module thermo.thermal_conductivity), 792
CoolPropGas (class in thermo.phases), 728
CoolPropLiquid (class in thermo.phases), 728
copy() (thermo.stream.EnergyStream method), 751
copy() (thermo.stream.StreamArgs method), 787
Coquelet_a_alpha (class in

thermo.eos_alpha_functions), 380
Coquelet_alpha_pure() (in module

thermo.eos_alpha_functions), 397
correct_pressure_pure

(thermo.utils.MixtureProperty property),
864

correlations_from_IDs()
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(thermo.chemical_package.ChemicalConstantsPackage
static method), 118

count_ring_ring_attatchments() (in module
thermo.functional_groups), 526

count_rings_attatched_to_rings() (in module
thermo.functional_groups), 526

Cp (thermo.chemical.Chemical property), 87
Cp (thermo.mixture.Mixture property), 571
Cp() (thermo.bulk.Bulk method), 65
Cp() (thermo.equilibrium.EquilibriumState method), 420
Cp() (thermo.phases.CEOSGas method), 715
Cp() (thermo.phases.GibbsExcessLiquid method), 722
Cp() (thermo.phases.HelmholtzEOS method), 724
Cp() (thermo.phases.IdealGas method), 708
Cp() (thermo.phases.Phase method), 628
Cp_Cv_ratio() (thermo.equilibrium.EquilibriumState

method), 420
Cp_Cv_ratio() (thermo.phases.Phase method), 628
Cp_Cv_ratio_ideal_gas()

(thermo.equilibrium.EquilibriumState method),
420

Cp_Cv_ratio_ideal_gas() (thermo.phases.Phase
method), 628

Cp_dep() (thermo.equilibrium.EquilibriumState
method), 420

Cp_ideal_gas() (thermo.bulk.Bulk method), 65
Cp_ideal_gas() (thermo.equilibrium.EquilibriumState

method), 421
Cp_ideal_gas() (thermo.phases.Phase method), 628
Cp_mass() (thermo.equilibrium.EquilibriumState

method), 421
Cp_mass() (thermo.phases.Phase method), 628
Cp_minus_Cv_g (thermo.eos.GCEOS property), 160
Cp_minus_Cv_l (thermo.eos.GCEOS property), 160
CpE() (thermo.activity.GibbsExcess method), 53
Cpg (thermo.chemical.Chemical property), 88
Cpg (thermo.mixture.Mixture property), 571
Cpgm (thermo.chemical.Chemical property), 88
Cpgm (thermo.mixture.Mixture property), 572
Cpgms (thermo.mixture.Mixture property), 572
Cpgs (thermo.mixture.Mixture property), 572
Cpgs_poly_fit (thermo.phases.Phase attribute), 629
Cpig() (thermo.group_contribution.joback.Joback

method), 925
Cpig_coeffs() (thermo.group_contribution.joback.Joback

static method), 925
Cpig_integrals_over_T_pure()

(thermo.phases.Phase method), 629
Cpig_integrals_pure() (thermo.phases.Phase

method), 629
Cpigs_pure() (thermo.phases.Phase method), 629
Cpl (thermo.chemical.Chemical property), 88
Cpl (thermo.mixture.Mixture property), 572
Cplm (thermo.chemical.Chemical property), 89

Cplm (thermo.mixture.Mixture property), 572
Cplms (thermo.mixture.Mixture property), 573
Cpls (thermo.mixture.Mixture property), 573
Cpm (thermo.chemical.Chemical property), 89
Cpm (thermo.mixture.Mixture property), 573
Cps (thermo.chemical.Chemical property), 89
Cps (thermo.mixture.Mixture property), 573
Cpsm (thermo.chemical.Chemical property), 90
Cpsm (thermo.mixture.Mixture property), 573
Cpsms (thermo.mixture.Mixture property), 574
Cpss (thermo.mixture.Mixture property), 574
critical_zero (thermo.utils.TDependentProperty at-

tribute), 848
Cv() (thermo.equilibrium.EquilibriumState method), 421
Cv() (thermo.phases.CEOSGas method), 715
Cv() (thermo.phases.HelmholtzEOS method), 725
Cv() (thermo.phases.Phase method), 629
Cv_dep() (thermo.equilibrium.EquilibriumState

method), 421
Cv_dep() (thermo.phases.Phase method), 629
Cv_ideal_gas() (thermo.equilibrium.EquilibriumState

method), 421
Cv_ideal_gas() (thermo.phases.Phase method), 630
Cv_mass() (thermo.equilibrium.EquilibriumState

method), 421
Cv_mass() (thermo.phases.Phase method), 630
Cvg (thermo.chemical.Chemical property), 90
Cvg (thermo.mixture.Mixture property), 574
Cvgm (thermo.chemical.Chemical property), 90
Cvgm (thermo.mixture.Mixture property), 574
Cvgms (thermo.mixture.Mixture property), 574
Cvgs (thermo.mixture.Mixture property), 575

D
d2a_alpha_dninjs (thermo.eos_mix.GCEOSMIX prop-

erty), 270
d2a_alpha_dT2_dns (thermo.eos_mix.GCEOSMIX

property), 269
d2a_alpha_dT2_dzs (thermo.eos_mix.GCEOSMIX

property), 270
d2a_alpha_dT2_ijs (thermo.eos_mix.GCEOSMIX

property), 270
d2a_alpha_dTdP_g_V (thermo.eos.GCEOS property),

179
d2a_alpha_dTdP_l_V (thermo.eos.GCEOS property),

179
d2a_alpha_dzizjs (thermo.eos_mix.GCEOSMIX prop-

erty), 271
d2b_dninjs (thermo.eos_mix.GCEOSMIX property),

271
d2b_dzizjs (thermo.eos_mix.GCEOSMIX property),

271
d2delta_dninjs (thermo.eos_mix.PRMIX property),

298
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d2delta_dninjs (thermo.eos_mix.PRMIXTranslated
property), 314

d2delta_dninjs (thermo.eos_mix.RKMIX property),
347

d2delta_dninjs (thermo.eos_mix.SRKMIXTranslated
property), 330

d2delta_dninjs (thermo.eos_mix.VDWMIX property),
341

d2delta_dzizjs (thermo.eos_mix.PRMIX property),
298

d2delta_dzizjs (thermo.eos_mix.PRMIXTranslated
property), 314

d2delta_dzizjs (thermo.eos_mix.RKMIX property),
347

d2delta_dzizjs (thermo.eos_mix.SRKMIXTranslated
property), 330

d2delta_dzizjs (thermo.eos_mix.VDWMIX property),
342

d2epsilon_dninjs (thermo.eos_mix.PRMIX property),
299

d2epsilon_dninjs (thermo.eos_mix.PRMIXTranslated
property), 314

d2epsilon_dninjs (thermo.eos_mix.SRKMIXTranslated
property), 330

d2epsilon_dzizjs (thermo.eos_mix.PRMIX property),
299

d2epsilon_dzizjs (thermo.eos_mix.PRMIXTranslated
property), 315

d2epsilon_dzizjs (thermo.eos_mix.SRKMIXTranslated
property), 331

d2Fis_dxixjs() (thermo.unifac.UNIFAC method), 808
d2G_dep_dninjs() (thermo.eos_mix.GCEOSMIX

method), 268
d2G_dep_dzizjs() (thermo.eos_mix.GCEOSMIX

method), 268
d2GE_dT2() (thermo.activity.IdealSolution method), 60
d2GE_dT2() (thermo.nrtl.NRTL method), 558
d2GE_dT2() (thermo.regular_solution.RegularSolution

method), 749
d2GE_dT2() (thermo.unifac.UNIFAC method), 809
d2GE_dT2() (thermo.uniquac.UNIQUAC method), 916
d2GE_dT2() (thermo.wilson.Wilson method), 905
d2GE_dTdns() (thermo.activity.GibbsExcess method),

54
d2GE_dTdxs() (thermo.activity.IdealSolution method),

60
d2GE_dTdxs() (thermo.nrtl.NRTL method), 558
d2GE_dTdxs() (thermo.regular_solution.RegularSolution

method), 749
d2GE_dTdxs() (thermo.unifac.UNIFAC method), 809
d2GE_dTdxs() (thermo.uniquac.UNIQUAC method),

916
d2GE_dTdxs() (thermo.wilson.Wilson method), 906
d2GE_dxixjs() (thermo.activity.IdealSolution method),

60
d2GE_dxixjs() (thermo.nrtl.NRTL method), 558
d2GE_dxixjs() (thermo.regular_solution.RegularSolution

method), 749
d2GE_dxixjs() (thermo.unifac.UNIFAC method), 809
d2GE_dxixjs() (thermo.uniquac.UNIQUAC method),

917
d2GE_dxixjs() (thermo.wilson.Wilson method), 906
d2Gs_dT2() (thermo.nrtl.NRTL method), 557
d2H_dep_dT2_g (thermo.eos.GCEOS property), 173
d2H_dep_dT2_g_P (thermo.eos.GCEOS property), 173
d2H_dep_dT2_g_V (thermo.eos.GCEOS property), 173
d2H_dep_dT2_l (thermo.eos.GCEOS property), 173
d2H_dep_dT2_l_P (thermo.eos.GCEOS property), 174
d2H_dep_dT2_l_V (thermo.eos.GCEOS property), 174
d2H_dep_dTdP_g (thermo.eos.GCEOS property), 174
d2H_dep_dTdP_l (thermo.eos.GCEOS property), 174
d2H_dP2() (thermo.phases.IdealGas method), 709
d2H_dT2() (thermo.phases.IdealGas method), 709
d2lambdas_dT2() (thermo.wilson.Wilson method), 906
d2lngammas_c_dT2() (thermo.unifac.UNIFAC method),

812
d2lngammas_c_dTdx() (thermo.unifac.UNIFAC

method), 812
d2lngammas_c_dxixjs() (thermo.unifac.UNIFAC

method), 812
d2lngammas_dT2() (thermo.unifac.UNIFAC method),

812
d2lngammas_r_dT2() (thermo.unifac.UNIFAC method),

813
d2lngammas_r_dTdxs() (thermo.unifac.UNIFAC

method), 813
d2lngammas_r_dxixjs() (thermo.unifac.UNIFAC

method), 813
d2lnGammas_subgroups_dT2()

(thermo.unifac.UNIFAC method), 810
d2lnGammas_subgroups_dTdxs()

(thermo.unifac.UNIFAC method), 810
d2lnGammas_subgroups_dxixjs()

(thermo.unifac.UNIFAC method), 811
d2lnGammas_subgroups_pure_dT2()

(thermo.unifac.UNIFAC method), 811
d2lnphi_dninjs() (thermo.eos_mix.GCEOSMIX

method), 272
d2lnphi_dzizjs() (thermo.eos_mix.GCEOSMIX

method), 272
d2nGE_dninjs() (thermo.activity.GibbsExcess method),

55
d2nGE_dTdns() (thermo.activity.GibbsExcess method),

55
d2P_drho2() (thermo.phases.Phase method), 652
d2P_drho2_g (thermo.eos.GCEOS property), 176
d2P_drho2_l (thermo.eos.GCEOS property), 176
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dilute_ionic_conductivity() (in module

thermo.electrochem), 136
dipoles (thermo.equilibrium.EquilibriumState prop-

erty), 472
dipoles (thermo.phases.Phase property), 688
DIPPR_PERRY_8E (in module

thermo.thermal_conductivity), 792
discriminant() (thermo.eos.GCEOS method), 187
disobaric_expansion_dP() (thermo.phases.Phase

method), 688
disobaric_expansion_dT() (thermo.phases.Phase

method), 688
disothermal_compressibility_dT()

(thermo.phases.Phase method), 688
dkappa_dT() (thermo.phases.Phase method), 688
dlambdas_dT() (thermo.wilson.Wilson method), 907
dlnfugacities_dns() (thermo.eos_mix.GCEOSMIX

method), 280
dlnfugacities_dns() (thermo.phases.Phase method),

688
dlnfugacities_dzs() (thermo.phases.Phase method),

689
dlngammas_c_dT() (thermo.unifac.UNIFAC method),

820
dlngammas_c_dxs() (thermo.unifac.UNIFAC method),

820
dlngammas_dT() (thermo.unifac.UNIFAC method), 821
dlngammas_r_dT() (thermo.unifac.UNIFAC method),

821
dlngammas_r_dxs() (thermo.unifac.UNIFAC method),

821
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method), 819
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method), 819
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(thermo.unifac.UNIFAC method), 820
dlnphi_dns() (thermo.eos_mix.GCEOSMIX method),
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dlnphi_dzs() (thermo.eos_mix.GCEOSMIX method),
281

dlnphis_dns() (thermo.eos_mix.GCEOSMIX method),
283

dlnphis_dP() (thermo.eos_mix.GCEOSMIX method),
281

dlnphis_dP() (thermo.eos_mix.PRMIX method), 301
dlnphis_dP() (thermo.eos_mix.SRKMIX method), 323
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dna_alpha_dns (thermo.eos_mix.GCEOSMIX prop-

erty), 285
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erty), 284
dnb_dns (thermo.eos_mix.GCEOSMIX property), 285
dnG_dep_dns() (thermo.eos_mix.GCEOSMIX method),

284
dnGE_dns() (thermo.activity.GibbsExcess method), 57
dnH_dep_dns() (thermo.eos_mix.GCEOSMIX method),

284
dnHE_dns() (thermo.activity.GibbsExcess method), 57
dnSE_dns() (thermo.activity.GibbsExcess method), 57
dnV_dns() (thermo.eos_mix.GCEOSMIX method), 284
dnZ_dns() (thermo.eos_mix.GCEOSMIX method), 284
DOUFIP2016 (in module thermo.unifac), 832
DOUFMG (in module thermo.unifac), 831
DOUFSG (in module thermo.unifac), 831
dP_dP_A() (thermo.equilibrium.EquilibriumState

method), 453
dP_dP_A() (thermo.phases.Phase method), 665
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method), 453
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dP_dP_H() (thermo.phases.Phase method), 665
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dP_drho_S() (thermo.phases.Phase method), 669
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dP_dV_A() (thermo.phases.Phase method), 667
dP_dV_frozen() (thermo.bulk.Bulk method), 70
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dP_dV_G() (thermo.equilibrium.EquilibriumState

method), 456
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dP_dV_S() (thermo.equilibrium.EquilibriumState

method), 456
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dphis_dT() (thermo.phases.Phase method), 689
dphis_dzs() (thermo.phases.Phase method), 689
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drho_mass_dP() (thermo.phases.Phase method), 695
drho_mass_dT() (thermo.phases.Phase method), 695
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dS_dep_dT_sat_l() (thermo.eos.GCEOS method), 185
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dS_dep_dV_g_T (thermo.eos.GCEOS property), 185
dS_dep_dV_l_P (thermo.eos.GCEOS property), 185
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method), 458
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dS_dV_P() (thermo.equilibrium.EquilibriumState

method), 458
dS_dV_P() (thermo.phases.Phase method), 670
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dS_mass_dT() (thermo.equilibrium.EquilibriumState

method), 459
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dT_dP_V() (thermo.phases.Phase method), 673
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dV_dT_A() (thermo.phases.Phase method), 682
dV_dT_G() (thermo.equilibrium.EquilibriumState

method), 469
dV_dT_G() (thermo.phases.Phase method), 682
dV_dT_H() (thermo.equilibrium.EquilibriumState

method), 469
dV_dT_H() (thermo.phases.Phase method), 682
dV_dT_P() (thermo.phases.Phase method), 683
dV_dT_S() (thermo.equilibrium.EquilibriumState

method), 469
dV_dT_S() (thermo.phases.Phase method), 683
dV_dT_U() (thermo.equilibrium.EquilibriumState

method), 469
dV_dT_U() (thermo.phases.Phase method), 683
dV_dT_V() (thermo.phases.Phase method), 683
dV_dV_A() (thermo.equilibrium.EquilibriumState

method), 470
dV_dV_A() (thermo.phases.Phase method), 683
dV_dV_G() (thermo.equilibrium.EquilibriumState

method), 470
dV_dV_G() (thermo.phases.Phase method), 684
dV_dV_H() (thermo.equilibrium.EquilibriumState

method), 470
dV_dV_H() (thermo.phases.Phase method), 684
dV_dV_P() (thermo.phases.Phase method), 684
dV_dV_S() (thermo.equilibrium.EquilibriumState

method), 470
dV_dV_S() (thermo.phases.Phase method), 684
dV_dV_T() (thermo.phases.Phase method), 684
dV_dV_U() (thermo.equilibrium.EquilibriumState

method), 471
dV_dV_U() (thermo.phases.Phase method), 684
dV_dzs() (thermo.eos_mix.GCEOSMIX method), 277
dVis_dxs() (thermo.unifac.UNIFAC method), 818
dVis_modified_dxs() (thermo.unifac.UNIFAC

method), 818
dZ_dns() (thermo.eos_mix.GCEOSMIX method), 277
dZ_dns() (thermo.phases.Phase method), 686
dZ_dP() (thermo.phases.Phase method), 686
dZ_dP_g (thermo.eos.GCEOS property), 185
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dZ_dP_l (thermo.eos.GCEOS property), 186
dZ_dT() (thermo.phases.Phase method), 686
dZ_dT_g (thermo.eos.GCEOS property), 186
dZ_dT_l (thermo.eos.GCEOS property), 186
dZ_dV() (thermo.phases.Phase method), 686
dZ_dzs() (thermo.eos_mix.GCEOSMIX method), 278
dZ_dzs() (thermo.phases.Phase method), 687

E
economic_status (thermo.chemical.Chemical prop-

erty), 102
economic_status() (in module thermo.law), 550
economic_statuses (thermo.equilibrium.EquilibriumState

property), 476
economic_statuses (thermo.mixture.Mixture prop-

erty), 590
economic_statuses (thermo.phases.Phase property),

696
energy (thermo.stream.EnergyStream property), 751
energy (thermo.stream.EquilibriumStream property),

772
energy (thermo.stream.StreamArgs property), 787
energy_balance() (in module thermo.stream), 788
energy_calc (thermo.stream.EnergyStream property),

751
energy_calc (thermo.stream.EquilibriumStream prop-

erty), 772
energy_calc (thermo.stream.StreamArgs property), 787
energy_reactive (thermo.stream.EquilibriumStream

property), 772
energy_reactive_calc

(thermo.stream.EquilibriumStream property),
772

EnergyStream (class in thermo.stream), 751
enthalpy_sublimation_methods (in module

thermo.phase_change), 734
enthalpy_vaporization_methods (in module

thermo.phase_change), 732
EnthalpySublimation (class in thermo.phase_change),

732
EnthalpySublimations

(thermo.equilibrium.EquilibriumState prop-
erty), 421

EnthalpyVaporization (class in
thermo.phase_change), 729

EnthalpyVaporizations
(thermo.equilibrium.EquilibriumState prop-
erty), 421

eos (thermo.chemical.Chemical property), 102
eos (thermo.mixture.Mixture property), 590
eos_2P_list (in module thermo.eos), 247
eos_in_a_box (thermo.mixture.Mixture attribute), 590
eos_list (in module thermo.eos), 247
eos_mix_list (in module thermo.eos_mix), 352

eos_mix_no_coeffs_list (in module
thermo.eos_mix), 352

eos_pure (thermo.eos_mix.APISRKMIX attribute), 328
eos_pure (thermo.eos_mix.IGMIX attribute), 350
eos_pure (thermo.eos_mix.MSRKMIXTranslated at-

tribute), 337
eos_pure (thermo.eos_mix.PR78MIX attribute), 305
eos_pure (thermo.eos_mix.PRMIX attribute), 303
eos_pure (thermo.eos_mix.PRMIXTranslated attribute),

317
eos_pure (thermo.eos_mix.PRMIXTranslatedConsistent

attribute), 319
eos_pure (thermo.eos_mix.PRMIXTranslatedPPJP at-

tribute), 321
eos_pure (thermo.eos_mix.PRSV2MIX attribute), 310
eos_pure (thermo.eos_mix.PRSVMIX attribute), 307
eos_pure (thermo.eos_mix.PSRK attribute), 339
eos_pure (thermo.eos_mix.RKMIX attribute), 348
eos_pure (thermo.eos_mix.SRKMIX attribute), 324
eos_pure (thermo.eos_mix.SRKMIXTranslated at-

tribute), 333
eos_pure (thermo.eos_mix.SRKMIXTranslatedConsistent

attribute), 335
eos_pure (thermo.eos_mix.TWUPRMIX attribute), 311
eos_pure (thermo.eos_mix.TWUSRKMIX attribute), 326
eos_pure (thermo.eos_mix.VDWMIX attribute), 344
eos_pures() (thermo.mixture.Mixture method), 590
epsilon (thermo.eos.IG attribute), 246
epsilon (thermo.eos.RK attribute), 243
epsilon (thermo.eos.SRK attribute), 226
epsilon (thermo.eos.VDW attribute), 240
EpsilonZeroMixingRules (class in thermo.eos_mix),

350
EquilibriumState (class in thermo.equilibrium), 397
EquilibriumStream (class in thermo.stream), 752
estimate() (thermo.group_contribution.joback.Joback

method), 930
estimate_MN() (thermo.eos.MSRKTranslated static

method), 236
excess_property() (thermo.utils.MixtureProperty

method), 864
extrapolate() (thermo.utils.TDependentProperty

method), 848
extrapolate() (thermo.utils.TPDependentProperty

method), 858
extrapolation (thermo.utils.TDependentProperty

property), 849
extrapolation (thermo.utils.TPDependentProperty

property), 859

F
Fedors() (in module thermo.group_contribution), 933
Fis() (thermo.unifac.UNIFAC method), 807
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fit_add_model() (thermo.utils.TDependentProperty
method), 849

fit_data_to_model()
(thermo.utils.TDependentProperty class
method), 849

Flash (class in thermo.flash), 493
flash() (thermo.flash.Flash method), 493
flash() (thermo.stream.Stream method), 784
flash() (thermo.stream.StreamArgs method), 787
flash_caloric() (thermo.mixture.Mixture method),

590
flash_state() (thermo.stream.StreamArgs method),

787
flashed (thermo.equilibrium.EquilibriumState at-

tribute), 476
flashed (thermo.mixture.Mixture attribute), 590
flashed (thermo.stream.EquilibriumStream attribute),

772
flashed (thermo.stream.Stream attribute), 784
flashed (thermo.stream.StreamArgs attribute), 787
FlashPureVLS (class in thermo.flash), 485
FlashVL (class in thermo.flash), 488
FlashVLN (class in thermo.flash), 491
flow_spec (thermo.stream.StreamArgs property), 787
flow_specified (thermo.stream.EquilibriumStream

property), 772
flow_specified (thermo.stream.Stream property), 784
flow_specified (thermo.stream.StreamArgs property),

787
force_phase (thermo.phases.Phase attribute), 696
formulas (thermo.equilibrium.EquilibriumState prop-

erty), 476
formulas (thermo.mixture.Mixture property), 590
formulas (thermo.phases.Phase property), 696
from_DDBST() (thermo.wilson.Wilson static method),

908
from_DDBST_as_matrix() (thermo.wilson.Wilson

static method), 909
from_IDs() (thermo.chemical_package.ChemicalConstantsPackage

static method), 119
from_json() (thermo.activity.GibbsExcess class

method), 57
from_json() (thermo.chemical_package.ChemicalConstantsPackage

class method), 119
from_json() (thermo.eos.GCEOS class method), 189
from_json() (thermo.eos_mix.GCEOSMIX class

method), 285
from_json() (thermo.phases.Phase class method), 696
from_json() (thermo.utils.MixtureProperty class

method), 865
from_json() (thermo.utils.TDependentProperty class

method), 850
from_subgroups() (thermo.unifac.UNIFAC static

method), 822

fugacities() (thermo.eos_mix.GCEOSMIX method),
286

fugacities() (thermo.phases.IdealGas method), 713
fugacities() (thermo.phases.Phase method), 697
fugacities_at_zs() (thermo.phases.Phase method),

697
fugacities_lowest_Gibbs() (thermo.phases.Phase

method), 697
fugacity() (thermo.phases.Phase method), 697
fugacity_coefficients()

(thermo.eos_mix.GCEOSMIX method), 287
fugacity_coefficients() (thermo.eos_mix.PRMIX

method), 303
fugacity_coefficients() (thermo.eos_mix.SRKMIX

method), 324
fugacity_coefficients()

(thermo.eos_mix.VDWMIX method), 344
fugacity_g (thermo.eos.GCEOS property), 190
fugacity_l (thermo.eos.GCEOS property), 190

G
G() (thermo.equilibrium.EquilibriumState method), 422
G() (thermo.phases.Phase method), 630
G_dep() (thermo.equilibrium.EquilibriumState method),

422
G_dep() (thermo.phases.Phase method), 630
G_dep_phi_consistency() (thermo.phases.Phase

method), 630
G_formation_ideal_gas()

(thermo.equilibrium.EquilibriumState method),
422

G_formation_ideal_gas() (thermo.phases.Phase
method), 630

G_ideal_gas() (thermo.equilibrium.EquilibriumState
method), 422

G_ideal_gas() (thermo.phases.Phase method), 631
G_mass() (thermo.equilibrium.EquilibriumState

method), 422
G_mass() (thermo.phases.Phase method), 631
G_min() (thermo.phases.Phase method), 631
G_min_criteria() (thermo.phases.Phase method), 631
G_reactive() (thermo.equilibrium.EquilibriumState

method), 422
G_reactive() (thermo.phases.Phase method), 631
gammas() (thermo.activity.GibbsExcess method), 58
gammas() (thermo.phases.GibbsExcessLiquid method),

723
gammas() (thermo.phases.Phase method), 697
gammas() (thermo.unifac.UNIFAC method), 823
gammas_infinite_dilution()

(thermo.activity.GibbsExcess method), 58
Gasem_a_alpha (class in thermo.eos_alpha_functions),

381
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Gasem_alpha_pure() (in module
thermo.eos_alpha_functions), 397

GCEOS (class in thermo.eos), 148
GCEOSMIX (class in thermo.eos_mix), 254
GE() (thermo.activity.IdealSolution method), 60
GE() (thermo.nrtl.NRTL method), 557
GE() (thermo.regular_solution.RegularSolution method),

748
GE() (thermo.unifac.UNIFAC method), 807
GE() (thermo.uniquac.UNIQUAC method), 916
GE() (thermo.wilson.Wilson method), 905
get_ip_asymmetric_matrix()

(thermo.interaction_parameters.InteractionParameterDB
method), 546

get_ip_automatic() (thermo.interaction_parameters.InteractionParameterDB
method), 546

get_ip_specific() (thermo.interaction_parameters.InteractionParameterDB
method), 547

get_ip_symmetric_matrix()
(thermo.interaction_parameters.InteractionParameterDB
method), 547

get_tables_with_type()
(thermo.interaction_parameters.InteractionParameterDB
method), 547

Gf() (thermo.group_contribution.joback.Joback static
method), 926

Gfgs (thermo.equilibrium.EquilibriumState property),
423

Gfgs (thermo.phases.Phase property), 631
Gfgs_mass (thermo.equilibrium.EquilibriumState prop-

erty), 423
Gfgs_mass (thermo.phases.Phase property), 631
GHARAGHEIZI_L (in module

thermo.thermal_conductivity), 792
Gibbons_Laughton_a_alpha (class in

thermo.eos_alpha_functions), 381
Gibbons_Laughton_alpha_pure() (in module

thermo.eos_alpha_functions), 396
GibbsExcess (class in thermo.activity), 51
GibbsExcessLiquid (class in thermo.phases), 719
Grashof() (thermo.chemical.Chemical method), 91
Grashof() (thermo.mixture.Mixture method), 575
Gs() (thermo.nrtl.NRTL method), 556
GWPs (thermo.equilibrium.EquilibriumState property),

422
GWPs (thermo.phases.Phase property), 630

H
H (thermo.mixture.Mixture attribute), 575
H (thermo.stream.StreamArgs property), 786
H() (thermo.bulk.Bulk method), 65
H() (thermo.equilibrium.EquilibriumState method), 423
H() (thermo.phases.CEOSGas method), 715
H() (thermo.phases.GibbsExcessLiquid method), 722

H() (thermo.phases.HelmholtzEOS method), 725
H() (thermo.phases.IdealGas method), 708
H() (thermo.phases.Phase method), 632
H_C_ratio() (thermo.equilibrium.EquilibriumState

method), 423
H_C_ratio() (thermo.phases.Phase method), 632
H_C_ratio_mass() (thermo.equilibrium.EquilibriumState

method), 423
H_C_ratio_mass() (thermo.phases.Phase method), 632
H_dep() (thermo.equilibrium.EquilibriumState method),

424
H_dep_phi_consistency() (thermo.phases.Phase

method), 632
H_formation_ideal_gas()

(thermo.equilibrium.EquilibriumState method),
424

H_formation_ideal_gas() (thermo.phases.Phase
method), 632

H_from_phi() (thermo.phases.Phase method), 632
H_ideal_gas() (thermo.bulk.Bulk method), 66
H_ideal_gas() (thermo.equilibrium.EquilibriumState

method), 424
H_ideal_gas() (thermo.phases.Phase method), 633
H_mass() (thermo.equilibrium.EquilibriumState

method), 424
H_mass() (thermo.phases.Phase method), 633
H_phi_consistency() (thermo.phases.Phase method),

633
H_reactive() (thermo.bulk.Bulk method), 66
H_reactive() (thermo.equilibrium.EquilibriumState

method), 424
H_reactive() (thermo.phases.Phase method), 633
Haghtalab_a_alpha (class in

thermo.eos_alpha_functions), 382
Haghtalab_alpha_pure() (in module

thermo.eos_alpha_functions), 397
Harmens_Knapp_a_alpha (class in

thermo.eos_alpha_functions), 382
Harmens_Knapp_alpha_pure() (in module

thermo.eos_alpha_functions), 396
has_ip_specific() (thermo.interaction_parameters.InteractionParameterDB

method), 548
Hc (thermo.mixture.Mixture property), 575
Hc() (thermo.equilibrium.EquilibriumState method), 424
Hc() (thermo.phases.Phase method), 633
Hc_lower (thermo.mixture.Mixture property), 575
Hc_lower() (thermo.equilibrium.EquilibriumState

method), 424
Hc_lower() (thermo.phases.Phase method), 633
Hc_lower_mass() (thermo.equilibrium.EquilibriumState

method), 425
Hc_lower_mass() (thermo.phases.Phase method), 634
Hc_lower_normal() (thermo.equilibrium.EquilibriumState

method), 425
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Hc_lower_normal() (thermo.phases.Phase method),
634

Hc_lower_standard()
(thermo.equilibrium.EquilibriumState method),
425

Hc_lower_standard() (thermo.phases.Phase method),
634

Hc_mass() (thermo.equilibrium.EquilibriumState
method), 425

Hc_mass() (thermo.phases.Phase method), 634
Hc_normal() (thermo.equilibrium.EquilibriumState

method), 425
Hc_normal() (thermo.phases.Phase method), 634
Hc_standard() (thermo.equilibrium.EquilibriumState

method), 425
Hc_standard() (thermo.phases.Phase method), 634
Hc_volumetric_g() (thermo.mixture.Mixture method),

575
Hc_volumetric_g_lower() (thermo.mixture.Mixture

method), 575
Hcm (thermo.mixture.Mixture property), 575
Hcm_lower (thermo.mixture.Mixture property), 576
Hcs (thermo.equilibrium.EquilibriumState property), 425
Hcs (thermo.phases.Phase property), 634
Hcs_lower (thermo.equilibrium.EquilibriumState prop-

erty), 425
Hcs_lower (thermo.phases.Phase property), 634
Hcs_lower_mass (thermo.equilibrium.EquilibriumState

property), 425
Hcs_lower_mass (thermo.phases.Phase property), 634
Hcs_mass (thermo.equilibrium.EquilibriumState prop-

erty), 426
Hcs_mass (thermo.phases.Phase property), 635
HE() (thermo.activity.GibbsExcess method), 53
heat_capacity_gas_methods (in module

thermo.heat_capacity), 533
heat_capacity_gas_mixture_methods (in module

thermo.heat_capacity), 539
heat_capacity_liquid_methods (in module

thermo.heat_capacity), 531
heat_capacity_liquid_mixture_methods (in mod-

ule thermo.heat_capacity), 537
heat_capacity_solid_methods (in module

thermo.heat_capacity), 535
heat_capacity_solid_mixture_methods (in module

thermo.heat_capacity), 540
HeatCapacityGas (class in thermo.heat_capacity), 531
HeatCapacityGases (thermo.equilibrium.EquilibriumState

property), 426
HeatCapacityGasMixture (class in

thermo.heat_capacity), 537
HeatCapacityGasMixture

(thermo.equilibrium.EquilibriumState prop-
erty), 426

HeatCapacityLiquid (class in thermo.heat_capacity),
528

HeatCapacityLiquidMixture (class in
thermo.heat_capacity), 536

HeatCapacityLiquidMixture
(thermo.equilibrium.EquilibriumState prop-
erty), 426

HeatCapacityLiquids
(thermo.equilibrium.EquilibriumState prop-
erty), 426

HeatCapacitySolid (class in thermo.heat_capacity),
533

HeatCapacitySolidMixture (class in
thermo.heat_capacity), 539

HeatCapacitySolidMixture
(thermo.equilibrium.EquilibriumState prop-
erty), 426

HeatCapacitySolids (thermo.equilibrium.EquilibriumState
property), 426

heaviest_liquid (thermo.equilibrium.EquilibriumState
property), 476

HelmholtzEOS (class in thermo.phases), 724
Heyen_a_alpha (class in thermo.eos_alpha_functions),

383
Heyen_alpha_pure() (in module

thermo.eos_alpha_functions), 396
Hf() (thermo.group_contribution.joback.Joback static

method), 926
Hf_STPs (thermo.equilibrium.EquilibriumState prop-

erty), 426
Hf_STPs (thermo.phases.Phase property), 635
Hf_STPs_mass (thermo.equilibrium.EquilibriumState

property), 426
Hf_STPs_mass (thermo.phases.Phase property), 635
Hfgs (thermo.equilibrium.EquilibriumState property),

426
Hfgs (thermo.phases.Phase property), 635
Hfgs_mass (thermo.equilibrium.EquilibriumState prop-

erty), 426
Hfgs_mass (thermo.phases.Phase property), 635
Hfus() (thermo.group_contribution.joback.Joback static

method), 927
Hfus_Tms (thermo.equilibrium.EquilibriumState prop-

erty), 427
Hfus_Tms (thermo.phases.Phase property), 635
Hfus_Tms_mass (thermo.equilibrium.EquilibriumState

property), 427
Hfus_Tms_mass (thermo.phases.Phase property), 635
high_omega_constants (thermo.eos.PR78 attribute),

209
Hill (thermo.chemical.Chemical property), 91
Hm (thermo.mixture.Mixture attribute), 576
Hm (thermo.stream.EnergyStream attribute), 751
Hm (thermo.stream.StreamArgs property), 786
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Hm_calc (thermo.stream.StreamArgs property), 786
Hsub_Tts (thermo.equilibrium.EquilibriumState prop-

erty), 427
Hsub_Tts (thermo.phases.Phase property), 635
Hsub_Tts_mass (thermo.equilibrium.EquilibriumState

property), 427
Hsub_Tts_mass (thermo.phases.Phase property), 635
Hvap (thermo.chemical.Chemical property), 91
Hvap() (thermo.eos.GCEOS method), 160
Hvap() (thermo.group_contribution.joback.Joback static

method), 927
Hvap_298s (thermo.equilibrium.EquilibriumState prop-

erty), 427
Hvap_298s (thermo.phases.Phase property), 636
Hvap_298s_mass (thermo.equilibrium.EquilibriumState

property), 427
Hvap_298s_mass (thermo.phases.Phase property), 636
Hvap_Tbs (thermo.equilibrium.EquilibriumState prop-

erty), 427
Hvap_Tbs (thermo.phases.Phase property), 636
Hvap_Tbs_mass (thermo.equilibrium.EquilibriumState

property), 427
Hvap_Tbs_mass (thermo.phases.Phase property), 636
Hvapm (thermo.chemical.Chemical property), 91
Hvapms (thermo.mixture.Mixture property), 576
Hvaps (thermo.mixture.Mixture property), 576

I
IAPWS95 (class in thermo.phases), 727
IAPWS95Gas (class in thermo.phases), 727
IAPWS95Liquid (class in thermo.phases), 727
iapws_constants (in module

thermo.chemical_package), 125
iapws_correlations (in module

thermo.chemical_package), 125
ideal_gas_basis (thermo.phases.Phase attribute), 697
IdealGas (class in thermo.phases), 706
IdealSolution (class in thermo.activity), 59
identify_sort_phases() (in module

thermo.phase_identification), 735
identity_phase_states() (in module

thermo.phase_identification), 737
IDs (thermo.equilibrium.EquilibriumState property), 428
IDs (thermo.stream.StreamArgs property), 786
IG (class in thermo.eos), 244
IGMIX (class in thermo.eos_mix), 348
InChI_Keys (thermo.equilibrium.EquilibriumState prop-

erty), 428
InChI_Keys (thermo.mixture.Mixture property), 576
InChI_Keys (thermo.phases.Phase property), 636
InChIs (thermo.equilibrium.EquilibriumState property),

428
InChIs (thermo.mixture.Mixture property), 576
InChIs (thermo.phases.Phase property), 636

INCOMPRESSIBLE_CONST (thermo.phases.Phase at-
tribute), 636

InteractionParameterDB (class in
thermo.interaction_parameters), 545

interpolate() (thermo.utils.TDependentProperty
method), 850

interpolation_property
(thermo.phase_change.EnthalpySublimation
attribute), 733

interpolation_property
(thermo.phase_change.EnthalpyVaporization
attribute), 731

interpolation_property
(thermo.utils.TDependentProperty attribute),
851

interpolation_property
(thermo.utils.TPDependentProperty attribute),
859

interpolation_property()
(thermo.vapor_pressure.SublimationPressure
static method), 873

interpolation_property()
(thermo.vapor_pressure.VaporPressure static
method), 871

interpolation_property_inv
(thermo.phase_change.EnthalpySublimation
attribute), 733

interpolation_property_inv
(thermo.phase_change.EnthalpyVaporization
attribute), 731

interpolation_property_inv
(thermo.utils.TDependentProperty attribute),
851

interpolation_property_inv
(thermo.utils.TPDependentProperty attribute),
859

interpolation_property_inv()
(thermo.vapor_pressure.SublimationPressure
static method), 873

interpolation_property_inv()
(thermo.vapor_pressure.VaporPressure static
method), 871

interpolation_T (thermo.phase_change.EnthalpySublimation
attribute), 733

interpolation_T (thermo.phase_change.EnthalpyVaporization
attribute), 731

interpolation_T (thermo.utils.TDependentProperty
attribute), 851

interpolation_T (thermo.utils.TPDependentProperty
attribute), 859

interpolation_T() (thermo.vapor_pressure.SublimationPressure
static method), 873

interpolation_T() (thermo.vapor_pressure.VaporPressure
static method), 871
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interpolation_T_inv
(thermo.utils.TDependentProperty attribute),
851

interpolation_T_inv
(thermo.utils.TPDependentProperty attribute),
859

ionic_strength() (in module thermo.electrochem),
138

IPDB (in module thermo.interaction_parameters), 549
is_acid() (in module thermo.functional_groups), 525
is_acyl_halide() (in module

thermo.functional_groups), 501
is_alcohol() (in module thermo.functional_groups),

498
is_aldehyde() (in module thermo.functional_groups),

499
is_alkane() (in module thermo.functional_groups), 496
is_alkene() (in module thermo.functional_groups), 497
is_alkylaluminium() (in module

thermo.functional_groups), 524
is_alkyllithium() (in module

thermo.functional_groups), 524
is_alkylmagnesium_halide() (in module

thermo.functional_groups), 525
is_alkyne() (in module thermo.functional_groups), 498
is_amide() (in module thermo.functional_groups), 504
is_amidine() (in module thermo.functional_groups),

505
is_amine() (in module thermo.functional_groups), 505
is_anhydride() (in module thermo.functional_groups),

501
is_aromatic() (in module thermo.functional_groups),

498
is_azide() (in module thermo.functional_groups), 509
is_azo() (in module thermo.functional_groups), 509
is_borinic_acid() (in module

thermo.functional_groups), 520
is_borinic_ester() (in module

thermo.functional_groups), 521
is_boronic_acid() (in module

thermo.functional_groups), 520
is_boronic_ester() (in module

thermo.functional_groups), 520
is_branched_alkane() (in module

thermo.functional_groups), 497
is_bromoalkane() (in module

thermo.functional_groups), 523
is_carbamate() (in module thermo.functional_groups),

513
is_carbodithio() (in module

thermo.functional_groups), 519
is_carbodithioic_acid() (in module

thermo.functional_groups), 518
is_carbonate() (in module thermo.functional_groups),

502
is_carbothioic_o_acid() (in module

thermo.functional_groups), 517
is_carbothioic_s_acid() (in module

thermo.functional_groups), 517
is_carboxylate() (in module

thermo.functional_groups), 502
is_carboxylic_acid() (in module

thermo.functional_groups), 500
is_carboxylic_anhydride() (in module

thermo.functional_groups), 504
is_chloroalkane() (in module

thermo.functional_groups), 523
is_cyanate() (in module thermo.functional_groups),

509
is_cycloalkane() (in module

thermo.functional_groups), 497
is_disulfide() (in module thermo.functional_groups),

514
is_ester() (in module thermo.functional_groups), 501
is_ether() (in module thermo.functional_groups), 500
is_fluoroalkane() (in module

thermo.functional_groups), 523
is_haloalkane() (in module

thermo.functional_groups), 522
is_hydroperoxide() (in module

thermo.functional_groups), 502
is_imide() (in module thermo.functional_groups), 508
is_imine() (in module thermo.functional_groups), 507
is_inorganic() (in module thermo.functional_groups),

496
is_iodoalkane() (in module

thermo.functional_groups), 524
is_isocyanate() (in module

thermo.functional_groups), 510
is_isonitrile() (in module

thermo.functional_groups), 511
is_isothiocyanate() (in module

thermo.functional_groups), 516
is_ketone() (in module thermo.functional_groups), 499
is_mercaptan() (in module thermo.functional_groups),

513
is_methylenedioxy() (in module

thermo.functional_groups), 503
is_nitrate() (in module thermo.functional_groups),

510
is_nitrile() (in module thermo.functional_groups),

510
is_nitrite() (in module thermo.functional_groups),

511
is_nitro() (in module thermo.functional_groups), 511
is_nitroso() (in module thermo.functional_groups),

512
is_organic() (in module thermo.functional_groups),
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495
is_orthocarbonate_ester() (in module

thermo.functional_groups), 504
is_orthoester() (in module

thermo.functional_groups), 503
is_oxime() (in module thermo.functional_groups), 512
is_peroxide() (in module thermo.functional_groups),

503
is_phenol() (in module thermo.functional_groups), 500
is_phosphate() (in module thermo.functional_groups),

522
is_phosphine() (in module thermo.functional_groups),

521
is_phosphodiester() (in module

thermo.functional_groups), 522
is_phosphonic_acid() (in module

thermo.functional_groups), 521
is_polyol() (in module thermo.functional_groups), 499
is_primary_aldimine() (in module

thermo.functional_groups), 508
is_primary_amine() (in module

thermo.functional_groups), 505
is_primary_ketimine() (in module

thermo.functional_groups), 507
is_pyridyl() (in module thermo.functional_groups),

512
is_quat() (in module thermo.functional_groups), 506
is_secondary_aldimine() (in module

thermo.functional_groups), 508
is_secondary_amine() (in module

thermo.functional_groups), 506
is_secondary_ketimine() (in module

thermo.functional_groups), 507
is_siloxane() (in module thermo.functional_groups),

519
is_silyl_ether() (in module

thermo.functional_groups), 519
is_solid (thermo.phases.Phase attribute), 697
is_sulfide() (in module thermo.functional_groups),

513
is_sulfinic_acid() (in module

thermo.functional_groups), 515
is_sulfonate_ester() (in module

thermo.functional_groups), 515
is_sulfone() (in module thermo.functional_groups),

514
is_sulfonic_acid() (in module

thermo.functional_groups), 515
is_sulfoxide() (in module thermo.functional_groups),

514
is_tertiary_amine() (in module

thermo.functional_groups), 506
is_thial() (in module thermo.functional_groups), 517
is_thiocyanate() (in module

thermo.functional_groups), 516
is_thioketone() (in module

thermo.functional_groups), 516
is_thiolester() (in module

thermo.functional_groups), 518
is_thionoester() (in module

thermo.functional_groups), 518
isentropic_exponent (thermo.chemical.Chemical

property), 103
isentropic_exponent (thermo.mixture.Mixture prop-

erty), 590
isentropic_exponent()

(thermo.equilibrium.EquilibriumState method),
476

isentropic_exponent() (thermo.phases.Phase
method), 697

isentropic_exponent_PT()
(thermo.equilibrium.EquilibriumState method),
477

isentropic_exponent_PT() (thermo.phases.Phase
method), 698

isentropic_exponent_PV()
(thermo.equilibrium.EquilibriumState method),
477

isentropic_exponent_PV() (thermo.phases.Phase
method), 698

isentropic_exponent_TV()
(thermo.equilibrium.EquilibriumState method),
477

isentropic_exponent_TV() (thermo.phases.Phase
method), 698

isentropic_exponents (thermo.mixture.Mixture prop-
erty), 590

isobaric_expansion (thermo.chemical.Chemical
property), 103

isobaric_expansion (thermo.mixture.Mixture prop-
erty), 591

isobaric_expansion() (thermo.bulk.Bulk method), 71
isobaric_expansion()

(thermo.equilibrium.EquilibriumState method),
477

isobaric_expansion() (thermo.phases.Phase
method), 698

isobaric_expansion_g (thermo.chemical.Chemical
property), 103

isobaric_expansion_g (thermo.mixture.Mixture prop-
erty), 591

isobaric_expansion_gs (thermo.mixture.Mixture
property), 591

isobaric_expansion_l (thermo.chemical.Chemical
property), 103

isobaric_expansion_l (thermo.mixture.Mixture prop-
erty), 591

isobaric_expansion_ls (thermo.mixture.Mixture

1030 Index



thermo Documentation, Release 0.2.20

property), 592
isothermal_bulk_modulus()

(thermo.equilibrium.EquilibriumState method),
477

isothermal_bulk_modulus() (thermo.phases.Phase
method), 698

isothermal_compressibility()
(thermo.phases.Phase method), 698

IUPAC_names (thermo.mixture.Mixture property), 576

J
J_BIGGS_JOBACK_SMARTS (in module

thermo.group_contribution.joback), 931
J_BIGGS_JOBACK_SMARTS_id_dict (in module

thermo.group_contribution.joback), 932
Jakob() (thermo.chemical.Chemical method), 92
Jakob() (thermo.mixture.Mixture method), 578
Joback (class in thermo.group_contribution.joback), 922
Joule_Thomson() (thermo.bulk.Bulk method), 66
Joule_Thomson() (thermo.equilibrium.EquilibriumState

method), 428
Joule_Thomson() (thermo.phases.Phase method), 636
JT (thermo.chemical.Chemical property), 91
JT (thermo.mixture.Mixture property), 577
JT_METHODS (in module thermo.bulk), 76
JTg (thermo.chemical.Chemical property), 92
JTg (thermo.mixture.Mixture property), 577
JTgs (thermo.mixture.Mixture property), 577
JTl (thermo.chemical.Chemical property), 92
JTl (thermo.mixture.Mixture property), 577
JTls (thermo.mixture.Mixture property), 578

K
k (thermo.chemical.Chemical property), 104
k (thermo.mixture.Mixture property), 592
k() (thermo.bulk.Bulk method), 71
k() (thermo.equilibrium.EquilibriumState method), 478
k() (thermo.phases.DryAirLemmon method), 728
k() (thermo.phases.IAPWS95 method), 727
K_LL_METHODS (in module thermo.bulk), 75
K_VL_METHODS (in module thermo.bulk), 75
kappa() (thermo.bulk.Bulk method), 71
kappa() (thermo.equilibrium.EquilibriumState method),

478
kappa() (thermo.phases.Phase method), 699
kappa_g (thermo.eos.GCEOS property), 190
kappa_l (thermo.eos.GCEOS property), 190
KAPPA_METHODS (in module thermo.bulk), 76
kg (thermo.chemical.Chemical property), 104
kg (thermo.mixture.Mixture property), 592
kgs (thermo.mixture.Mixture property), 592
kl (thermo.chemical.Chemical property), 104
kl (thermo.mixture.Mixture property), 593
kls (thermo.mixture.Mixture property), 593

ks (thermo.mixture.Mixture attribute), 593
Ks() (thermo.equilibrium.EquilibriumState method), 428
kwargs (thermo.eos.GCEOS attribute), 190
kwargs_keys (thermo.eos.GCEOS attribute), 190
kwargs_linear (thermo.eos_mix.GCEOSMIX at-

tribute), 287
kwargs_square (thermo.eos_mix.GCEOSMIX at-

tribute), 287
Kweq_1981() (in module thermo.electrochem), 141
Kweq_Arcis_Tremaine_Bandura_Lvov() (in module

thermo.electrochem), 140
Kweq_IAPWS() (in module thermo.electrochem), 140
Kweq_IAPWS_gas() (in module thermo.electrochem),

141

L
LAKSHMI_PRASAD (in module

thermo.thermal_conductivity), 792
Laliberte_density() (in module

thermo.electrochem), 126
Laliberte_density_i() (in module

thermo.electrochem), 127
Laliberte_density_mix() (in module

thermo.electrochem), 127
Laliberte_density_w() (in module

thermo.electrochem), 128
Laliberte_heat_capacity() (in module

thermo.electrochem), 129
Laliberte_heat_capacity_i() (in module

thermo.electrochem), 130
Laliberte_heat_capacity_mix() (in module

thermo.electrochem), 130
Laliberte_heat_capacity_w() (in module

thermo.electrochem), 131
Laliberte_viscosity() (in module

thermo.electrochem), 132
Laliberte_viscosity_i() (in module

thermo.electrochem), 133
Laliberte_viscosity_mix() (in module

thermo.electrochem), 132
Laliberte_viscosity_w() (in module

thermo.electrochem), 134
lambdas() (thermo.wilson.Wilson method), 909
legal_status (thermo.chemical.Chemical property),

105
legal_status() (in module thermo.law), 550
legal_statuses (thermo.equilibrium.EquilibriumState

property), 478
legal_statuses (thermo.mixture.Mixture property),

593
legal_statuses (thermo.phases.Phase property), 699
lemmon2000_constants (in module

thermo.chemical_package), 125
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lemmon2000_correlations (in module
thermo.chemical_package), 125

LF (thermo.equilibrium.EquilibriumState property), 428
LFLs (thermo.equilibrium.EquilibriumState property),

428
LFLs (thermo.phases.Phase property), 636
lightest_liquid (thermo.equilibrium.EquilibriumState

property), 478
liquid_bulk (thermo.equilibrium.EquilibriumState at-

tribute), 478
LLEMG (in module thermo.unifac), 836
LLEUFIP (in module thermo.unifac), 836
LLEUFSG (in module thermo.unifac), 836
lnfugacities() (thermo.phases.Phase method), 699
lngammas_c() (thermo.unifac.UNIFAC method), 824
lngammas_r() (thermo.unifac.UNIFAC method), 824
lnGammas_subgroups() (thermo.unifac.UNIFAC

method), 823
lnGammas_subgroups_pure() (thermo.unifac.UNIFAC

method), 823
lnphi() (thermo.phases.Phase method), 699
lnphi_g (thermo.eos.GCEOS property), 190
lnphi_l (thermo.eos.GCEOS property), 190
lnphis() (thermo.phases.CEOSGas method), 717
lnphis() (thermo.phases.HelmholtzEOS method), 726
lnphis() (thermo.phases.IdealGas method), 713
lnphis() (thermo.phases.Phase method), 699
lnphis_at_zs() (thermo.phases.Phase method), 699
lnphis_G_min() (thermo.phases.Phase method), 699
load_economic_data() (in module thermo.law), 552
load_group_assignments_DDBST() (in module

thermo.unifac), 830
load_json() (thermo.interaction_parameters.InteractionParameterDB

method), 548
load_law_data() (in module thermo.law), 552
LOG_P_REF_IG (thermo.phases.Phase attribute), 637
log_zs() (thermo.equilibrium.EquilibriumState

method), 478
log_zs() (thermo.phases.Phase method), 700
logPs (thermo.equilibrium.EquilibriumState property),

478
logPs (thermo.phases.Phase property), 699
low_omega_constants (thermo.eos.PR78 attribute),

209
LUFIP (in module thermo.unifac), 836
LUFMG (in module thermo.unifac), 836
LUFSG (in module thermo.unifac), 836

M
m (thermo.stream.StreamArgs property), 787
m_calc (thermo.stream.StreamArgs property), 787
Magomedov_mix() (in module thermo.electrochem), 135
mass_fractions (thermo.chemical.Chemical property),

105

mass_fractions (thermo.mixture.Mixture property),
593

mass_fractionss (thermo.mixture.Mixture property),
594

Mathias_1983_a_alpha (class in
thermo.eos_alpha_functions), 384

Mathias_1983_alpha_pure() (in module
thermo.eos_alpha_functions), 396

Mathias_Copeman_a_alpha (class in
thermo.eos_alpha_functions), 384

Mathias_Copeman_poly_a_alpha (class in
thermo.eos_alpha_functions), 385

Mathias_Copeman_untruncated_a_alpha (class in
thermo.eos_alpha_functions), 385

Mathias_Copeman_untruncated_alpha_pure() (in
module thermo.eos_alpha_functions), 396

max_liquid_phases (thermo.equilibrium.EquilibriumState
attribute), 478

mechanical_critical_point()
(thermo.eos_mix.GCEOSMIX method), 287

medium (thermo.stream.EnergyStream attribute), 751
Melhem_a_alpha (class in thermo.eos_alpha_functions),

386
Melhem_alpha_pure() (in module

thermo.eos_alpha_functions), 396
method (thermo.utils.MixtureProperty property), 865
method (thermo.utils.TDependentProperty property),

851
method (thermo.utils.TPDependentProperty property),

859
method_P (thermo.utils.TPDependentProperty prop-

erty), 859
mix_kwargs_to_pure (thermo.eos_mix.GCEOSMIX at-

tribute), 288
Mixture (class in thermo.mixture), 561
mixture (thermo.stream.StreamArgs property), 787
mixture_property() (thermo.utils.MixtureProperty

method), 865
MixtureProperty (class in thermo.utils), 862
model_hash() (thermo.activity.GibbsExcess method),

58
model_hash() (thermo.eos.GCEOS method), 190
model_hash() (thermo.phases.Phase method), 700
model_id (thermo.unifac.UNIFAC property), 824
module

thermo.activity, 51
thermo.bulk, 62
thermo.chemical, 76
thermo.chemical_package, 111
thermo.datasheet, 125
thermo.electrochem, 126
thermo.eos, 147
thermo.eos_alpha_functions, 370
thermo.eos_mix, 251
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thermo.eos_mix_methods, 352
thermo.eos_volume, 357
thermo.equilibrium, 397
thermo.flash, 484
thermo.functional_groups, 495
thermo.group_contribution.fedors, 933
thermo.group_contribution.joback, 922
thermo.group_contribution.wilson_jasperson,

934
thermo.heat_capacity, 528
thermo.interaction_parameters, 545
thermo.interface, 540
thermo.law, 550
thermo.mixture, 561
thermo.nrtl, 552
thermo.permittivity, 602
thermo.phase_change, 728
thermo.phase_identification, 734
thermo.phases, 604
thermo.property_package, 734
thermo.regular_solution, 746
thermo.stream, 751
thermo.thermal_conductivity, 788
thermo.unifac, 801
thermo.uniquac, 912
thermo.utils, 839
thermo.vapor_pressure, 869
thermo.viscosity, 874
thermo.volume, 886
thermo.wilson, 901

molar_water_content()
(thermo.equilibrium.EquilibriumState method),
478

molar_water_content() (thermo.phases.Phase
method), 700

mole_balance() (in module thermo.stream), 788
molecular_diameters

(thermo.equilibrium.EquilibriumState prop-
erty), 479

molecular_diameters (thermo.phases.Phase prop-
erty), 700

more_stable_phase (thermo.eos.GCEOS property),
190

mpmath_volume_ratios (thermo.eos.GCEOS prop-
erty), 191

mpmath_volumes (thermo.eos.GCEOS property), 191
mpmath_volumes_float (thermo.eos.GCEOS prop-

erty), 191
ms (thermo.stream.StreamArgs property), 787
ms_calc (thermo.stream.EquilibriumStream property),

772
MSRKMIXTranslated (class in thermo.eos_mix), 335
MSRKTranslated (class in thermo.eos), 235
mu (thermo.chemical.Chemical property), 105

mu (thermo.mixture.Mixture property), 594
mu() (thermo.bulk.Bulk method), 71
mu() (thermo.equilibrium.EquilibriumState method), 479
mu() (thermo.phases.DryAirLemmon method), 728
mu() (thermo.phases.IAPWS95 method), 727
mu() (thermo.phases.Phase method), 700
MU_LL_METHODS (in module thermo.bulk), 75
MU_VL_METHODS (in module thermo.bulk), 75
mug (thermo.chemical.Chemical property), 105
mug (thermo.mixture.Mixture property), 594
mugs (thermo.mixture.Mixture property), 594
mul (thermo.chemical.Chemical property), 106
mul (thermo.mixture.Mixture property), 594
mul() (thermo.group_contribution.joback.Joback

method), 930
mul_coeffs() (thermo.group_contribution.joback.Joback

static method), 931
muls (thermo.mixture.Mixture property), 595
multicomponent (thermo.eos.GCEOS attribute), 191
multicomponent (thermo.eos_mix.GCEOSMIX at-

tribute), 288
MW (thermo.stream.StreamArgs property), 786
MW() (thermo.bulk.Bulk method), 66
MW() (thermo.equilibrium.EquilibriumState method), 429
MW() (thermo.phases.Phase method), 637
MW_inv() (thermo.phases.Phase method), 637
MWs (thermo.equilibrium.EquilibriumState property), 429
MWs (thermo.phases.Phase property), 637

N
N (thermo.eos.GCEOS attribute), 161
n (thermo.stream.StreamArgs property), 787
n_calc (thermo.stream.EquilibriumStream property),

772
n_calc (thermo.stream.StreamArgs property), 787
name (thermo.heat_capacity.HeatCapacityGas attribute),

533
name (thermo.heat_capacity.HeatCapacityGasMixture

attribute), 538
name (thermo.heat_capacity.HeatCapacityLiquid at-

tribute), 530
name (thermo.heat_capacity.HeatCapacityLiquidMixture

attribute), 537
name (thermo.heat_capacity.HeatCapacitySolid at-

tribute), 535
name (thermo.heat_capacity.HeatCapacitySolidMixture

attribute), 540
name (thermo.interface.SurfaceTension attribute), 542
name (thermo.interface.SurfaceTensionMixture attribute),

545
name (thermo.permittivity.PermittivityLiquid attribute),

604
name (thermo.phase_change.EnthalpySublimation

attribute), 733
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name (thermo.phase_change.EnthalpyVaporization
attribute), 731

name (thermo.thermal_conductivity.ThermalConductivityGas
attribute), 795

name (thermo.thermal_conductivity.ThermalConductivityGasMixture
attribute), 800

name (thermo.thermal_conductivity.ThermalConductivityLiquid
attribute), 791

name (thermo.thermal_conductivity.ThermalConductivityLiquidMixture
attribute), 798

name (thermo.utils.MixtureProperty attribute), 865
name (thermo.utils.TDependentProperty attribute), 851
name (thermo.utils.TPDependentProperty attribute), 859
name (thermo.vapor_pressure.SublimationPressure at-

tribute), 873
name (thermo.vapor_pressure.VaporPressure attribute),

871
name (thermo.viscosity.ViscosityGas attribute), 880
name (thermo.viscosity.ViscosityGasMixture attribute),

885
name (thermo.viscosity.ViscosityLiquid attribute), 877
name (thermo.viscosity.ViscosityLiquidMixture attribute),

883
name (thermo.volume.VolumeGas attribute), 892
name (thermo.volume.VolumeGasMixture attribute), 898
name (thermo.volume.VolumeLiquid attribute), 889
name (thermo.volume.VolumeLiquidMixture attribute),

897
name (thermo.volume.VolumeSolid attribute), 895
name (thermo.volume.VolumeSolidMixture attribute), 900
names (thermo.equilibrium.EquilibriumState property),

479
names (thermo.phases.Phase property), 700
NICOLA (in module thermo.thermal_conductivity), 792
NICOLA_ORIGINAL (in module

thermo.thermal_conductivity), 792
NISTKTUFIP (in module thermo.unifac), 835
NISTKTUFMG (in module thermo.unifac), 835
NISTKTUFSG (in module thermo.unifac), 835
NISTUFIP (in module thermo.unifac), 834
NISTUFMG (in module thermo.unifac), 833
NISTUFSG (in module thermo.unifac), 833
non_pressure_spec_specified

(thermo.stream.EquilibriumStream property),
773

non_pressure_spec_specified
(thermo.stream.Stream property), 784

non_pressure_spec_specified
(thermo.stream.StreamArgs property), 787

nonstate_constants (thermo.eos.GCEOS attribute),
192

nonstate_constants (thermo.eos_mix.GCEOSMIX at-
tribute), 288

NRTL (class in thermo.nrtl), 552

NRTL_gammas() (in module thermo.nrtl), 559
NRTL_gammas_binaries() (in module thermo.nrtl), 560
ns (thermo.stream.StreamArgs property), 787
ns_calc (thermo.stream.EquilibriumStream property),

773
ns_calc (thermo.stream.StreamArgs property), 787
nu (thermo.chemical.Chemical property), 106
nu (thermo.mixture.Mixture property), 595
nu() (thermo.equilibrium.EquilibriumState method), 479
nug (thermo.chemical.Chemical property), 106
nug (thermo.mixture.Mixture property), 595
nugs (thermo.mixture.Mixture property), 595
nul (thermo.chemical.Chemical property), 106
nul (thermo.mixture.Mixture property), 596
nuls (thermo.mixture.Mixture property), 596

O
obj_references (thermo.phases.Phase attribute), 700
ODPs (thermo.equilibrium.EquilibriumState property),

429
ODPs (thermo.phases.Phase property), 637
omega (thermo.eos.RK attribute), 243
omega (thermo.eos.VDW attribute), 240
omegas (thermo.equilibrium.EquilibriumState property),

479
omegas (thermo.phases.Phase property), 700

P
P (thermo.stream.StreamArgs property), 786
P_calc (thermo.stream.EquilibriumStream property),

772
P_calc (thermo.stream.StreamArgs property), 786
P_default (thermo.mixture.Mixture attribute), 578
P_discriminant_zero_g() (thermo.eos.GCEOS

method), 163
P_discriminant_zero_l() (thermo.eos.GCEOS

method), 163
P_discriminant_zeros() (thermo.eos.GCEOS

method), 164
P_discriminant_zeros_analytical()

(thermo.eos.GCEOS static method), 164
P_discriminant_zeros_analytical()

(thermo.eos.VDW static method), 238
P_max_at_V() (thermo.eos.GCEOS method), 165
P_max_at_V() (thermo.eos.PR method), 204
P_max_at_V() (thermo.eos.SRK method), 225
P_max_at_V() (thermo.phases.Phase method), 637
P_MAX_FIXED (thermo.phases.Phase attribute), 637
P_MIN_FIXED (thermo.phases.Phase attribute), 637
P_PIP_transition() (thermo.eos.GCEOS method),

162
P_REF_IG (thermo.equilibrium.EquilibriumState at-

tribute), 429
P_REF_IG (thermo.phases.Phase attribute), 637
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P_REF_IG_INV (thermo.equilibrium.EquilibriumState at-
tribute), 429

P_REF_IG_INV (thermo.phases.Phase attribute), 637
P_transitions() (thermo.phases.Phase method), 638
P_zero_g_cheb_limits (thermo.eos.GCEOS at-

tribute), 165
P_zero_l_cheb_limits (thermo.eos.GCEOS at-

tribute), 165
Parachor (thermo.chemical.Chemical property), 92
Parachor (thermo.mixture.Mixture property), 578
Parachors (thermo.equilibrium.EquilibriumState prop-

erty), 429
Parachors (thermo.mixture.Mixture property), 578
Parachors (thermo.phases.Phase property), 638
partial_property() (thermo.utils.MixtureProperty

method), 865
Pbubble (thermo.mixture.Mixture property), 579
Pc() (thermo.group_contribution.joback.Joback static

method), 928
Pcs (thermo.equilibrium.EquilibriumState property), 429
Pcs (thermo.phases.Phase property), 638
Pdew (thermo.mixture.Mixture property), 579
Peclet_heat() (thermo.chemical.Chemical method), 93
Peclet_heat() (thermo.mixture.Mixture method), 579
permittivites (thermo.mixture.Mixture property), 596
permittivity (thermo.chemical.Chemical property),

107
permittivity_methods (in module

thermo.permittivity), 604
PermittivityLiquid (class in thermo.permittivity),

603
PermittivityLiquids

(thermo.equilibrium.EquilibriumState prop-
erty), 429

Phase (class in thermo.phases), 605
phase (thermo.equilibrium.EquilibriumState property),

479
phase (thermo.mixture.Mixture attribute), 596
phase_STPs (thermo.equilibrium.EquilibriumState prop-

erty), 479
phase_STPs (thermo.phases.Phase property), 700
phi() (thermo.phases.Phase method), 701
phi_g (thermo.eos.GCEOS property), 192
phi_l (thermo.eos.GCEOS property), 192
phi_sat() (thermo.eos.GCEOS method), 192
phis() (thermo.phases.IdealGas method), 713
phis() (thermo.phases.Phase method), 701
phis() (thermo.uniquac.UNIQUAC method), 918
phis_sat() (thermo.phases.GibbsExcessLiquid

method), 723
PIP() (thermo.equilibrium.EquilibriumState method),

429
PIP() (thermo.phases.Phase method), 637
plot_isobar() (thermo.utils.MixtureProperty method),

866
plot_isobar() (thermo.utils.TPDependentProperty

method), 860
plot_isotherm() (thermo.utils.MixtureProperty

method), 866
plot_isotherm() (thermo.utils.TPDependentProperty

method), 860
plot_property() (thermo.utils.MixtureProperty

method), 867
plot_T_dependent_property()

(thermo.utils.TDependentProperty method),
851

plot_TP() (thermo.flash.Flash method), 494
plot_TP_dependent_property()

(thermo.utils.TPDependentProperty method),
859

Pmc() (thermo.bulk.Bulk method), 66
Pmc() (thermo.equilibrium.EquilibriumState method),

429
Pmc() (thermo.phases.Phase method), 638
pointer_reference_dicts (thermo.phases.Phase at-

tribute), 701
pointer_references (thermo.phases.Phase attribute),

701
Poly_a_alpha (class in thermo.eos_alpha_functions),

386
polynomial_from_method()

(thermo.utils.TDependentProperty method),
851

Poynting (thermo.chemical.Chemical property), 93
Poyntings() (thermo.phases.GibbsExcessLiquid

method), 722
PR (class in thermo.eos), 202
Pr (thermo.chemical.Chemical property), 93
Pr (thermo.mixture.Mixture property), 579
PR78 (class in thermo.eos), 208
PR78MIX (class in thermo.eos_mix), 303
PR_a_alpha_and_derivatives_vectorized() (in

module thermo.eos_alpha_functions), 373
PR_a_alphas_vectorized() (in module

thermo.eos_alpha_functions), 370
Prg (thermo.chemical.Chemical property), 94
Prg (thermo.mixture.Mixture property), 579
Prgs (thermo.mixture.Mixture property), 579
Prl (thermo.chemical.Chemical property), 94
Prl (thermo.mixture.Mixture property), 580
Prls (thermo.mixture.Mixture property), 580
PRMIX (class in thermo.eos_mix), 295
PRMIXTranslated (class in thermo.eos_mix), 312
PRMIXTranslatedConsistent (class in

thermo.eos_mix), 317
PRMIXTranslatedPPJP (class in thermo.eos_mix), 319
prop_cached (thermo.utils.MixtureProperty attribute),

867
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properties (thermo.chemical_package.ChemicalConstantsPackage
attribute), 120

properties() (thermo.mixture.Mixture method), 596
property_derivative_P()

(thermo.utils.MixtureProperty method), 867
property_derivative_T()

(thermo.utils.MixtureProperty method), 868
property_max (thermo.heat_capacity.HeatCapacityGas

attribute), 533
property_max (thermo.heat_capacity.HeatCapacityGasMixture

attribute), 538
property_max (thermo.heat_capacity.HeatCapacityLiquid

attribute), 530
property_max (thermo.heat_capacity.HeatCapacityLiquidMixture

attribute), 537
property_max (thermo.heat_capacity.HeatCapacitySolid

attribute), 535
property_max (thermo.heat_capacity.HeatCapacitySolidMixture

attribute), 540
property_max (thermo.interface.SurfaceTension at-

tribute), 542
property_max (thermo.interface.SurfaceTensionMixture

attribute), 545
property_max (thermo.permittivity.PermittivityLiquid

attribute), 604
property_max (thermo.phase_change.EnthalpySublimation

attribute), 734
property_max (thermo.phase_change.EnthalpyVaporization

attribute), 731
property_max (thermo.thermal_conductivity.ThermalConductivityGas

attribute), 795
property_max (thermo.thermal_conductivity.ThermalConductivityGasMixture

attribute), 800
property_max (thermo.thermal_conductivity.ThermalConductivityLiquid

attribute), 791
property_max (thermo.thermal_conductivity.ThermalConductivityLiquidMixture

attribute), 798
property_max (thermo.utils.MixtureProperty attribute),

868
property_max (thermo.utils.TDependentProperty

attribute), 852
property_max (thermo.utils.TPDependentProperty at-

tribute), 860
property_max (thermo.vapor_pressure.SublimationPressure

attribute), 873
property_max (thermo.vapor_pressure.VaporPressure

attribute), 871
property_max (thermo.viscosity.ViscosityGas attribute),

880
property_max (thermo.viscosity.ViscosityGasMixture

attribute), 885
property_max (thermo.viscosity.ViscosityLiquid at-

tribute), 877
property_max (thermo.viscosity.ViscosityLiquidMixture

attribute), 883
property_max (thermo.volume.VolumeGas attribute),

893
property_max (thermo.volume.VolumeGasMixture at-

tribute), 899
property_max (thermo.volume.VolumeLiquid attribute),

889
property_max (thermo.volume.VolumeLiquidMixture

attribute), 897
property_max (thermo.volume.VolumeSolid attribute),

895
property_max (thermo.volume.VolumeSolidMixture at-

tribute), 900
property_min (thermo.heat_capacity.HeatCapacityGas

attribute), 533
property_min (thermo.heat_capacity.HeatCapacityGasMixture

attribute), 538
property_min (thermo.heat_capacity.HeatCapacityLiquid

attribute), 530
property_min (thermo.heat_capacity.HeatCapacityLiquidMixture

attribute), 537
property_min (thermo.heat_capacity.HeatCapacitySolid

attribute), 535
property_min (thermo.heat_capacity.HeatCapacitySolidMixture

attribute), 540
property_min (thermo.interface.SurfaceTension at-

tribute), 543
property_min (thermo.interface.SurfaceTensionMixture

attribute), 545
property_min (thermo.permittivity.PermittivityLiquid

attribute), 604
property_min (thermo.phase_change.EnthalpySublimation

attribute), 734
property_min (thermo.phase_change.EnthalpyVaporization

attribute), 731
property_min (thermo.thermal_conductivity.ThermalConductivityGas

attribute), 795
property_min (thermo.thermal_conductivity.ThermalConductivityGasMixture

attribute), 800
property_min (thermo.thermal_conductivity.ThermalConductivityLiquid

attribute), 791
property_min (thermo.thermal_conductivity.ThermalConductivityLiquidMixture

attribute), 798
property_min (thermo.utils.MixtureProperty attribute),

868
property_min (thermo.utils.TDependentProperty

attribute), 852
property_min (thermo.utils.TPDependentProperty at-

tribute), 860
property_min (thermo.vapor_pressure.SublimationPressure

attribute), 873
property_min (thermo.vapor_pressure.VaporPressure

attribute), 871
property_min (thermo.viscosity.ViscosityGas attribute),
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881
property_min (thermo.viscosity.ViscosityGasMixture

attribute), 885
property_min (thermo.viscosity.ViscosityLiquid at-

tribute), 877
property_min (thermo.viscosity.ViscosityLiquidMixture

attribute), 883
property_min (thermo.volume.VolumeGas attribute),

893
property_min (thermo.volume.VolumeGasMixture at-

tribute), 899
property_min (thermo.volume.VolumeLiquid attribute),

889
property_min (thermo.volume.VolumeLiquidMixture

attribute), 897
property_min (thermo.volume.VolumeSolid attribute),

895
property_min (thermo.volume.VolumeSolidMixture at-

tribute), 900
property_package (thermo.stream.EquilibriumStream

property), 773
property_package_constants

(thermo.mixture.Mixture attribute), 596
PropertyCorrelationsPackage (class in

thermo.chemical_package), 122
PRSV (class in thermo.eos), 209
PRSV2 (class in thermo.eos), 212
PRSV2_a_alpha_and_derivatives_vectorized()

(in module thermo.eos_alpha_functions), 376
PRSV2_a_alphas_vectorized() (in module

thermo.eos_alpha_functions), 372
PRSV2MIX (class in thermo.eos_mix), 307
PRSV_a_alpha_and_derivatives_vectorized() (in

module thermo.eos_alpha_functions), 375
PRSV_a_alphas_vectorized() (in module

thermo.eos_alpha_functions), 371
PRSVMIX (class in thermo.eos_mix), 305
PRTranslated (class in thermo.eos), 219
PRTranslatedConsistent (class in thermo.eos), 221
PRTranslatedPoly (class in thermo.eos), 218
PRTranslatedPPJP (class in thermo.eos), 223
PRTranslatedTwu (class in thermo.eos), 220
Psat (thermo.chemical.Chemical property), 94
Psat() (thermo.eos.GCEOS method), 165
Psat() (thermo.eos_mix.GCEOSMIX method), 266
Psat_298s (thermo.equilibrium.EquilibriumState prop-

erty), 430
Psat_298s (thermo.phases.Phase property), 638
Psat_cheb_range (thermo.eos.GCEOS attribute), 166
Psat_errors() (thermo.eos.GCEOS method), 166
Psats (thermo.mixture.Mixture property), 580
Psats_poly_fit (thermo.phases.Phase attribute), 638
pseudo_a (thermo.eos_mix.GCEOSMIX property), 288
pseudo_omega (thermo.eos_mix.GCEOSMIX property),

288
pseudo_Pc (thermo.eos_mix.GCEOSMIX property), 288
pseudo_Pc() (thermo.equilibrium.EquilibriumState

method), 479
pseudo_Pc() (thermo.phases.Phase method), 701
pseudo_Tc (thermo.eos_mix.GCEOSMIX property), 288
pseudo_Tc() (thermo.equilibrium.EquilibriumState

method), 480
pseudo_Tc() (thermo.phases.Phase method), 701
pseudo_Vc() (thermo.equilibrium.EquilibriumState

method), 480
pseudo_Vc() (thermo.phases.Phase method), 701
pseudo_Zc() (thermo.equilibrium.EquilibriumState

method), 480
pseudo_Zc() (thermo.phases.Phase method), 701
psis() (thermo.unifac.UNIFAC method), 824
PSRK (class in thermo.eos_mix), 337
PSRK_groups (thermo.chemical.Chemical property), 92
PSRK_groups (thermo.equilibrium.EquilibriumState

property), 429
PSRK_groups (thermo.mixture.Mixture property), 578
PSRK_groups (thermo.phases.Phase property), 637
PSRKIP (in module thermo.unifac), 837
PSRKMG (in module thermo.unifac), 837
PSRKMixingRules (class in thermo.eos_mix), 350
PSRKSG (in module thermo.unifac), 837
PT_surface_special() (thermo.eos.GCEOS method),

161
Pts (thermo.equilibrium.EquilibriumState property), 430
Pts (thermo.phases.Phase property), 638
PubChems (thermo.equilibrium.EquilibriumState prop-

erty), 430
PubChems (thermo.mixture.Mixture property), 580
PubChems (thermo.phases.Phase property), 638
pure_objs() (thermo.utils.MixtureProperty method),

868
pure_reference_types (thermo.phases.Phase at-

tribute), 702
pure_reference_types (thermo.utils.MixtureProperty

attribute), 868
pure_references (thermo.phases.Phase attribute), 702
pure_references (thermo.utils.MixtureProperty

attribute), 868
pures() (thermo.eos_mix.GCEOSMIX method), 289

Q
Q (thermo.stream.EnergyStream attribute), 751
Q (thermo.stream.EquilibriumStream property), 772
Q (thermo.stream.StreamArgs property), 786
Q_calc (thermo.stream.EquilibriumStream property),

772
Qgs (thermo.stream.EquilibriumStream property), 772
Qgs (thermo.stream.StreamArgs property), 786
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Qgs_calc (thermo.stream.EquilibriumStream property),
772

Qls (thermo.stream.EquilibriumStream property), 772
Qls (thermo.stream.StreamArgs property), 786
Qls_calc (thermo.stream.EquilibriumStream property),

772
quality (thermo.equilibrium.EquilibriumState prop-

erty), 480

R
R (thermo.phases.Phase attribute), 638
R2 (thermo.phases.Phase attribute), 638
R_inv (thermo.phases.Phase attribute), 639
R_specific (thermo.chemical.Chemical property), 94
R_specific (thermo.mixture.Mixture property), 580
RAISE_PROPERTY_CALCULATION_ERROR

(thermo.utils.MixtureProperty attribute),
863

ranked_methods (thermo.heat_capacity.HeatCapacityGas
attribute), 533

ranked_methods (thermo.heat_capacity.HeatCapacityGasMixture
attribute), 538

ranked_methods (thermo.heat_capacity.HeatCapacityLiquid
attribute), 530

ranked_methods (thermo.heat_capacity.HeatCapacityLiquidMixture
attribute), 537

ranked_methods (thermo.heat_capacity.HeatCapacitySolid
attribute), 535

ranked_methods (thermo.heat_capacity.HeatCapacitySolidMixture
attribute), 540

ranked_methods (thermo.interface.SurfaceTension at-
tribute), 543

ranked_methods (thermo.interface.SurfaceTensionMixture
attribute), 545

ranked_methods (thermo.permittivity.PermittivityLiquid
attribute), 604

ranked_methods (thermo.phase_change.EnthalpySublimation
attribute), 734

ranked_methods (thermo.phase_change.EnthalpyVaporization
attribute), 731

ranked_methods (thermo.thermal_conductivity.ThermalConductivityGas
attribute), 795

ranked_methods (thermo.thermal_conductivity.ThermalConductivityGasMixture
attribute), 800

ranked_methods (thermo.thermal_conductivity.ThermalConductivityLiquid
attribute), 791

ranked_methods (thermo.thermal_conductivity.ThermalConductivityLiquidMixture
attribute), 798

ranked_methods (thermo.utils.MixtureProperty at-
tribute), 868

ranked_methods (thermo.utils.TDependentProperty at-
tribute), 852

ranked_methods (thermo.utils.TPDependentProperty
attribute), 861

ranked_methods (thermo.vapor_pressure.SublimationPressure
attribute), 873

ranked_methods (thermo.vapor_pressure.VaporPressure
attribute), 871

ranked_methods (thermo.viscosity.ViscosityGas at-
tribute), 881

ranked_methods (thermo.viscosity.ViscosityGasMixture
attribute), 885

ranked_methods (thermo.viscosity.ViscosityLiquid at-
tribute), 877

ranked_methods (thermo.viscosity.ViscosityLiquidMixture
attribute), 883

ranked_methods (thermo.volume.VolumeGas attribute),
893

ranked_methods (thermo.volume.VolumeGasMixture
attribute), 899

ranked_methods (thermo.volume.VolumeLiquid at-
tribute), 889

ranked_methods (thermo.volume.VolumeLiquidMixture
attribute), 897

ranked_methods (thermo.volume.VolumeSolid at-
tribute), 895

ranked_methods (thermo.volume.VolumeSolidMixture
attribute), 900

ranked_methods_P (thermo.thermal_conductivity.ThermalConductivityGas
attribute), 795

ranked_methods_P (thermo.thermal_conductivity.ThermalConductivityLiquid
attribute), 791

ranked_methods_P (thermo.viscosity.ViscosityGas at-
tribute), 881

ranked_methods_P (thermo.viscosity.ViscosityLiquid
attribute), 877

ranked_methods_P (thermo.volume.VolumeGas at-
tribute), 893

ranked_methods_P (thermo.volume.VolumeLiquid at-
tribute), 889

rdkitmol (thermo.chemical.Chemical property), 107
rdkitmol_Hs (thermo.chemical.Chemical property), 107
reacted (thermo.equilibrium.EquilibriumState at-

tribute), 480
reconcile_flows() (thermo.stream.StreamArgs

method), 787
reference_pointer_dicts (thermo.phases.Phase at-

tribute), 702
regress_binary_parameters()

(thermo.uniquac.UNIQUAC class method),
918

regular_solution_gammas_binaries() (in module
thermo.regular_solution), 750

RegularSolution (class in thermo.regular_solution),
746

resolve_full_alphas() (thermo.eos.GCEOS
method), 192

Reynolds() (thermo.chemical.Chemical method), 95
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Reynolds() (thermo.mixture.Mixture method), 581
rho (thermo.chemical.Chemical property), 107
rho (thermo.mixture.Mixture property), 596
rho() (thermo.equilibrium.EquilibriumState method),

480
rho() (thermo.phases.Phase method), 702
rho_g (thermo.eos.GCEOS property), 192
rho_l (thermo.eos.GCEOS property), 192
rho_mass() (thermo.equilibrium.EquilibriumState

method), 480
rho_mass() (thermo.phases.Phase method), 702
rho_mass_liquid_ref()

(thermo.equilibrium.EquilibriumState method),
481

rho_mass_liquid_ref() (thermo.phases.Phase
method), 702

rhocs (thermo.equilibrium.EquilibriumState property),
481

rhocs (thermo.phases.Phase property), 702
rhocs_mass (thermo.equilibrium.EquilibriumState prop-

erty), 481
rhocs_mass (thermo.phases.Phase property), 702
rhog (thermo.chemical.Chemical property), 107
rhog (thermo.mixture.Mixture property), 597
rhog_STP (thermo.mixture.Mixture property), 597
rhog_STPs (thermo.equilibrium.EquilibriumState prop-

erty), 481
rhog_STPs (thermo.phases.Phase property), 702
rhog_STPs_mass (thermo.equilibrium.EquilibriumState

property), 481
rhog_STPs_mass (thermo.phases.Phase property), 702
rhogm (thermo.chemical.Chemical property), 108
rhogm (thermo.mixture.Mixture property), 597
rhogm_STP (thermo.mixture.Mixture property), 597
rhogms (thermo.mixture.Mixture property), 598
rhogs (thermo.mixture.Mixture property), 598
rhol (thermo.chemical.Chemical property), 108
rhol (thermo.mixture.Mixture property), 598
rhol_60Fs (thermo.equilibrium.EquilibriumState prop-

erty), 481
rhol_60Fs (thermo.phases.Phase property), 703
rhol_60Fs_mass (thermo.equilibrium.EquilibriumState

property), 481
rhol_60Fs_mass (thermo.phases.Phase property), 703
rhol_STP (thermo.mixture.Mixture property), 598
rhol_STPs (thermo.equilibrium.EquilibriumState prop-

erty), 481
rhol_STPs (thermo.phases.Phase property), 703
rhol_STPs_mass (thermo.equilibrium.EquilibriumState

property), 482
rhol_STPs_mass (thermo.phases.Phase property), 703
rholm (thermo.chemical.Chemical property), 108
rholm (thermo.mixture.Mixture property), 598
rholm_STP (thermo.mixture.Mixture property), 599

rholms (thermo.mixture.Mixture property), 599
rhols (thermo.mixture.Mixture property), 599
rhom (thermo.chemical.Chemical property), 109
rhom (thermo.mixture.Mixture property), 599
rhos (thermo.chemical.Chemical property), 109
rhos (thermo.mixture.Mixture attribute), 599
rhos_Tms (thermo.equilibrium.EquilibriumState prop-

erty), 482
rhos_Tms (thermo.phases.Phase property), 703
rhos_Tms_mass (thermo.equilibrium.EquilibriumState

property), 482
rhos_Tms_mass (thermo.phases.Phase property), 703
rhosm (thermo.chemical.Chemical property), 109
rhosms (thermo.mixture.Mixture property), 599
rhoss (thermo.mixture.Mixture property), 600
RI_Ts (thermo.equilibrium.EquilibriumState property),

430
RI_Ts (thermo.phases.Phase property), 638
rings (thermo.chemical.Chemical property), 109
ringss (thermo.mixture.Mixture property), 600
RIs (thermo.equilibrium.EquilibriumState property), 430
RIs (thermo.phases.Phase property), 639
RK (class in thermo.eos), 241
RK_a_alpha_and_derivatives_vectorized() (in

module thermo.eos_alpha_functions), 378
RK_a_alphas_vectorized() (in module

thermo.eos_alpha_functions), 373
RKMIX (class in thermo.eos_mix), 344

S
S (thermo.stream.StreamArgs property), 786
S() (thermo.bulk.Bulk method), 66
S() (thermo.equilibrium.EquilibriumState method), 430
S() (thermo.phases.CEOSGas method), 715
S() (thermo.phases.GibbsExcessLiquid method), 723
S() (thermo.phases.HelmholtzEOS method), 725
S() (thermo.phases.IdealGas method), 709
S() (thermo.phases.Phase method), 639
S0gs (thermo.equilibrium.EquilibriumState property),

430
S0gs (thermo.phases.Phase property), 639
S0gs_mass (thermo.equilibrium.EquilibriumState prop-

erty), 430
S0gs_mass (thermo.phases.Phase property), 639
S_dep() (thermo.equilibrium.EquilibriumState method),

431
S_dep_phi_consistency() (thermo.phases.Phase

method), 640
S_formation_ideal_gas()

(thermo.equilibrium.EquilibriumState method),
431

S_formation_ideal_gas() (thermo.phases.Phase
method), 640

S_from_phi() (thermo.phases.Phase method), 640
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S_ID_METHODS (in module thermo.phase_identification),
737

S_ideal_gas() (thermo.bulk.Bulk method), 67
S_ideal_gas() (thermo.equilibrium.EquilibriumState

method), 431
S_ideal_gas() (thermo.phases.Phase method), 640
S_mass() (thermo.equilibrium.EquilibriumState

method), 432
S_mass() (thermo.phases.Phase method), 640
S_phi_consistency() (thermo.phases.Phase method),

641
S_reactive() (thermo.bulk.Bulk method), 67
S_reactive() (thermo.equilibrium.EquilibriumState

method), 432
S_reactive() (thermo.phases.Phase method), 641
Saffari_a_alpha (class in

thermo.eos_alpha_functions), 387
Saffari_alpha_pure() (in module

thermo.eos_alpha_functions), 397
SATO_RIEDEL (in module thermo.thermal_conductivity),

792
saturation_prop_plot() (thermo.eos.GCEOS

method), 192
scalar (thermo.eos.GCEOS attribute), 193
scalar (thermo.eos_mix.GCEOSMIX attribute), 289
scalar (thermo.phases.Phase attribute), 703
ScalarParameterDB (class in

thermo.interaction_parameters), 549
Schwartzentruber_a_alpha (class in

thermo.eos_alpha_functions), 388
Schwartzentruber_alpha_pure() (in module

thermo.eos_alpha_functions), 397
score_phases_S() (in module

thermo.phase_identification), 738
score_phases_VL() (in module

thermo.phase_identification), 737
SE() (thermo.activity.GibbsExcess method), 53
set_chemical_constants() (thermo.mixture.Mixture

method), 600
set_Chemical_property_objects()

(thermo.mixture.Mixture method), 600
set_chemical_TP() (thermo.mixture.Mixture method),

600
set_constant_sources() (thermo.chemical.Chemical

method), 110
set_constant_sources() (thermo.mixture.Mixture

method), 600
set_constants() (thermo.chemical.Chemical method),

110
set_constants() (thermo.mixture.Mixture method),

600
set_dnzs_derivatives_and_departures()

(thermo.eos_mix.GCEOSMIX method), 289
set_eos() (thermo.chemical.Chemical method), 110

set_eos() (thermo.mixture.Mixture method), 600
set_extensive_flow() (thermo.stream.Stream

method), 784
set_extensive_properties() (thermo.stream.Stream

method), 784
set_from_PT() (thermo.eos.GCEOS method), 193
set_poly_fit_coeffs()

(thermo.utils.MixtureProperty method), 868
set_properties_from_solution()

(thermo.eos.GCEOS method), 193
set_property_package() (thermo.mixture.Mixture

method), 600
set_ref() (thermo.chemical.Chemical method), 110
set_thermo() (thermo.chemical.Chemical method), 110
set_TP_sources() (thermo.chemical.Chemical

method), 110
set_TP_sources() (thermo.mixture.Mixture method),

600
Sfgs (thermo.equilibrium.EquilibriumState property),

432
Sfgs (thermo.phases.Phase property), 641
Sfgs_mass (thermo.equilibrium.EquilibriumState prop-

erty), 432
Sfgs_mass (thermo.phases.Phase property), 641
SG (thermo.chemical.Chemical property), 95
SG (thermo.mixture.Mixture property), 581
SG() (thermo.equilibrium.EquilibriumState method), 431
SG() (thermo.phases.Phase method), 639
SG_gas() (thermo.equilibrium.EquilibriumState

method), 431
SG_gas() (thermo.phases.Phase method), 639
SGg (thermo.chemical.Chemical property), 95
SGg (thermo.mixture.Mixture property), 581
SGl (thermo.chemical.Chemical property), 95
SGl (thermo.mixture.Mixture property), 581
SGs (thermo.chemical.Chemical property), 95
SGs (thermo.mixture.Mixture property), 581
SHEFFY_JOHNSON (in module

thermo.thermal_conductivity), 792
sigma (thermo.chemical.Chemical property), 110
sigma (thermo.mixture.Mixture property), 600
sigma() (thermo.bulk.Bulk method), 71
sigma() (thermo.equilibrium.EquilibriumState method),

482
sigma() (thermo.phases.Phase method), 703
SIGMA_LL_METHODS (in module thermo.bulk), 76
sigma_STPs (thermo.equilibrium.EquilibriumState prop-

erty), 482
sigma_STPs (thermo.phases.Phase property), 703
sigma_Tbs (thermo.equilibrium.EquilibriumState prop-

erty), 482
sigma_Tbs (thermo.phases.Phase property), 704
sigma_Tms (thermo.equilibrium.EquilibriumState prop-

erty), 482
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sigma_Tms (thermo.phases.Phase property), 704
sigmas (thermo.mixture.Mixture property), 601
similarity_variables

(thermo.equilibrium.EquilibriumState prop-
erty), 482

similarity_variables (thermo.mixture.Mixture prop-
erty), 601

similarity_variables (thermo.phases.Phase prop-
erty), 704

Skins (thermo.equilibrium.EquilibriumState property),
432

Skins (thermo.phases.Phase property), 641
skip_method_validity_check

(thermo.utils.MixtureProperty attribute),
868

skip_prop_validity_check
(thermo.utils.MixtureProperty attribute),
868

Sm (thermo.stream.StreamArgs property), 787
smiless (thermo.equilibrium.EquilibriumState prop-

erty), 483
smiless (thermo.mixture.Mixture property), 601
smiless (thermo.phases.Phase property), 704
Soave_1972_a_alpha (class in

thermo.eos_alpha_functions), 388
Soave_1972_alpha_pure() (in module

thermo.eos_alpha_functions), 396
Soave_1979_a_alpha (class in

thermo.eos_alpha_functions), 389
Soave_1979_alpha_pure() (in module

thermo.eos_alpha_functions), 396
Soave_1984_a_alpha (class in

thermo.eos_alpha_functions), 389
Soave_1984_alpha_pure() (in module

thermo.eos_alpha_functions), 396
Soave_1993_a_alpha (class in

thermo.eos_alpha_functions), 390
Soave_1993_alpha_pure() (in module

thermo.eos_alpha_functions), 397
solid_bulk (thermo.equilibrium.EquilibriumState at-

tribute), 483
solubility_parameter (thermo.chemical.Chemical

property), 110
solubility_parameters

(thermo.equilibrium.EquilibriumState prop-
erty), 483

solubility_parameters (thermo.mixture.Mixture
property), 601

solubility_parameters (thermo.phases.Phase prop-
erty), 704

solve() (thermo.eos.GCEOS method), 195
solve_missing_volumes() (thermo.eos.GCEOS

method), 195
solve_property() (thermo.utils.TDependentProperty

method), 852
solve_property() (thermo.utils.TPDependentProperty

method), 861
solve_T() (thermo.eos.APISRK method), 231
solve_T() (thermo.eos.GCEOS method), 195
solve_T() (thermo.eos.IG method), 246
solve_T() (thermo.eos.PR method), 207
solve_T() (thermo.eos.PRSV method), 211
solve_T() (thermo.eos.PRSV2 method), 214
solve_T() (thermo.eos.RK method), 243
solve_T() (thermo.eos.SRK method), 226
solve_T() (thermo.eos.VDW method), 240
solve_T() (thermo.eos_mix.GCEOSMIX method), 289
sort_phases() (in module

thermo.phase_identification), 745
sorted_volumes (thermo.eos.GCEOS property), 195
specified_composition_vars

(thermo.stream.EquilibriumStream property),
773

specified_composition_vars (thermo.stream.Stream
property), 784

specified_composition_vars
(thermo.stream.StreamArgs property), 787

specified_flow_vars
(thermo.stream.EquilibriumStream property),
773

specified_flow_vars (thermo.stream.Stream prop-
erty), 784

specified_flow_vars (thermo.stream.StreamArgs
property), 787

specified_state_vars
(thermo.stream.EquilibriumStream property),
773

specified_state_vars (thermo.stream.Stream prop-
erty), 785

specified_state_vars (thermo.stream.StreamArgs
property), 787

speed_of_sound (thermo.mixture.Mixture property),
601

speed_of_sound() (thermo.bulk.Bulk method), 72
speed_of_sound() (thermo.equilibrium.EquilibriumState

method), 483
speed_of_sound() (thermo.phases.Phase method), 704
speed_of_sound_g (thermo.mixture.Mixture property),

602
speed_of_sound_l (thermo.mixture.Mixture property),

602
speed_of_sound_mass()

(thermo.equilibrium.EquilibriumState method),
483

speed_of_sound_mass() (thermo.phases.Phase
method), 704

SPEED_OF_SOUND_METHODS (in module thermo.bulk), 76
SRK (class in thermo.eos), 224
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SRK_a_alpha_and_derivatives_vectorized() (in
module thermo.eos_alpha_functions), 374

SRK_a_alphas_vectorized() (in module
thermo.eos_alpha_functions), 370

SRKMIX (class in thermo.eos_mix), 321
SRKMIXTranslated (class in thermo.eos_mix), 328
SRKMIXTranslatedConsistent (class in

thermo.eos_mix), 333
SRKTranslated (class in thermo.eos), 232
SRKTranslatedConsistent (class in thermo.eos), 233
SRKTranslatedPPJP (class in thermo.eos), 234
stabiliy_iteration_Michelsen()

(thermo.eos_mix.GCEOSMIX method), 290
state_hash() (thermo.activity.GibbsExcess method),

58
state_hash() (thermo.eos.GCEOS method), 196
state_hash() (thermo.phases.Phase method), 705
state_specified (thermo.stream.EquilibriumStream

property), 773
state_specified (thermo.stream.Stream property),

785
state_specified (thermo.stream.StreamArgs prop-

erty), 787
state_specs (thermo.eos.GCEOS property), 196
state_specs (thermo.stream.EquilibriumStream prop-

erty), 773
state_specs (thermo.stream.Stream property), 785
state_specs (thermo.stream.StreamArgs property), 787
STELs (thermo.equilibrium.EquilibriumState property),

431
STELs (thermo.phases.Phase property), 640
StielPolars (thermo.equilibrium.EquilibriumState

property), 432
StielPolars (thermo.phases.Phase property), 641
Stockmayers (thermo.equilibrium.EquilibriumState

property), 432
Stockmayers (thermo.phases.Phase property), 641
Stream (class in thermo.stream), 773
stream (thermo.stream.StreamArgs property), 788
StreamArgs (class in thermo.stream), 785
StreamArgs() (thermo.stream.EquilibriumStream

method), 772
StreamArgs() (thermo.stream.Stream method), 784
sublimation_pressure_methods (in module

thermo.vapor_pressure), 874
SublimationPressure (class in

thermo.vapor_pressure), 872
SublimationPressures

(thermo.equilibrium.EquilibriumState prop-
erty), 432

subset() (thermo.chemical_package.ChemicalConstantsPackage
method), 120

subset() (thermo.chemical_package.PropertyCorrelationsPackage
method), 125

subset() (thermo.eos_mix.GCEOSMIX method), 290
surface_tension_methods (in module

thermo.interface), 543
surface_tension_mixture_methods (in module

thermo.interface), 545
SurfaceTension (class in thermo.interface), 541
SurfaceTensionMixture (class in thermo.interface),

543
SurfaceTensionMixture

(thermo.equilibrium.EquilibriumState prop-
erty), 433

SurfaceTensions (thermo.equilibrium.EquilibriumState
property), 433

synonymss (thermo.mixture.Mixture property), 602

T
T (thermo.stream.StreamArgs property), 787
T_calc (thermo.stream.EquilibriumStream property),

772
T_calc (thermo.stream.StreamArgs property), 787
T_default (thermo.mixture.Mixture attribute), 581
T_dependent_property()

(thermo.utils.TDependentProperty method),
842

T_dependent_property_derivative()
(thermo.utils.TDependentProperty method),
842

T_dependent_property_integral()
(thermo.utils.TDependentProperty method),
842

T_dependent_property_integral_over_T()
(thermo.utils.TDependentProperty method),
843

T_discriminant_zero_g() (thermo.eos.GCEOS
method), 166

T_discriminant_zero_l() (thermo.eos.GCEOS
method), 167

T_discriminant_zeros_analytical()
(thermo.eos.RK method), 242

T_discriminant_zeros_analytical()
(thermo.eos.VDW method), 239

T_limits (thermo.utils.TDependentProperty attribute),
843

T_limits (thermo.utils.TPDependentProperty attribute),
856

T_max_at_V() (thermo.eos.GCEOS method), 167
T_max_at_V() (thermo.phases.Phase method), 642
T_MAX_FIXED (thermo.phases.Phase attribute), 642
T_min_at_V() (thermo.eos.GCEOS method), 168
T_MIN_FIXED (thermo.phases.Phase attribute), 642
T_MIN_FLASH (thermo.phases.Phase attribute), 642
T_REF_IG (thermo.equilibrium.EquilibriumState at-

tribute), 433
T_REF_IG (thermo.phases.Phase attribute), 642
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T_REF_IG_INV (thermo.equilibrium.EquilibriumState at-
tribute), 433

T_REF_IG_INV (thermo.phases.Phase attribute), 642
tabulate_constants() (in module thermo.datasheet),

125
tabulate_gas() (in module thermo.datasheet), 125
tabulate_liq() (in module thermo.datasheet), 125
tabulate_solid() (in module thermo.datasheet), 125
tabulate_streams() (in module thermo.datasheet),

125
taus() (thermo.nrtl.NRTL method), 555
taus() (thermo.uniquac.UNIQUAC method), 920
Tautoignitions (thermo.equilibrium.EquilibriumState

property), 433
Tautoignitions (thermo.phases.Phase property), 642
Tb() (thermo.group_contribution.joback.Joback static

method), 928
Tbs (thermo.equilibrium.EquilibriumState property), 433
Tbs (thermo.phases.Phase property), 642
Tbubble (thermo.mixture.Mixture property), 581
Tc() (thermo.group_contribution.joback.Joback static

method), 929
Tcs (thermo.equilibrium.EquilibriumState property), 433
Tcs (thermo.phases.Phase property), 642
TDependentProperty (class in thermo.utils), 839
Tdew (thermo.mixture.Mixture property), 581
test_method_validity()

(thermo.heat_capacity.HeatCapacityGas
method), 533

test_method_validity()
(thermo.heat_capacity.HeatCapacityGasMixture
method), 538

test_method_validity()
(thermo.heat_capacity.HeatCapacityLiquid
method), 530

test_method_validity()
(thermo.heat_capacity.HeatCapacityLiquidMixture
method), 537

test_method_validity()
(thermo.heat_capacity.HeatCapacitySolid
method), 535

test_method_validity()
(thermo.heat_capacity.HeatCapacitySolidMixture
method), 540

test_method_validity()
(thermo.interface.SurfaceTension method),
543

test_method_validity()
(thermo.interface.SurfaceTensionMixture
method), 545

test_method_validity()
(thermo.permittivity.PermittivityLiquid
method), 604

test_method_validity()

(thermo.phase_change.EnthalpySublimation
method), 734

test_method_validity()
(thermo.phase_change.EnthalpyVaporization
method), 731

test_method_validity()
(thermo.thermal_conductivity.ThermalConductivityGas
method), 796

test_method_validity()
(thermo.thermal_conductivity.ThermalConductivityGasMixture
method), 800

test_method_validity()
(thermo.thermal_conductivity.ThermalConductivityLiquid
method), 791

test_method_validity()
(thermo.thermal_conductivity.ThermalConductivityLiquidMixture
method), 798

test_method_validity()
(thermo.utils.TDependentProperty method),
852

test_method_validity()
(thermo.utils.TPDependentProperty method),
861

test_method_validity()
(thermo.vapor_pressure.SublimationPressure
method), 873

test_method_validity()
(thermo.vapor_pressure.VaporPressure
method), 871

test_method_validity()
(thermo.viscosity.ViscosityGas method),
881

test_method_validity()
(thermo.viscosity.ViscosityGasMixture
method), 885

test_method_validity()
(thermo.viscosity.ViscosityLiquid method),
877

test_method_validity()
(thermo.viscosity.ViscosityLiquidMixture
method), 883

test_method_validity() (thermo.volume.VolumeGas
method), 893

test_method_validity()
(thermo.volume.VolumeGasMixture method),
899

test_method_validity()
(thermo.volume.VolumeLiquid method), 889

test_method_validity()
(thermo.volume.VolumeLiquidMixture method),
897

test_method_validity()
(thermo.volume.VolumeSolid method), 895

test_method_validity()
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(thermo.volume.VolumeSolidMixture method),
900

test_method_validity_P()
(thermo.thermal_conductivity.ThermalConductivityGas
method), 796

test_method_validity_P()
(thermo.thermal_conductivity.ThermalConductivityLiquid
method), 791

test_method_validity_P()
(thermo.viscosity.ViscosityGas method),
881

test_method_validity_P()
(thermo.viscosity.ViscosityLiquid method),
878

test_method_validity_P()
(thermo.volume.VolumeGas method), 893

test_method_validity_P()
(thermo.volume.VolumeLiquid method), 890

test_property_validity()
(thermo.utils.MixtureProperty class method),
868

test_property_validity()
(thermo.utils.TDependentProperty class
method), 852

test_property_validity()
(thermo.utils.TPDependentProperty class
method), 861

Tflashs (thermo.equilibrium.EquilibriumState prop-
erty), 433

Tflashs (thermo.phases.Phase property), 642
thermal_conductivity_gas_methods (in module

thermo.thermal_conductivity), 796
thermal_conductivity_gas_methods_P (in module

thermo.thermal_conductivity), 796
thermal_conductivity_gas_mixture_methods (in

module thermo.thermal_conductivity), 801
thermal_conductivity_liquid_methods (in module

thermo.thermal_conductivity), 792
thermal_conductivity_liquid_methods_P (in mod-

ule thermo.thermal_conductivity), 792
thermal_conductivity_liquid_mixture_methods

(in module thermo.thermal_conductivity), 798
thermal_conductivity_Magomedov() (in module

thermo.electrochem), 134
ThermalConductivityGas (class in

thermo.thermal_conductivity), 793
ThermalConductivityGases

(thermo.equilibrium.EquilibriumState prop-
erty), 433

ThermalConductivityGasMixture (class in
thermo.thermal_conductivity), 799

ThermalConductivityGasMixture
(thermo.equilibrium.EquilibriumState prop-
erty), 433

ThermalConductivityLiquid (class in
thermo.thermal_conductivity), 788

ThermalConductivityLiquidMixture (class in
thermo.thermal_conductivity), 797

ThermalConductivityLiquidMixture
(thermo.equilibrium.EquilibriumState prop-
erty), 433

ThermalConductivityLiquids
(thermo.equilibrium.EquilibriumState prop-
erty), 433

thermo.activity
module, 51

thermo.bulk
module, 62

thermo.chemical
module, 76

thermo.chemical_package
module, 111

thermo.datasheet
module, 125

thermo.electrochem
module, 126

thermo.eos
module, 147

thermo.eos_alpha_functions
module, 370

thermo.eos_mix
module, 251

thermo.eos_mix_methods
module, 352

thermo.eos_volume
module, 357

thermo.equilibrium
module, 397

thermo.flash
module, 484

thermo.functional_groups
module, 495

thermo.group_contribution.fedors
module, 933

thermo.group_contribution.joback
module, 922

thermo.group_contribution.wilson_jasperson
module, 934

thermo.heat_capacity
module, 528

thermo.interaction_parameters
module, 545

thermo.interface
module, 540

thermo.law
module, 550

thermo.mixture
module, 561

1044 Index



thermo Documentation, Release 0.2.20

thermo.nrtl
module, 552

thermo.permittivity
module, 602

thermo.phase_change
module, 728

thermo.phase_identification
module, 734

thermo.phases
module, 604

thermo.property_package
module, 734

thermo.regular_solution
module, 746

thermo.stream
module, 751

thermo.thermal_conductivity
module, 788

thermo.unifac
module, 801

thermo.uniquac
module, 912

thermo.utils
module, 839

thermo.vapor_pressure
module, 869

thermo.viscosity
module, 874

thermo.volume
module, 886

thermo.wilson
module, 901

Thetas() (thermo.unifac.UNIFAC method), 807
thetas() (thermo.uniquac.UNIQUAC method), 920
Thetas_pure() (thermo.unifac.UNIFAC method), 807
Tm() (thermo.group_contribution.joback.Joback static

method), 929
Tmax (thermo.heat_capacity.HeatCapacityGasMixture

attribute), 538
Tmax (thermo.heat_capacity.HeatCapacityLiquidMixture

attribute), 536
Tmax (thermo.heat_capacity.HeatCapacitySolidMixture

attribute), 539
Tmax (thermo.interface.SurfaceTensionMixture attribute),

544
Tmax (thermo.permittivity.PermittivityLiquid property),

603
Tmax (thermo.thermal_conductivity.ThermalConductivityGasMixture

attribute), 800
Tmax (thermo.thermal_conductivity.ThermalConductivityLiquid

property), 790
Tmax (thermo.utils.MixtureProperty attribute), 863
Tmax (thermo.viscosity.ViscosityGas property), 880

Tmax (thermo.viscosity.ViscosityGasMixture attribute),
885

Tmax (thermo.viscosity.ViscosityLiquid property), 876
Tmax (thermo.viscosity.ViscosityLiquidMixture attribute),

882
Tmax (thermo.volume.VolumeGas property), 892
Tmax (thermo.volume.VolumeGasMixture attribute), 898
Tmax (thermo.volume.VolumeLiquid property), 888
Tmax (thermo.volume.VolumeLiquidMixture attribute),

896
Tmax (thermo.volume.VolumeSolidMixture attribute), 900
Tmc() (thermo.bulk.Bulk method), 67
Tmc() (thermo.equilibrium.EquilibriumState method),

434
Tmc() (thermo.phases.Phase method), 642
Tmin (thermo.heat_capacity.HeatCapacityGasMixture

attribute), 538
Tmin (thermo.heat_capacity.HeatCapacityLiquidMixture

attribute), 536
Tmin (thermo.heat_capacity.HeatCapacitySolidMixture

attribute), 539
Tmin (thermo.interface.SurfaceTensionMixture attribute),

544
Tmin (thermo.permittivity.PermittivityLiquid property),

603
Tmin (thermo.thermal_conductivity.ThermalConductivityGasMixture

attribute), 800
Tmin (thermo.thermal_conductivity.ThermalConductivityLiquid

property), 790
Tmin (thermo.utils.MixtureProperty attribute), 863
Tmin (thermo.viscosity.ViscosityGas property), 880
Tmin (thermo.viscosity.ViscosityGasMixture attribute),

885
Tmin (thermo.viscosity.ViscosityLiquid property), 877
Tmin (thermo.viscosity.ViscosityLiquidMixture attribute),

883
Tmin (thermo.volume.VolumeGas property), 892
Tmin (thermo.volume.VolumeGasMixture attribute), 898
Tmin (thermo.volume.VolumeLiquid property), 888
Tmin (thermo.volume.VolumeLiquidMixture attribute),

896
Tmin (thermo.volume.VolumeSolidMixture attribute), 900
Tms (thermo.equilibrium.EquilibriumState property), 434
Tms (thermo.phases.Phase property), 642
to() (thermo.eos.GCEOS method), 196
to() (thermo.eos_mix.GCEOSMIX method), 290
to() (thermo.phases.Phase method), 705
to_mechanical_critical_point()

(thermo.eos_mix.GCEOSMIX method), 295
to_PV() (thermo.eos.GCEOS method), 196
to_PV() (thermo.eos_mix.GCEOSMIX method), 291
to_PV_zs() (thermo.eos_mix.GCEOSMIX method), 291
to_T_xs() (thermo.activity.IdealSolution method), 61
to_T_xs() (thermo.nrtl.NRTL method), 555
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to_T_xs() (thermo.regular_solution.RegularSolution
method), 750

to_T_xs() (thermo.unifac.UNIFAC method), 824
to_T_xs() (thermo.uniquac.UNIQUAC method), 920
to_T_xs() (thermo.wilson.Wilson method), 910
to_TP() (thermo.eos.GCEOS method), 197
to_TP() (thermo.eos_mix.GCEOSMIX method), 292
to_TP_zs() (thermo.eos_mix.GCEOSMIX method), 293
to_TP_zs() (thermo.phases.CEOSGas method), 717
to_TP_zs() (thermo.phases.HelmholtzEOS method),

726
to_TP_zs() (thermo.phases.Phase method), 705
to_TP_zs_fast() (thermo.eos_mix.GCEOSMIX

method), 294
to_TPV_pure() (thermo.eos_mix.GCEOSMIX method),

293
to_TV() (thermo.eos.GCEOS method), 197
to_TV() (thermo.eos_mix.GCEOSMIX method), 294
TP_dependent_property()

(thermo.utils.TPDependentProperty method),
855

TP_dependent_property_derivative_P()
(thermo.utils.TPDependentProperty method),
855

TP_dependent_property_derivative_T()
(thermo.utils.TPDependentProperty method),
855

TP_or_T_dependent_property()
(thermo.utils.TPDependentProperty method),
856

TP_zs_ws_cached (thermo.utils.MixtureProperty
attribute), 863

TPDependentProperty (class in thermo.utils), 853
translated (thermo.eos_mix.GCEOSMIX attribute),

295
Trebble_Bishnoi_a_alpha (class in

thermo.eos_alpha_functions), 390
Trebble_Bishnoi_alpha_pure() (in module

thermo.eos_alpha_functions), 396
Tsat() (thermo.chemical.Chemical method), 96
Tsat() (thermo.eos.GCEOS method), 168
Tts (thermo.equilibrium.EquilibriumState property), 434
Tts (thermo.phases.Phase property), 643
TWAs (thermo.equilibrium.EquilibriumState property),

433
TWAs (thermo.phases.Phase property), 641
Twu91_a_alpha (class in thermo.eos_alpha_functions),

391
Twu91_alpha_pure() (in module

thermo.eos_alpha_functions), 396
TWUPR (class in thermo.eos), 215
TwuPR95_a_alpha (class in

thermo.eos_alpha_functions), 392
TWUPRMIX (class in thermo.eos_mix), 310

TWUSRK (class in thermo.eos), 227
TwuSRK95_a_alpha (class in

thermo.eos_alpha_functions), 394
TWUSRKMIX (class in thermo.eos_mix), 324

U
U (thermo.chemical.Chemical property), 96
u (thermo.eos_mix.PSRKMixingRules attribute), 351
U (thermo.mixture.Mixture property), 582
U() (thermo.equilibrium.EquilibriumState method), 434
U() (thermo.phases.Phase method), 643
U_dep() (thermo.equilibrium.EquilibriumState method),

435
U_dep() (thermo.phases.Phase method), 643
U_dep_g (thermo.eos.GCEOS property), 168
U_dep_l (thermo.eos.GCEOS property), 168
U_formation_ideal_gas()

(thermo.equilibrium.EquilibriumState method),
435

U_formation_ideal_gas() (thermo.phases.Phase
method), 643

U_ideal_gas() (thermo.equilibrium.EquilibriumState
method), 435

U_ideal_gas() (thermo.phases.Phase method), 644
U_mass() (thermo.equilibrium.EquilibriumState

method), 435
U_mass() (thermo.phases.Phase method), 644
U_reactive() (thermo.equilibrium.EquilibriumState

method), 435
U_reactive() (thermo.phases.Phase method), 644
UFIP (in module thermo.unifac), 831
UFLs (thermo.equilibrium.EquilibriumState property),

434
UFLs (thermo.phases.Phase property), 643
UFMG (in module thermo.unifac), 830
UFSG (in module thermo.unifac), 830
Um (thermo.chemical.Chemical property), 97
Um (thermo.mixture.Mixture property), 582
UNIFAC (class in thermo.unifac), 801
UNIFAC_Dortmund_groups (thermo.chemical.Chemical

property), 96
UNIFAC_Dortmund_groups

(thermo.equilibrium.EquilibriumState prop-
erty), 434

UNIFAC_Dortmund_groups (thermo.mixture.Mixture
property), 582

UNIFAC_Dortmund_groups (thermo.phases.Phase prop-
erty), 643

UNIFAC_gammas() (in module thermo.unifac), 825
UNIFAC_groups (thermo.chemical.Chemical property),

96
UNIFAC_groups (thermo.equilibrium.EquilibriumState

property), 434
UNIFAC_groups (thermo.mixture.Mixture property), 582
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UNIFAC_groups (thermo.phases.Phase property), 643
UNIFAC_psi() (in module thermo.unifac), 827
UNIFAC_Q (thermo.chemical.Chemical property), 96
UNIFAC_Qs (thermo.equilibrium.EquilibriumState prop-

erty), 434
UNIFAC_Qs (thermo.mixture.Mixture property), 582
UNIFAC_Qs (thermo.phases.Phase property), 643
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UNIFAC_Rs (thermo.mixture.Mixture property), 582
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tribute), 533
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units (thermo.heat_capacity.HeatCapacityLiquidMixture
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tribute), 545
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tribute), 734
units (thermo.phase_change.EnthalpyVaporization at-

tribute), 732
units (thermo.thermal_conductivity.ThermalConductivityGas

attribute), 796
units (thermo.thermal_conductivity.ThermalConductivityGasMixture

attribute), 801
units (thermo.thermal_conductivity.ThermalConductivityLiquid

attribute), 792
units (thermo.thermal_conductivity.ThermalConductivityLiquidMixture

attribute), 798
units (thermo.utils.MixtureProperty attribute), 869
units (thermo.utils.TDependentProperty attribute), 853
units (thermo.utils.TPDependentProperty attribute),

861
units (thermo.vapor_pressure.SublimationPressure at-

tribute), 874
units (thermo.vapor_pressure.VaporPressure attribute),

872
units (thermo.viscosity.ViscosityGas attribute), 881
units (thermo.viscosity.ViscosityGasMixture attribute),

885
units (thermo.viscosity.ViscosityLiquid attribute), 878
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tribute), 883
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