# Cubic Equation of State Alpha Functions (thermo.eos_alpha_functions)¶

This module contains implementations of the calculation of pure-component EOS $$a \alpha$$ parameters in a vectorized way. Functions for calculating their temperature derivatives as may be necessary are included as well.

For certain alpha functions, a class is available to provide these functions to and class that inherits from it.

A mixing rule must be used on the a_alphas to get the overall a_alpha term.

## Vectorized Alpha Functions¶

thermo.eos_alpha_functions.PR_a_alphas_vectorized(T, Tcs, ais, kappas, a_alphas=None)[source]

Calculates the a_alpha terms for the Peng-Robinson equation of state given the critical temperatures Tcs, constants ais, and kappas.

$a_i\alpha(T)_i=a_i [1+\kappa_i(1-\sqrt{T_{r,i}})]^2$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}}$$, [Pa*m^6/mol^2]

kappaslist[float]

kappa parameters of Peng-Robinson EOS; formulas vary, but the original form uses $$\kappa_i=0.37464+1.54226\omega_i-0.26992\omega^2_i$$, [-]

a_alphaslist[float], optional

Vector for pure component a_alpha terms in the cubic EOS to be calculated and stored in, [Pa*m^6/mol^2]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [2.0698956357716662, 2.7018068455659545, 3.3725793885832323]
>>> kappas = [0.74192743008, 0.819919992, 0.8800122140799999]
>>> PR_a_alphas_vectorized(322.29, Tcs=Tcs, ais=ais, kappas=kappas)
[2.6306811679, 3.6761503348, 4.8593286234]

thermo.eos_alpha_functions.SRK_a_alphas_vectorized(T, Tcs, ais, ms, a_alphas=None)[source]

Calculates the a_alpha terms for the SRK equation of state given the critical temperatures Tcs, constants ais, and kappas.

$a_i\alpha(T)_i = \left[1 + m_i\left(1 - \sqrt{\frac{T}{T_{c,i}}} \right)\right]^2$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}}$$, [Pa*m^6/mol^2]

mslist[float]

m parameters of SRK EOS; formulas vary, but the original form uses $$m_i = 0.480 + 1.574\omega_i - 0.176\omega_i^2$$, [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> ms = [0.8610138239999999, 0.9436976, 1.007889024]
>>> SRK_a_alphas_vectorized(322.29, Tcs=Tcs, ais=ais, ms=ms)
[2.549485814512, 3.586598245260, 4.76614806648]

thermo.eos_alpha_functions.PRSV_a_alphas_vectorized(T, Tcs, ais, kappa0s, kappa1s, a_alphas=None)[source]

Calculates the a_alpha terms for the Peng-Robinson-Stryjek-Vera equation of state given the critical temperatures Tcs, constants ais, PRSV parameters kappa0s and kappa1s.

$a_i\alpha_i = a_i \left(\left(\kappa_{0} + \kappa_{1} \left(\sqrt{\frac{ T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right) \right) \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) + 1\right)^{2}$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}}$$, [Pa*m^6/mol^2]

kappa0slist[float]

kappa0 parameters of PRSV EOS; the original form uses $$\kappa_{0,i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3$$, [-]

kappa1slist[float]

Fit parameters, can be set to 0 if unknown [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [507.6]
>>> ais = [2.6923169620277805]
>>> kappa0s = [0.8074380841890093]
>>> kappa1s = [0.05104]
>>> PRSV_a_alphas_vectorized(299.0, Tcs=Tcs, ais=ais, kappa0s=kappa0s, kappa1s=kappa1s)
[3.81298569831]

thermo.eos_alpha_functions.PRSV2_a_alphas_vectorized(T, Tcs, ais, kappa0s, kappa1s, kappa2s, kappa3s, a_alphas=None)[source]

Calculates the a_alpha terms for the Peng-Robinson-Stryjek-Vera 2 equation of state given the critical temperatures Tcs, constants ais, PRSV2 parameters kappa0s, kappa1s, kappa2s, and kappa3s.

$a_i\alpha_i = a_{i} \left(\left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(\kappa_{0,i} + \left(\kappa_{1,i} + \kappa_{2,i} \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(- \frac{T}{T_{c,i}} + \kappa_{3,i}\right)\right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right)\right) + 1\right)^{2}$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}}$$, [Pa*m^6/mol^2]

kappa0slist[float]

kappa0 parameters of PRSV EOS; the original form uses $$\kappa_{0,i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3$$, [-]

kappa1slist[float]

Fit parameters, can be set to 0 if unknown [-]

kappa2slist[float]

Fit parameters, can be set to 0 if unknown [-]

kappa3slist[float]

Fit parameters, can be set to 0 if unknown [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> PRSV2_a_alphas_vectorized(400.0, Tcs=[507.6], ais=[2.6923169620277805], kappa0s=[0.8074380841890093], kappa1s=[0.05104], kappa2s=[0.8634], kappa3s=[0.460])
[3.2005700986984]

thermo.eos_alpha_functions.APISRK_a_alphas_vectorized(T, Tcs, ais, S1s, S2s, a_alphas=None)[source]

Calculates the a_alpha terms for the API SRK equation of state given the critical temperatures Tcs, constants ais, and API parameters S1s and S2s.

$a_i\alpha(T)_i = a_i \left[1 + S_{1,i}\left(1-\sqrt{T_{r,i}}\right) + S_{2,i} \frac{1- \sqrt{T_{r,i}}}{\sqrt{T_{r,i}}}\right]^2$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}}$$, [Pa*m^6/mol^2]

S1slist[float]

S1 parameters of API SRK EOS; regressed or estimated with $$S_{1,i} = 0.48508 + 1.55171\omega_i - 0.15613\omega_i^2$$, [-]

S2slist[float]

S2 parameters of API SRK EOS; regressed or set to zero, [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> APISRK_a_alphas_vectorized(T=430.0, Tcs=[514.0], ais=[1.2721974560809934],  S1s=[1.678665], S2s=[-0.216396])
[1.60465652994097]

thermo.eos_alpha_functions.RK_a_alphas_vectorized(T, Tcs, ais, a_alphas=None)[source]

Calculates the a_alpha terms for the RK equation of state given the critical temperatures Tcs, and a parameters ais.

$a_i\alpha_i = \frac{a_i}{\sqrt{\frac{T}{T_{c,i}}}}$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}}$$, [Pa*m^6/mol^2]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> RK_a_alphas_vectorized(322.29, Tcs=Tcs, ais=ais)
[2.3362073307, 3.16943743055, 4.0825575798]


## Vectorized Alpha Functions With Derivatives¶

thermo.eos_alpha_functions.PR_a_alpha_and_derivatives_vectorized(T, Tcs, ais, kappas, a_alphas=None, da_alpha_dTs=None, d2a_alpha_dT2s=None)[source]

Calculates the a_alpha terms and their first two temperature derivatives for the Peng-Robinson equation of state given the critical temperatures Tcs, constants ais, and kappas.

$a_i\alpha(T)_i=a_i[1+\kappa_i(1-\sqrt{T_{r,i}})]^2$
$\frac{d a_i\alpha_i}{dT} = - \frac{a_i \kappa_i}{T^{0.5} {T_c}_i^{0.5}} \left(\kappa_i \left(- \frac{T^{0.5}}{{T_c}_i^{0.5}} + 1\right) + 1\right)$
$\frac{d^2 a_i\alpha_i}{dT^2} = 0.5 a_i \kappa_i \left(- \frac{1}{T^{1.5} {T_c}_i^{0.5}} \left(\kappa_i \left(\frac{T^{0.5}}{{T_c}_i^{0.5}} - 1\right) - 1\right) + \frac{\kappa_i}{T {T_c}_i}\right)$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}}$$ [Pa*m^6/mol^2]

kappaslist[float]

kappa parameters of Peng-Robinson EOS; formulas vary, but the original form uses $$\kappa_i=0.37464+1.54226\omega_i-0.26992\omega^2_i$$, [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTslist[float]

First temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K)]

d2a_alpha_dT2slist[float]

Second temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [2.0698956357716662, 2.7018068455659545, 3.3725793885832323]
>>> kappas = [0.74192743008, 0.819919992, 0.8800122140799999]
>>> PR_a_alpha_and_derivatives_vectorized(322.29, Tcs=Tcs, ais=ais, kappas=kappas)
([2.63068116797, 3.67615033489, 4.859328623453], [-0.0044497546430, -0.00638993749167, -0.0085372308846], [1.066668360e-05, 1.546687574587e-05, 2.07440632117e-05])

thermo.eos_alpha_functions.SRK_a_alpha_and_derivatives_vectorized(T, Tcs, ais, ms, a_alphas=None, da_alpha_dTs=None, d2a_alpha_dT2s=None)[source]

Calculates the a_alpha terms and their first and second temperature derivatives for the SRK equation of state given the critical temperatures Tcs, constants ais, and kappas.

$a_i\alpha(T)_i = \left[1 + m_i\left(1 - \sqrt{\frac{T}{T_{c,i}}} \right)\right]^2$
$\frac{d a_i\alpha_i}{dT} = \frac{a_i m_i}{T} \sqrt{\frac{T}{T_{c,i}}} \left(m_i \left(\sqrt{\frac{T}{T{c,i}}} - 1\right) - 1\right)$
$\frac{d^2 a_i\alpha_i}{dT^2} = \frac{a_i m_i \sqrt{\frac{T}{T_{c,i}}}} {2 T^{2}} \left(m_i + 1\right)$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}}$$, [Pa*m^6/mol^2]

mslist[float]

m parameters of SRK EOS; formulas vary, but the original form uses $$m_i = 0.480 + 1.574\omega_i - 0.176\omega_i^2$$, [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTslist[float]

First temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K)]

d2a_alpha_dT2slist[float]

Second temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> ms = [0.8610138239999999, 0.9436976, 1.007889024]
>>> SRK_a_alpha_and_derivatives_vectorized(322.29, Tcs=Tcs, ais=ais, ms=ms)
([2.549485814512, 3.586598245260, 4.76614806648], [-0.004915469296196, -0.00702410108423, -0.00936320876945], [1.236441916324e-05, 1.77752796719e-05, 2.37231823137e-05])

thermo.eos_alpha_functions.PRSV_a_alpha_and_derivatives_vectorized(T, Tcs, ais, kappa0s, kappa1s, a_alphas=None, da_alpha_dTs=None, d2a_alpha_dT2s=None)[source]

Calculates the a_alpha terms and their first and second derivative for the Peng-Robinson-Stryjek-Vera equation of state given the critical temperatures Tcs, constants ais, PRSV parameters kappa0s and kappa1s.

$a_i\alpha_i = a_i \left(\left(\kappa_{0} + \kappa_{1} \left(\sqrt{\frac{ T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right) \right) \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) + 1\right)^{2}$
$\frac{d a_i\alpha_i}{dT} =a_{i} \left(\left(1 - \sqrt{\frac{T}{T_{c,i}}} \right) \left(\kappa_{0,i} + \kappa_{1,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right)\right) + 1\right) \left(2 \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left( - \frac{\kappa_{1,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right)}{T_{c,i}} + \frac{\kappa_{1,i} \sqrt{\frac{T}{T_{c,i}}} \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right)}{2 T}\right) - \frac{\sqrt{\frac{T}{T_{c,i}}} \left(\kappa_{0,i} + \kappa_{1,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right)\right)}{T} \right)$
$\frac{d^2 a_i\alpha_i}{dT^2} = \frac{a_{i} \left(\left(\kappa_{1,i} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\frac{20 \left(\sqrt{ \frac{T}{T_{c,i}}} + 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T}{T_{c,i}}} \left(\frac{10 T}{T_{c,i}} - 7\right)}{T}\right) - \frac{\sqrt{\frac{T} {T_{c,i}}} \left(10 \kappa_{0,i} - \kappa_{1,i} \left(\sqrt{\frac{T} {T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right)\right)}{T} \right)^{2} - \frac{\sqrt{\frac{T}{T_{c,i}}} \left(\left(10 \kappa_{0,i} - \kappa_{1,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right)\right) \left(\sqrt{\frac{T} {T_{c,i}}} - 1\right) - 10\right) \left(\kappa_{1,i} \left(\frac{40} {T_{c,i}} - \frac{\frac{10 T}{T_{c,i}} - 7}{T}\right) \left(\sqrt{ \frac{T}{T_{c,i}}} - 1\right) + 2 \kappa_{1,i} \left(\frac{20 \left( \sqrt{\frac{T}{T_{c,i}}} + 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T} {T_{c,i}}} \left(\frac{10 T}{T_{c,i}} - 7\right)}{T}\right) + \frac{10 \kappa_{0,i} - \kappa_{1,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right)}{T}\right)}{T}\right)}{200}$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}}$$, [Pa*m^6/mol^2]

kappa0slist[float]

kappa0 parameters of PRSV EOS; the original form uses $$\kappa_{0,i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3$$, [-]

kappa1slist[float]

Fit parameters, can be set to 0 if unknown [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTslist[float]

First temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K)]

d2a_alpha_dT2slist[float]

Second temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [507.6]
>>> ais = [2.6923169620277805]
>>> kappa0s = [0.8074380841890093]
>>> kappa1s = [0.05104]
>>> PRSV_a_alpha_and_derivatives_vectorized(299.0, Tcs=Tcs, ais=ais, kappa0s=kappa0s, kappa1s=kappa1s)
([3.8129856983], [-0.0069769034748], [2.00265608110e-05])

thermo.eos_alpha_functions.PRSV2_a_alpha_and_derivatives_vectorized(T, Tcs, ais, kappa0s, kappa1s, kappa2s, kappa3s, a_alphas=None, da_alpha_dTs=None, d2a_alpha_dT2s=None)[source]

Calculates the a_alpha terms and their first and second derivatives for the Peng-Robinson-Stryjek-Vera 2 equation of state given the critical temperatures Tcs, constants ais, PRSV2 parameters kappa0s, kappa1s, kappa2s, and kappa3s.

$a_i\alpha_i = a_{i} \left(\left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(\kappa_{0,i} + \left(\kappa_{1,i} + \kappa_{2,i} \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(- \frac{T}{T_{c,i}} + \kappa_{3,i}\right)\right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right)\right) + 1\right)^{2}$
$\frac{d a_i\alpha_i}{dT} = a_{i} \left(\left(1 - \sqrt{\frac{T}{T_{c,i} }}\right) \left(\kappa_{0,i} + \left(\kappa_{1,i} + \kappa_{2,i} \left( 1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(- \frac{T}{T_{c,i}} + \kappa_{3,i}\right)\right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right)\right) + 1\right) \left(2 \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(\left(\sqrt{ \frac{T}{T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10} \right) \left(- \frac{\kappa_{2,i} \left(1 - \sqrt{\frac{T}{T_{c,i}}} \right)}{T_{c,i}} - \frac{\kappa_{2,i} \sqrt{\frac{T}{T_{c,i}}} \left( - \frac{T}{T_{c,i}} + \kappa_{3,i}\right)}{2 T}\right) - \frac{\left( \kappa_{1,i} + \kappa_{2,i} \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left(- \frac{T}{T_{c,i}} + \kappa_{3,i}\right)\right) \left(\sqrt{ \frac{T}{T_{c,i}}} + 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T}{T_{c,i} }} \left(\kappa_{1,i} + \kappa_{2,i} \left(1 - \sqrt{\frac{T}{T_{c,i}}} \right) \left(- \frac{T}{T_{c,i}} + \kappa_{3,i}\right)\right) \left( - \frac{T}{T_{c,i}} + \frac{7}{10}\right)}{2 T}\right) - \frac{\sqrt{ \frac{T}{T_{c,i}}} \left(\kappa_{0,i} + \left(\kappa_{1,i} + \kappa_{2,i} \left(1 - \sqrt{\frac{T}{T_{c,i}}}\right) \left( - \frac{T}{T_{c,i}} + \kappa_{3,i}\right)\right) \left(\sqrt{\frac{T} {T_{c,i}}} + 1\right) \left(- \frac{T}{T_{c,i}} + \frac{7}{10}\right) \right)}{T}\right)$
$\frac{d^2 a_i\alpha_i}{dT^2} = - \frac{a_{i} \left(\left(\left(10 \kappa_{0,i} - \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T} {T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right) \right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T} {T_{c,i}} - 7\right)\right) \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) - 10\right) \left(\left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left( \frac{40 \kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left( \frac{2 \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right)}{T_{c,i}} + \frac{ \sqrt{\frac{T}{T_{c,i}}} \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)} {T}\right)}{T_{c,i}} + \frac{\kappa_{2,i} \sqrt{\frac{T}{T_{c,i}}} \left(\frac{4}{T_{c,i}} - \frac{\frac{T}{T_{c,i}} - \kappa_{3,i}}{T} \right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T} {T_{c,i}} - 7\right)}{T} + \frac{2 \kappa_{2,i} \sqrt{\frac{T}{T_{c,i}}} \left(\frac{10 T}{T_{c,i}} - 7\right) \left(\frac{2 \left(\sqrt{\frac {T}{T_{c,i}}} - 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T}{T_{c,i}}} \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)}{T}\right)}{T} + \frac{40 \sqrt{\frac{T}{T_{c,i}}} \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{ \frac{T}{T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i} \right)\right)}{T T_{c,i}} - \frac{\sqrt{\frac{T}{T_{c,i}}} \left( \kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)\right) \left(\frac{10 T} {T_{c,i}} - 7\right)}{T^{2}}\right) + \frac{2 \sqrt{\frac{T}{T_{c,i}}} \left(\kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right) \left(\frac{2 \left(\sqrt{ \frac{T}{T_{c,i}}} - 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T} {T_{c,i}}} \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)}{T}\right) + \frac{20 \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T} {T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right) \right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T}{T_{c,i}}} \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)\right) \left(\frac{10 T}{T_{c,i}} - 7\right)} {T}\right)}{T} + \frac{\sqrt{\frac{T}{T_{c,i}}} \left(10 \kappa_{0,i} - \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)\right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right)\right)}{T^{2}}\right) - \left(\left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right) \left(\frac{2 \left(\sqrt{ \frac{T}{T_{c,i}}} - 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T}{T_{c,i}}} \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)}{T}\right) + \frac{20 \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right)\right) \left( \sqrt{\frac{T}{T_{c,i}}} + 1\right)}{T_{c,i}} + \frac{\sqrt{\frac{T} {T_{c,i}}} \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T} {T_{c,i}}} - 1\right) \left(\frac{T}{T_{c,i}} - \kappa_{3,i}\right) \right) \left(\frac{10 T}{T_{c,i}} - 7\right)}{T}\right) - \frac{ \sqrt{\frac{T}{T_{c,i}}} \left(10 \kappa_{0,i} - \left(\kappa_{1,i} + \kappa_{2,i} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) \left(\frac{T} {T_{c,i}} - \kappa_{3,i}\right)\right) \left(\sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{10 T}{T_{c,i}} - 7\right)\right)}{T}\right)^{2} \right)}{200}$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=0.45724\frac{R^2T_{c,i}^2}{P_{c,i}}$$, [Pa*m^6/mol^2]

kappa0slist[float]

kappa0 parameters of PRSV EOS; the original form uses $$\kappa_{0,i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3$$, [-]

kappa1slist[float]

Fit parameters, can be set to 0 if unknown [-]

kappa2slist[float]

Fit parameters, can be set to 0 if unknown [-]

kappa3slist[float]

Fit parameters, can be set to 0 if unknown [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTslist[float]

First temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K)]

d2a_alpha_dT2slist[float]

Second temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K^2)]

Examples

>>> PRSV2_a_alpha_and_derivatives_vectorized(400.0, Tcs=[507.6], ais=[2.6923169620277805], kappa0s=[0.8074380841890093], kappa1s=[0.05104], kappa2s=[0.8634], kappa3s=[0.460])
([3.2005700986], [-0.005301195971], [1.11181477576e-05])

thermo.eos_alpha_functions.APISRK_a_alpha_and_derivatives_vectorized(T, Tcs, ais, S1s, S2s, a_alphas=None, da_alpha_dTs=None, d2a_alpha_dT2s=None)[source]

Calculates the a_alpha terms and their first two temperature derivatives for the API SRK equation of state given the critical temperatures Tcs, constants ais, and API parameters S1s and S2s.

$a_i\alpha(T)_i = a_i \left[1 + S_{1,i}\left(1-\sqrt{T_{r,i}}\right) + S_{2,i} \frac{1- \sqrt{T_{r,i}}}{\sqrt{T_{r,i}}}\right]^2$
$\frac{d a_i\alpha_i}{dT} = a_i\frac{T_{c,i}}{T^{2}} \left(- S_{2,i} \left(\sqrt{ \frac{T}{T_{c,i}}} - 1\right) + \sqrt{\frac{T}{T_{c,i}}} \left(S_{1,i} \sqrt{ \frac{T}{T_{c,i}}} + S_{2,i}\right)\right) \left(S_{2,i} \left(\sqrt{\frac{ T}{T_{c,i}}} - 1\right) + \sqrt{\frac{T}{T_{c,i}}} \left(S_{1,i} \left(\sqrt{ \frac{T}{T_{c,i}}} - 1\right) - 1\right)\right)$
$\frac{d^2 a_i\alpha_i}{dT^2} = a_i\frac{1}{2 T^{3}} \left(S_{1,i}^{2} T \sqrt{\frac{T}{T_{c,i}}} - S_{1,i} S_{2,i} T \sqrt{\frac{T}{T_{c,i}}} + 3 S_{1,i} S_{2,i} T_{c,i} \sqrt{\frac{T}{T_{c,i}}} + S_{1,i} T \sqrt{\frac{T}{T_{c,i}}} - 3 S_{2,i}^{2} T_{c,i} \sqrt{\frac{T}{T_{c,i}}} + 4 S_{2,i}^{2} T_{c,i} + 3 S_{2,i} T_{c,i} \sqrt{\frac{T}{T_{c,i}}}\right)$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}}$$, [Pa*m^6/mol^2]

S1slist[float]

S1 parameters of API SRK EOS; regressed or estimated with $$S_{1,i} = 0.48508 + 1.55171\omega_i - 0.15613\omega_i^2$$, [-]

S2slist[float]

S2 parameters of API SRK EOS; regressed or set to zero, [-]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTslist[float]

First temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K)]

d2a_alpha_dT2slist[float]

Second temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K^2)]

Examples

>>> APISRK_a_alpha_and_derivatives_vectorized(T=430.0, Tcs=[514.0], ais=[1.2721974560809934],  S1s=[1.678665], S2s=[-0.216396])
([1.60465652994], [-0.0043155855337], [8.9931026263e-06])

thermo.eos_alpha_functions.RK_a_alpha_and_derivatives_vectorized(T, Tcs, ais, a_alphas=None, da_alpha_dTs=None, d2a_alpha_dT2s=None)[source]

Calculates the a_alpha terms and their first and second temperature derivatives for the RK equation of state given the critical temperatures Tcs, and a parameters ais.

$a_i\alpha_i = \frac{a_i}{\sqrt{\frac{T}{T_{c,i}}}}$
$\frac{d a_i\alpha_i}{dT} = - \frac{a_i}{2 T\sqrt{\frac{T}{T_{c,i}}}}$
$\frac{d^2 a_i\alpha_i}{dT^2} = \frac{3 a_i}{4 T^{2}\sqrt{\frac{T}{T_{c,i}}}}$
Parameters
Tfloat

Temperature, [K]

Tcslist[float]

Critical temperatures of components, [K]

aislist[float]

a parameters of cubic EOS, $$a_i=\frac{0.42748\cdot R^2(T_{c,i})^{2}}{P_{c,i}}$$, [Pa*m^6/mol^2]

Returns
a_alphaslist[float]

Pure component a_alpha terms in the cubic EOS, [Pa*m^6/mol^2]

da_alpha_dTslist[float]

First temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K)]

d2a_alpha_dT2slist[float]

Second temperature derivative of pure component a_alpha, [Pa*m^6/(mol^2*K^2)]

Examples

>>> Tcs = [469.7, 507.4, 540.3]
>>> ais = [1.9351940385541342, 2.525982668162287, 3.1531036708059315]
>>> RK_a_alpha_and_derivatives_vectorized(322.29, Tcs=Tcs, ais=ais)
([2.3362073307, 3.16943743055, 4.08255757984], [-0.00362438693525, -0.0049170582868, -0.00633367088622], [1.6868597855e-05, 2.28849403652e-05, 2.94781294155e-05])


## Class With Alpha Functions¶

The class-based ones van save a little code when implementing a new EOS. If there is not a standalone function available for an alpha function, it has not yet been accelerated in a nice vectorized way.

class thermo.eos_alpha_functions.a_alpha_base[source]

Bases: object

class thermo.eos_alpha_functions.Almeida_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Almeida et al. (1991) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Almeida et al. (1991) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = e^{c_{1} \left(- \frac{T}{T_{c,i}} + 1\right) \left|{ \frac{T}{T_{c,i}} - 1}\right|^{c_{2} - 1} + c_{3} \left(-1 + \frac{T_{c,i}}{T}\right)}$

References

1(1,2)

Almeida, G. S., M. Aznar, and A. S. Telles. “Uma Nova Forma de Dependência Com a Temperatura Do Termo Atrativo de Equações de Estado Cúbicas.” RBE, Rev. Bras. Eng., Cad. Eng. Quim 8 (1991): 95.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Androulakis_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Androulakis et al. (1989) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Androulakis et al. (1989) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = c_{1} \left(- \left(\frac{T}{T_{c,i}}\right)^{\frac{2}{3}} + 1\right) + c_{2} \left(- \left(\frac{T}{T_{c,i}}\right)^{\frac{2}{3}} + 1\right)^{2} + c_{3} \left(- \left(\frac{T}{T_{c,i}}\right)^{ \frac{2}{3}} + 1\right)^{3} + 1$

References

1(1,2)

Androulakis, I. P., N. S. Kalospiros, and D. P. Tassios. “Thermophysical Properties of Pure Polar and Nonpolar Compounds with a Modified VdW-711 Equation of State.” Fluid Phase Equilibria 45, no. 2 (April 1, 1989): 135-63. doi:10.1016/0378-3812(89)80254-7.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Chen_Yang_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Hamid and Yang (2017) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Hamid and Yang (2017) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Seven coefficients needed.

$\alpha = e^{\left(- c_{3}^{\ln{\left (\frac{T}{T_{c,i}} \right )}} + 1\right) \left(- \frac{T c_{2}}{T_{c,i}} + c_{1}\right)}$

References

1(1,2)

Chen, Zehua, and Daoyong Yang. “Optimization of the Reduced Temperature Associated with Peng–Robinson Equation of State and Soave-Redlich-Kwong Equation of State To Improve Vapor Pressure Prediction for Heavy Hydrocarbon Compounds.” Journal of Chemical & Engineering Data, August 31, 2017. doi:10.1021/acs.jced.7b00496.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Coquelet_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Coquelet et al. (2004) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Coquelet et al. (2004) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = e^{c_{1} \left(- \frac{T}{T_{c,i}} + 1\right) \left(c_{2} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{2} + c_{3} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{3} + 1\right)^{2}}$

References

1(1,2)

Coquelet, C., A. Chapoy, and D. Richon. “Development of a New Alpha Function for the Peng–Robinson Equation of State: Comparative Study of Alpha Function Models for Pure Gases (Natural Gas Components) and Water-Gas Systems.” International Journal of Thermophysics 25, no. 1 (January 1, 2004): 133-58. doi:10.1023/B:IJOT.0000022331.46865.2f.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Gasem_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Gasem (2001) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Gasem (2001) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = e^{\left(- \left(\frac{T}{T_{c,i}}\right)^{c_{3}} + 1\right) \left(\frac{T c_{2}}{T_{c,i}} + c_{1}\right)}$

References

1(1,2)

Gasem, K. A. M, W Gao, Z Pan, and R. L Robinson Jr. “A Modified Temperature Dependence for the Peng-Robinson Equation of State.” Fluid Phase Equilibria 181, no. 1–2 (May 25, 2001): 113-25. doi:10.1016/S0378-3812(01)00488-5.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Gibbons_Laughton_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Gibbons and Laughton (1984) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Gibbons and Laughton (1984) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficients needed.

$\alpha = c_{1} \left(\frac{T}{T_{c,i}} - 1\right) + c_{2} \left(\sqrt{\frac{T}{T_{c,i}}} - 1\right) + 1$

References

1(1,2)

Gibbons, Richard M., and Andrew P. Laughton. “An Equation of State for Polar and Non-Polar Substances and Mixtures” 80, no. 9 (January 1, 1984): 1019-38. doi:10.1039/F29848001019.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Haghtalab_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Haghtalab et al. (2010) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Haghtalab et al. (2010) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = e^{\left(- c_{3}^{\ln{\left (\frac{T}{T_{c,i}} \right )}} + 1\right) \left(- \frac{T c_{2}}{T_{c,i}} + c_{1}\right)}$

References

1(1,2)

Haghtalab, A., M. J. Kamali, S. H. Mazloumi, and P. Mahmoodi. “A New Three-Parameter Cubic Equation of State for Calculation Physical Properties and Vapor-liquid Equilibria.” Fluid Phase Equilibria 293, no. 2 (June 25, 2010): 209-18. doi:10.1016/j.fluid.2010.03.029.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Harmens_Knapp_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Harmens and Knapp (1980) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Harmens and Knapp (1980) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficients needed.

$\alpha = \left(c_{1} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) - c_{2} \left(1 - \frac{T_{c,i}}{T}\right) + 1\right)^{2}$

References

1(1,2)

Harmens, A., and H. Knapp. “Three-Parameter Cubic Equation of State for Normal Substances.” Industrial & Engineering Chemistry Fundamentals 19, no. 3 (August 1, 1980): 291-94. doi:10.1021/i160075a010.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Heyen_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Heyen (1980) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Heyen (1980) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficients needed.

$\alpha = e^{c_{1} \left(- \left(\frac{T}{T_{c,i}}\right)^{c_{2}} + 1\right)}$

References

1(1,2)

Heyen, G. Liquid and Vapor Properties from a Cubic Equation of State. In “Proceedings of the 2nd International Conference on Phase Equilibria and Fluid Properties in the Chemical Industry”. DECHEMA: Frankfurt, 1980; p 9-13.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Mathias_1983_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Mathias (1983) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Mathias (1983) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficients needed.

$\alpha = \left(c_{1} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) - c_{2} \left(- \frac{T}{T_{c,i}} + 0.7\right) \left(- \frac{T}{T_{c,i}} + 1\right) + 1\right)^{2}$

References

1(1,2)

Mathias, Paul M. “A Versatile Phase Equilibrium Equation of State.” Industrial & Engineering Chemistry Process Design and Development 22, no. 3 (July 1, 1983): 385-91. doi:10.1021/i200022a008.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Mathias_Copeman_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Mathias and Copeman (1983) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Mathias and Copeman (1983) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = \left(c_{1} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) + c_{2} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{2} + c_{3} \left( - \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{3} + 1\right)^{2}$

References

1(1,2)

Mathias, Paul M., and Thomas W. Copeman. “Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept.” Fluid Phase Equilibria 13 (January 1, 1983): 91-108. doi:10.1016/0378-3812(83)80084-3.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Mathias_Copeman_poly_a_alpha[source]

Methods

 a_alpha_and_derivatives_pure a_alpha_and_derivatives_vectorized a_alpha_pure a_alphas_vectorized
a_alpha_and_derivatives_pure(T)[source]
a_alpha_and_derivatives_vectorized(T)[source]
a_alpha_pure(T)[source]
a_alphas_vectorized(T)[source]
class thermo.eos_alpha_functions.Mathias_Copeman_untruncated_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Mathias and Copeman (1983) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Mathias and Copeman (1983) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = \left(c_{1} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) + c_{2} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{2} + c_{3} \left( - \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{3} + 1\right)^{2}$

References

1(1,2)

Mathias, Paul M., and Thomas W. Copeman. “Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept.” Fluid Phase Equilibria 13 (January 1, 1983): 91-108. doi:10.1016/0378-3812(83)80084-3.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Melhem_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Melhem et al. (1989) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Melhem et al. (1989) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficients needed.

$\alpha = e^{c_{1} \left(- \frac{T}{T_{c,i}} + 1\right) + c_{2} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{2}}$

References

1(1,2)

Melhem, Georges A., Riju Saini, and Bernard M. Goodwin. “A Modified Peng-Robinson Equation of State.” Fluid Phase Equilibria 47, no. 2 (August 1, 1989): 189-237. doi:10.1016/0378-3812(89)80176-1.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Poly_a_alpha[source]

Bases: object

Methods

 Method to calculate a_alpha and its first and second derivatives given that there is a polynomial equation for $$\alpha$$. Method to calculate a_alpha given that there is a polynomial equation for $$\alpha$$.
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives given that there is a polynomial equation for $$\alpha$$.

$a \alpha = a\cdot \text{poly}(T)$
Parameters
Tfloat

Temperature, [K]

Returns
a_alphaslist[float]

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTslist[float]

Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2slist[float]

Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alpha_pure(T)[source]

Method to calculate a_alpha given that there is a polynomial equation for $$\alpha$$.

$a \alpha = a\cdot \text{poly}(T)$
Parameters
Tfloat

Temperature, [K]

Returns
a_alphafloat

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

class thermo.eos_alpha_functions.Saffari_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Saffari and Zahedi (2013) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Saffari and Zahedi (2013) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = e^{\frac{T c_{1}}{T_{c,i}} + c_{2} \ln{\left (\frac{T}{T_{c,i}} \right )} + c_{3} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)}$

References

1(1,2)

Saffari, Hamid, and Alireza Zahedi. “A New Alpha-Function for the Peng-Robinson Equation of State: Application to Natural Gas.” Chinese Journal of Chemical Engineering 21, no. 10 (October 1, 2013): 1155-61. doi:10.1016/S1004-9541(13)60581-9.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Schwartzentruber_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Schwartzentruber et al. (1990) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Schwartzentruber et al. (1990) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = \left(c_{4} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) - \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) \left(\frac{T^{2} c_{3}} {Tc^{2}} + \frac{T c_{2}}{T_{c,i}} + c_{1}\right) + 1\right)^{2}$

References

1(1,2)

J. Schwartzentruber, H. Renon, and S. Watanasiri, “K-values for Non-Ideal Systems:An Easier Way,” Chem. Eng., March 1990, 118-124.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Soave_1972_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Soave (1972) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Soave (1972) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Same as SRK.a_alpha_and_derivatives but slower and requiring alpha_coeffs to be set. One coefficient needed.

$\alpha = \left(c_{0} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right) + 1\right)^{2}$

References

1(1,2)

Soave, Giorgio. “Equilibrium Constants from a Modified Redlich- Kwong Equation of State.” Chemical Engineering Science 27, no. 6 (June 1972): 1197-1203. doi:10.1016/0009-2509(72)80096-4.

2

Young, André F., Fernando L. P. Pessoa, and Victor R. R. Ahón. “Comparison of 20 Alpha Functions Applied in the Peng–Robinson Equation of State for Vapor Pressure Estimation.” Industrial & Engineering Chemistry Research 55, no. 22 (June 8, 2016): 6506-16. doi:10.1021/acs.iecr.6b00721.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Soave_1984_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Soave (1984) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Soave (1984) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficients needed.

$\alpha = c_{1} \left(- \frac{T}{T_{c,i}} + 1\right) + c_{2} \left(-1 + \frac{T_{c,i}}{T}\right) + 1$

References

1(1,2)

Soave, G. “Improvement of the Van Der Waals Equation of State.” Chemical Engineering Science 39, no. 2 (January 1, 1984): 357-69. doi:10.1016/0009-2509(84)80034-2.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Soave_1979_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Soave (1979) .
 a_alpha_and_derivatives_vectorized a_alpha_pure a_alphas_vectorized
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Soave (1979) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. Three coefficients are needed.

$\alpha = 1 + (1 - T_r)(M + \frac{N}{T_r})$

References

1(1,2)

Soave, G. “Rigorous and Simplified Procedures for Determining the Pure-Component Parameters in the Redlich—Kwong—Soave Equation of State.” Chemical Engineering Science 35, no. 8 (January 1, 1980): 1725-30. https://doi.org/10.1016/0009-2509(80)85007-X.

a_alpha_and_derivatives_vectorized(T)[source]
a_alpha_pure(T)[source]
a_alphas_vectorized(T)[source]
class thermo.eos_alpha_functions.Soave_1993_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Soave (1983) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Soave (1983) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Two coefficient needed.

$\alpha = c_{1} \left(- \frac{T}{T_{c,i}} + 1\right) + c_{2} \left(- \sqrt{\frac{T}{T_{c,i}}} + 1\right)^{2} + 1$

References

1(1,2)

Soave, G. “Improving the Treatment of Heavy Hydrocarbons by the SRK EOS.” Fluid Phase Equilibria 84 (April 1, 1993): 339-42. doi:10.1016/0378-3812(93)85131-5.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Trebble_Bishnoi_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Trebble and Bishnoi (1987) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Trebble and Bishnoi (1987) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. One coefficient needed.

$\alpha = e^{c_{1} \left(- \frac{T}{T_{c,i}} + 1\right)}$

References

1(1,2)

Trebble, M. A., and P. R. Bishnoi. “Development of a New Four- Parameter Cubic Equation of State.” Fluid Phase Equilibria 35, no. 1 (September 1, 1987): 1-18. doi:10.1016/0378-3812(87)80001-8.

a_alpha_pure(T)[source]
class thermo.eos_alpha_functions.Twu91_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Twu et al. (1991) . Method to calculate the pure-component a_alphas and their first and second derivatives for TWU91 alpha function EOS.
 a_alpha_pure a_alphas_vectorized
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Twu et al. (1991) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Three coefficients needed.

$\alpha = \left(\frac{T}{T_{c,i}}\right)^{c_{3} \left(c_{2} - 1\right)} e^{c_{1} \left(- \left(\frac{T}{T_{c,i}} \right)^{c_{2} c_{3}} + 1\right)}$

References

1(1,2)

Twu, Chorng H., David Bluck, John R. Cunningham, and John E. Coon. “A Cubic Equation of State with a New Alpha Function and a New Mixing Rule.” Fluid Phase Equilibria 69 (December 10, 1991): 33-50. doi:10.1016/0378-3812(91)90024-2.

a_alpha_and_derivatives_vectorized(T)[source]

Method to calculate the pure-component a_alphas and their first and second derivatives for TWU91 alpha function EOS. This vectorized implementation is added for extra speed.

$\alpha = \left(\frac{T}{T_{c,i}}\right)^{c_{3} \left(c_{2} - 1\right)} e^{c_{1} \left(- \left(\frac{T}{T_{c,i}} \right)^{c_{2} c_{3}} + 1\right)}$
Parameters
Tfloat

Temperature, [K]

Returns
a_alphaslist[float]

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTslist[float]

Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2slist[float]

Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K**2]

a_alpha_pure(T)[source]
a_alphas_vectorized(T)[source]
class thermo.eos_alpha_functions.TwuPR95_a_alpha[source]

Methods

 Method to calculate $$a \alpha$$ and its first and second derivatives for the Twu alpha function. Method to calculate $$a \alpha$$ for the Twu alpha function.
 a_alpha_and_derivatives_vectorized a_alphas_vectorized
a_alpha_and_derivatives_pure(T)[source]

Method to calculate $$a \alpha$$ and its first and second derivatives for the Twu alpha function. Uses the set values of Tc, omega and a.

$\alpha = \alpha^{(0)} + \omega(\alpha^{(1)}-\alpha^{(0)})$
$\alpha^{(i)} = T_r^{N(M-1)}\exp[L(1-T_r^{NM})]$

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.

Parameters
Tfloat

Temperature at which to calculate the values, [-]

Returns
a_alphafloat

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTfloat

Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2float

Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K^2]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of the object.

The derivatives are somewhat long and are not described here for brevity; they are obtainable from the following SymPy expression.

>>> from sympy import *
>>> T, Tc, omega, N1, N0, M1, M0, L1, L0 = symbols('T, Tc, omega, N1, N0, M1, M0, L1, L0')
>>> Tr = T/Tc
>>> alpha0 = Tr**(N0*(M0-1))*exp(L0*(1-Tr**(N0*M0)))
>>> alpha1 = Tr**(N1*(M1-1))*exp(L1*(1-Tr**(N1*M1)))
>>> alpha = alpha0 + omega*(alpha1-alpha0)
>>> diff(alpha, T)
>>> diff(alpha, T, T)

a_alpha_and_derivatives_vectorized(T)[source]
a_alpha_pure(T)[source]

Method to calculate $$a \alpha$$ for the Twu alpha function. Uses the set values of Tc, omega and a.

$\alpha = \alpha^{(0)} + \omega(\alpha^{(1)}-\alpha^{(0)})$
$\alpha^{(i)} = T_r^{N(M-1)}\exp[L(1-T_r^{NM})]$

For sub-critical conditions:

L0, M0, N0 = 0.125283, 0.911807, 1.948150;

L1, M1, N1 = 0.511614, 0.784054, 2.812520

For supercritical conditions:

L0, M0, N0 = 0.401219, 4.963070, -0.2;

L1, M1, N1 = 0.024955, 1.248089, -8.

Parameters
Tfloat

Temperature at which to calculate the value, [-]

Returns
a_alphafloat

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of the object.

a_alphas_vectorized(T)[source]
class thermo.eos_alpha_functions.TwuSRK95_a_alpha[source]

Methods

 Method to calculate $$a \alpha$$ and its first and second derivatives for the Twu alpha function. Method to calculate $$a \alpha$$ for the Twu alpha function.
 a_alpha_and_derivatives_vectorized a_alphas_vectorized
a_alpha_and_derivatives_pure(T)[source]

Method to calculate $$a \alpha$$ and its first and second derivatives for the Twu alpha function. Uses the set values of Tc, omega and a.

$\alpha = \alpha^{(0)} + \omega(\alpha^{(1)}-\alpha^{(0)})$
$\alpha^{(i)} = T_r^{N(M-1)}\exp[L(1-T_r^{NM})]$

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
Tfloat

Temperature at which to calculate the values, [-]

Returns
a_alphafloat

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

da_alpha_dTfloat

Temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K]

d2a_alpha_dT2float

Second temperature derivative of coefficient calculated by EOS-specific method, [J^2/mol^2/Pa/K^2]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of the object.

The derivatives are somewhat long and are not described here for brevity; they are obtainable from the following SymPy expression.

>>> from sympy import *
>>> T, Tc, omega, N1, N0, M1, M0, L1, L0 = symbols('T, Tc, omega, N1, N0, M1, M0, L1, L0')
>>> Tr = T/Tc
>>> alpha0 = Tr**(N0*(M0-1))*exp(L0*(1-Tr**(N0*M0)))
>>> alpha1 = Tr**(N1*(M1-1))*exp(L1*(1-Tr**(N1*M1)))
>>> alpha = alpha0 + omega*(alpha1-alpha0)
>>> diff(alpha, T)
>>> diff(alpha, T, T)

a_alpha_and_derivatives_vectorized(T)[source]
a_alpha_pure(T)[source]

Method to calculate $$a \alpha$$ for the Twu alpha function. Uses the set values of Tc, omega and a.

$\alpha = \alpha^{(0)} + \omega(\alpha^{(1)}-\alpha^{(0)})$
$\alpha^{(i)} = T_r^{N(M-1)}\exp[L(1-T_r^{NM})]$

For sub-critical conditions:

L0, M0, N0 = 0.141599, 0.919422, 2.496441

L1, M1, N1 = 0.500315, 0.799457, 3.291790

For supercritical conditions:

L0, M0, N0 = 0.441411, 6.500018, -0.20

L1, M1, N1 = 0.032580, 1.289098, -8.0

Parameters
Tfloat

Temperature at which to calculate the value, [-]

Returns
a_alphafloat

Coefficient calculated by EOS-specific method, [J^2/mol^2/Pa]

Notes

This method does not alter the object’s state and the temperature provided can be a different than that of the object.

a_alphas_vectorized(T)[source]
class thermo.eos_alpha_functions.Yu_Lu_a_alpha[source]

Methods

 Method to calculate a_alpha and its first and second derivatives according to Yu and Lu (1987) .
 a_alpha_pure
a_alpha_and_derivatives_pure(T)[source]

Method to calculate a_alpha and its first and second derivatives according to Yu and Lu (1987) . Returns a_alpha, da_alpha_dT, and d2a_alpha_dT2. See GCEOS.a_alpha_and_derivatives for more documentation. Four coefficients needed.

$\alpha = 10^{c_{4} \left(- \frac{T}{T_{c,i}} + 1\right) \left( \frac{T^{2} c_{3}}{Tc^{2}} + \frac{T c_{2}}{T_{c,i}} + c_{1}\right)}$

References

1(1,2)

Yu, Jin-Min, and Benjamin C. -Y. Lu. “A Three-Parameter Cubic Equation of State for Asymmetric Mixture Density Calculations.” Fluid Phase Equilibria 34, no. 1 (January 1, 1987): 1-19. doi:10.1016/0378-3812(87)85047-1.

a_alpha_pure(T)[source]

## Pure Alpha Functions¶

thermo.eos_alpha_functions.Twu91_alpha_pure(T, Tc, c0, c1, c2)[source]
thermo.eos_alpha_functions.Soave_1972_alpha_pure(T, Tc, c0)[source]
thermo.eos_alpha_functions.Soave_1979_alpha_pure(T, Tc, M, N)[source]
thermo.eos_alpha_functions.Heyen_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Harmens_Knapp_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Mathias_1983_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Mathias_Copeman_untruncated_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Gibbons_Laughton_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Soave_1984_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Yu_Lu_alpha_pure(T, Tc, c1, c2, c3, c4)[source]
thermo.eos_alpha_functions.Trebble_Bishnoi_alpha_pure(T, Tc, c1)[source]
thermo.eos_alpha_functions.Melhem_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Androulakis_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Schwartzentruber_alpha_pure(T, Tc, c1, c2, c3, c4)[source]
thermo.eos_alpha_functions.Almeida_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Soave_1993_alpha_pure(T, Tc, c1, c2)[source]
thermo.eos_alpha_functions.Gasem_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Coquelet_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Haghtalab_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Saffari_alpha_pure(T, Tc, c1, c2, c3)[source]
thermo.eos_alpha_functions.Chen_Yang_alpha_pure(T, Tc, omega, c1, c2, c3, c4, c5, c6, c7)[source]